
• Anomaly detection (AD) aims to identify defective images and localize the defects.
• Fig. 1 shows that AD models should be able to detect defects over many image 

classes, 
(1) without relying on hard-coded class names that can be uninformative.
(2) learn without anomaly supervision.
(3) robust to the long-tailed distributions of real-world applications.

• To address these challenges, we formulate the problem of long-tailed AD by 
introducing several datasets split with different levels of class imbalance. 

• A novel method, LTAD, is proposed to detect defects from multiple and long-tailed 
classes, without relying on dataset class names. 
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Experiment

Fig 1. Challenges of long-tailed AD include (Left) designing a single model to detect anomalies over 
multiple image classes, (Middle) uninformative class names, and (Right) long-tailed data distributions. 

Table 1. Quantitative result on MVTec [1] dataset. 

Proposed Method 

Training
• The proposed training pipeline, LTAD, contains 2 phases

- Phase 1: Learn to synthesize feature for tail classes
- Phase 2: Train to predict the anomaly map using the real/synthesized feature

• For implementation, we use the pretrained visual-language model ALIGN [3], 
which contains a text encoder and an image encoder that align the image and 
text to the same feature space.

Inference
• During testing, RM anomaly score of a patch 𝑝𝑖 is 𝑆𝑟𝑒𝑐 𝑝𝑖 = | 𝑝𝑖 − 𝑅𝑀(𝑝𝑖) |2

2.
- When 𝑝𝑖is normal, 𝑆𝑅𝑀(𝑝𝑖) is small
- When 𝑝𝑖is abnormal, 𝑆𝑅𝑀(𝑝𝑖) is large

• The SAD anomaly score and RM anomaly score are fused with a dataset specific 
hyperparameter 𝜆.

Phase 1: Class sensitive data augmentation
• Goal : Learn to synthesize feature for tail classes.
• With ALIGN, we proposed a text conditional VAE for synthesizing features 

(top of Fig. 3).
• Since the class name is unknown, a pseudo class name 𝑠𝑐 is learned for each 

category 𝑐.
• MSE loss minimizes reconstruction difference of encoder/decoder feature. 
• KL divergence loss regularizes the latent distribution.

Phase 2: Anomaly Detection
• Goal:  Train to predict the anomaly map using the real/synthesized feature.
• Phase 2 takes normal feature 𝑝𝑖

𝑛 as input (i.e. Real feature or synthesized feature 
from phase 1).

• Since only normal patch feature 𝑝𝑖
𝑛 is available during training, noise is added to 

the normal feature to create abnormal feature 𝑝𝑖
𝑎.

• Phase 2 contains 2 submodules, including the semantic AD (SAD) module (top of 
Fig. 3 phase 2) and the reconstruction module (RM) (bottom of Fig. 3 phase 2).

• Reconstruction module (RM) 
- Maps the input feature to normal feature and the MSE loss is used to minimize  

| 𝑝𝑖
𝑛 − 𝑅𝑀(𝑝𝑖

𝑎) |2
2 during training.

• Semantic AD (SAD) module
- Maps a patch feature 𝑝𝑖to text space and the projected feature is denoted as ෝ𝑝𝑖.
- The learned pseudo-class name 𝑠𝑐 is concatenated with normal prompt 𝑣𝑛

(e.g. a normal 𝑠𝑐)  and abnormal prompt 𝑣𝑎 (e.g. a broken 𝑠𝑐). 
- The text encoder 𝑇 outputs the normal text feature 𝑡𝑛,c = 𝑇( 𝑣𝑛; 𝑠𝑐 ) and the 

abnormal text feature 𝑡𝑎,c = 𝑇( 𝑣𝑎; 𝑠𝑐 ).

- The semantic anomaly score of a patch 𝑝𝑖 is 𝑆𝑠𝑒𝑚 𝑝𝑖 =
exp(ෞ𝑝𝑖∙𝑡𝑎,𝑐)

exp ෞ𝑝𝑖∙𝑡𝑛,𝑐 +exp(ෞ𝑝𝑖∙𝑡𝑎,c)
.

- Ground truth is 1 when 𝑝𝑖 = 𝑝𝑖
𝑎 and vice versa.

- Binary cross entropy (BCE) loss is applied on each patch for training.

Table 4. Importance of pseudo class name 𝑠𝑐 on 
MVTec-step100. 

Dataset Split & Preliminary Study

Fig 2. Image classes (x-axis) are sorted by popularity. (Left) Dataset distribution of MVTec
[1] vs. long-tailed version. (Right) AD performance of UniAD [2] on the two datasets. 

• To study how long-tailed distribution affect the performance, we first proposed 
several new long-tail dataset splits, as shown in left of Fig. 2

- Imbalance type (e.g. exponential decay and step decay)

- Class imbalance factor 𝛽 =
max{𝑁𝑐}

m𝑖𝑛{𝑁𝑐}
, where 𝑁𝑐 is the sample number of class 𝑐

• Performance degrades as the number of sample decreases (See the right of Fig. 2).

Introduction

Fig 3. The proposed LTAD training contains Phase 1 (Top) and Phase 2 (Bottom). 

Fig 4. Inference stage of the proposed LTAD.

Table 2. Quantitative result on VisA [4] dataset. Table 3. Quantitative result on DAGM [5] dataset. 

Table 5. Ablation on different normal/abnormal text 
prompts (i.e., 𝑣𝑎 and 𝑣𝑛 ) on MVTec step100. 

Fig 5. Quantitative 
result of the 
proposed LTAD 
and the baseline.
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