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Changes for the Berer MULTI-CHANNEL SOURCE SEPARATION OF MACHINE SOUNDS
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Weakly supervised source separation

* We want to separate sounds that cannot be recorded in
isolation
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* Application: Machines with multiple noise-generating
parts (e.g., fans, gearboxes, valves) that need to be
operated simultaneously

Experiments & Results
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* We propose a loss function based on the difference Lo—> Mcugtr:q;feid —1,
between expected and measured time delays across a UNet

microphone array, under the assumption that the source
location is known a priori

We simulate a dataset with challenging acoustical conditions
We use samples from DCASE 2021 Task 2 dataset [1] as sources | @':

NN architecture: Complex Unet [2] with 1 decoder output per source

NN input features: complex STFT, IPDs, directional features [2],
frequency positional encodings

Results show better separation than signal-agnostic beamformers

However, performance still lags fully-supervised setting

Feature extraction based on measured interchannel phase differences (IPD),

target phase differences (TPD), and directional features for P channels:
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Reconstruction loss ensures consistency:
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Location loss ensures separation:
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Total loss, combines all of them:
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When the sound source is located where we
expect it to be (L,), the TPD and the IPD match.

The real part is equal to the number of
microphones (P = 6 in this example).
The imaginary part is equal to zero.

do not match.

When we expect the sound source to be
somewhere else (L), the TPD and the IPD
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» We simulate challenging reverberant conditions
» 2 sources, 11 mics linear array, harmonically spaced

* 2 machines from the DCASE2021 Task 2 Dataset
as sources

 Simulated using PyRoomAcoustics:
* Shoebox rooms, with randomized multiband

Example of locations
for mic array and sources

mics and souces positions

materials ZZ‘; .
» Image source for early reflections ? 000 ¢
» Ray tracing for late part ‘_‘(’)‘(’; N :
* In total: e y= L ae
* 24,000 mixtures of 10 seconds A . > 2
+ Split into 15,000 / 6,000 / 3,000 SN 08 x
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Table 1: Simulation constraints for array and source placement.

Parameter Range
Distance between sources 0.5, 1.5]
Distance between sources and mic array center 0.75,2.0]
Distance between sources or mic, and room surface  [0.5, 0]
Angle between mic array normal and sources (0°,30°]

Results

Performance in terms of mean + standard deviation of SI-SDR (dB) for different source separation approaches evaluated on datasets with B S;= Gearbox
2 different sets of machines, and 2 different acoustical conditions. SetA = [sy = gearbox, s; = slider]; SetB = [sg = pump, s; = valve]. c. = clider
=
Anechoic Reverberant 20
Trained on SetA SetB SetA SetB 15
Approach Set Reverb SI-SDRg 1T SI-SDR; 1T SI-SDRg 1T SI-SDR; 1T SI-SDRg 1T SI-SDR; 1T SI-SDRg 1+ SI-SDR; 1
10
Mixture nfa n/a  -0.1£44  0.1£44  0.1+25 -01+25  0.0+26  0.0+26 0.1£2.6 -0.1+£2.6 « é
Delaysum nfa n/a  -3.0+7.1 -29+67 —24+58 -24+57 -32451 -354+52 -3.1+£51 —3.4+523 m -
Ideal Binary Masks n/a  n/a 87454  8.8+53  88+34  82+33  9.0+3.3 89432  9.14+33  8.7+32 % -
Fully Supervised A v/ 152425 15.64+2.6 143423 144420 77433  774+33 74433 73432 < 0
Fully Supervised A X 214428 23.6+32 189437 213433 38450 42450  3.6+48  4.0+4.7
WeakSup AV 48+34 41425 57423 49420  1.6+27 12423  18+28 14425 -5
WeakSup A X 7.0+434  7.1433 77422 75423 32428 32426 32429 32426
Fully Supervised B v 119424 123425 115420 11717  65+30 65+3.1 644130  63+29 -10 —&0
Fully Supervised B X 19.0+2.5 194427 18.3+26 18.8+2.0 42+44  41+44  414+43  4.0+43 -10 -5 0 - 10 0.0626.1250.25 05 1 2 4
WeakSup B v 4.0+3.1 39428 47420 44418  1.74£24 13423 17424 11422 Inbut £60 [s]
WeakSup B X 39439 37426  54+24  48+21 19427 15421 23427  1.6+22 Input SI-SDR [dB] P
P RT 20
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- IPDs are noisy and not reliable

_ FutweWork References

- Future work includes investigating more complex sound propagation models that are
applicable to recorded data

- We will also explore few-shot learning applications, for example, where there is some
data available about the acoustics of the environment, such as room impulse responses.
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