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Connecting Robust ML to Privacy/Rate-Distortion Theory

Motivation: Adversarial Examples, small input perturbations fool deep neural networks

(X,Y )
perturbation

PZ|X,Y ∈ D Z
classifier

q(y|Z) E[− log q(Y |Z)]
cross-entropy loss

Robust Learning

minqmaxP

Privacy-Utility

maxP minq

Optimal Privacy-Utility Tradeoff for Data Release [Calmon, Fawaz, 2012]

• Perturbation is Data Release Mechanism, Classifier is Privacy Adversary

• Mechanism design: maximin problem reduces to max entropy

Robust Machine Learning [Madry et al, 2018]

• Classifier is Robust Model, Perturbation is Adversarial Input Attacker

• Robust model design: minimax solution can be found via max entropy

Similar minimax result of [Tse, Farnia, 2016] limited by technical conditions
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Adversarial Examples

Discovered by [Szegedy et al, 2013] in “Intriguing properties of neural networks”

• “Explaining and Harnessing Adversarial Examples” [Goodfellow et al, 2014]

• Small, imperceptible perturbations can fool deep neural networks
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Many Other Adversarial Examples

[Sharif et al, 2016], [Athalye et al, 2018], [Eykholt et al, 2018], [Carlini, Wagner, 2018]
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Adversarial Examples Vulnerability in Tesla Auto-Pilot

Tencent Keen Security Lab: first demo of attack on commercial vision product
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Why do Adversarial Examples Matter?

Besides safety, security, reliability . . .

• Better understanding might yield fundamental insights on machine learning

Potential to broadly impact how we understand and apply ML

• How do we fix broken systems? More data/training? Model depth/architecture?

• What does adversarial fragility imply about generalizability?

• How do we avoid overfitting with highly overparameterized models?

Adversarial examples and defenses are a cat-and-mouse game in the literature

• Fundamental guarantees to break this cycle?
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Robust Machine Learning Formulation

Conventional supervised learning formulation: minθ E[`(fθ(X), Y )]

• Example: classifier fθ(X) estimates posterior qθ(y|X) over finite label set Y
• Cross-entropy loss: `(fθ(X), Y ) = − log qθ(Y |X)

• Note that E[− log qθ(Y |X)] = KL(pY |X(y|X)‖qθ(y|X)|PX) +H(Y |X)

Robust learning formulation [Madry et al, 2018]

min
θ

E

 max
Z∈X :

d(X,Z)≤ε

`(fθ(Z), Y )


• Allow perturbations within distance ε ≥ 0 for some metric d : X × X → [0,∞]
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Generalizing the Robust ML Formulation

min
θ

E

 max
Z∈X :

d(X,Z)≤ε

`(fθ(Z), Y )



can be reformulated to allow mixed (randomized) strategies for the attacker

min
θ

max
PZ|X,Y ∈D∗d,ε

E[`(fθ(Z), Y )]

where the constraint represents the allowable perturbation

D∗d,ε := {pZ|X,Y ∈ P(Z|X ,Y) : Pr[d(X,Z) ≤ ε] = 1}

Alternatively, can strengthen adversary by constraining only expected distortion

Dd,ε := {pZ|X,Y ∈ P(Z|X ,Y) : E[d(X,Z)] ≤ ε}

More generally, we can consider closed, convex constraint set D ⊂ P(X × Y)

min
θ

max
pX,Y ∈D

E[`(fθ(X), Y )]

© MERL July 12, 2021 8 / 13



Generalizing the Robust ML Formulation

min
θ

E

 max
Z∈X :

d(X,Z)≤ε

`(fθ(Z), Y )


can be reformulated to allow mixed (randomized) strategies for the attacker

min
θ

max
PZ|X,Y ∈D∗d,ε

E[`(fθ(Z), Y )]

where the constraint represents the allowable perturbation

D∗d,ε := {pZ|X,Y ∈ P(Z|X ,Y) : Pr[d(X,Z) ≤ ε] = 1}

Alternatively, can strengthen adversary by constraining only expected distortion

Dd,ε := {pZ|X,Y ∈ P(Z|X ,Y) : E[d(X,Z)] ≤ ε}

More generally, we can consider closed, convex constraint set D ⊂ P(X × Y)

min
θ

max
pX,Y ∈D

E[`(fθ(X), Y )]

© MERL July 12, 2021 8 / 13



Generalizing the Robust ML Formulation

min
θ

E

 max
Z∈X :

d(X,Z)≤ε

`(fθ(Z), Y )


can be reformulated to allow mixed (randomized) strategies for the attacker

min
θ

max
PZ|X,Y ∈D∗d,ε

E[`(fθ(Z), Y )]

where the constraint represents the allowable perturbation

D∗d,ε := {pZ|X,Y ∈ P(Z|X ,Y) : Pr[d(X,Z) ≤ ε] = 1}

Alternatively, can strengthen adversary by constraining only expected distortion

Dd,ε := {pZ|X,Y ∈ P(Z|X ,Y) : E[d(X,Z)] ≤ ε}

More generally, we can consider closed, convex constraint set D ⊂ P(X × Y)

min
θ

max
pX,Y ∈D

E[`(fθ(X), Y )]

© MERL July 12, 2021 8 / 13



Generalizing the Robust ML Formulation

min
θ

E

 max
Z∈X :

d(X,Z)≤ε

`(fθ(Z), Y )


can be reformulated to allow mixed (randomized) strategies for the attacker

min
θ

max
PZ|X,Y ∈D∗d,ε

E[`(fθ(Z), Y )]

where the constraint represents the allowable perturbation

D∗d,ε := {pZ|X,Y ∈ P(Z|X ,Y) : Pr[d(X,Z) ≤ ε] = 1}

Alternatively, can strengthen adversary by constraining only expected distortion

Dd,ε := {pZ|X,Y ∈ P(Z|X ,Y) : E[d(X,Z)] ≤ ε}

More generally, we can consider closed, convex constraint set D ⊂ P(X × Y)

min
θ

max
pX,Y ∈D

E[`(fθ(X), Y )]

© MERL July 12, 2021 8 / 13



Ideal Robust ML Equivalent to Privacy-Utility Tradeoff Problem

Consider ideal minimax solution over all classifiers (distributions) q ∈ P(Y|X )

Theorem (Minimax Result)

For any finite sets X and Y, and closed, convex D ⊂ P(X ,Y), we have

min
q∈P(Y|X )

max
p∈D

E[− log q(Y |X)] = max
p∈D

min
q∈P(Y|X )

E[− log q(Y |X)]

= max
p∈D

H(Y |X) =: h∗ ≤ log |Y|

where expectations and entropy are with respect to (X,Y ) ∼ p. Further, the solutions
for q ∈ P(Y|X ) that solve the minimax (LHS) problem are given by⋂

p∈D

{
q ∈ P(Y|X ) : E(X,Y )∼p[− log q(Y |X)] ≤ h∗

}
6= ∅.

RHS is a well-known, info-theoretic formulation of privacy-utility tradeoff

• Robust rule q∗ (for LHS) must be consistent with p∗Y |X (from RHS optimum)

• Solving the max-entropy problem helps find minimax robust solution
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Characterization of Robust Models

Corollary (Solution Set)

Under paradigm of above theorem, let D∗ :=
{
p ∈ D : H(Y |X) = h∗, (X,Y ) ∼ p

}
.

For all p∗ ∈ D∗, the corresponding terms of the solution set
⋂
p∈D Q(p) are given by

Q(p∗) :=
{
q ∈ P(Y|X ) : E(X,Y )∼p∗ [− log q(Y |X)] ≤ h∗

}
=
{
q ∈ P(Y|X ) : ∀(x, y), q(y|x)p∗(x) = p∗(x, y)}.

Further, if ⋃
p∗∈D∗

{
x ∈ X : p∗(x) > 0

}
= X ,

then the solution set contains exactly one point and is given by⋂
p∗∈D∗

Q(p∗) =
⋂
p∈D

Q(p).

If there exists p∗ ∈ D∗ with full support over X (in marginal PX), then q∗ = p∗(y|x)
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Necessity of Stochastic Perturbation

Mixed (stochastic) strategies for adversary essential to the minimax equality

• No inherent disadvantage in playing first versus second

However, pure (deterministic) strategy adversaries at disadvantage when playing first

min
q∈P(Y|Z)

E

[
max
Z∈X :

d(X,Z)≤ε

− log q(Y |Z)

]
≥ max

g:X×Y→X
d(X,g(X,Y ))≤ε

min
q∈P(Y|Z)

E
[
− log q

(
Y |g(X,Y )

)]

Example demonstrating strict inequality:
X = Y = {0, 1, 2, 3, 4}, X ∼ Unif{0, 2, 4},
X = Y , and d(X,Y ) := |X − Z| ≤ ε = 1

• Stochastic P ∗Z|X,Y ⇒ α = 0.5,
maxH(Y |Z) = h2(1/3)

• Deterministic g∗ ⇒ α = 0, 1

X = Y = 0

X = Y = 2

X = Y = 4

PZ|X,Y

Z = 1

Z = 3

1

α

1− α

1

Deterministic adversary: LHS (minimax) h2(1/3) > (2/3) log(2) RHS (maximin)
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Clean vs Robust Performance Tradeoffs

Theoretical analysis of “clean data penalty” for a robust model q∗

1 Ideal Bayes risk (of non-robust model on clean data): H(Y |X)
2 Loss for robust model on clean data: H(Y |X) + KL(pY |X‖q∗|pX)
3 Worst-case attack loss for robust model: maxpX,Y ∈DH(Y |X)

Note that (1) ≤ (2) ≤ (3)

Mismatch between robust decision rule and attack strength leads to suboptimality

© MERL July 12, 2021 12 / 13



Clean vs Robust Performance Tradeoffs

Theoretical analysis of “clean data penalty” for a robust model q∗

1 Ideal Bayes risk (of non-robust model on clean data): H(Y |X)
2 Loss for robust model on clean data: H(Y |X) + KL(pY |X‖q∗|pX)
3 Worst-case attack loss for robust model: maxpX,Y ∈DH(Y |X)

Note that (1) ≤ (2) ≤ (3)

Mismatch between robust decision rule and attack strength leads to suboptimality

© MERL July 12, 2021 12 / 13



Conclusions and Further Work

(X,Y )
perturbation

PZ|X,Y ∈ D Z
classifier

q(y|Z) E[− log q(Y |Z)]
cross-entropy loss

Robust Learning

minqmaxP

Privacy-Utility

maxP minq

Minimax result offers approach toward attaining robust models

• Solve max-entropy problem to find universal adversarial perturbation

• Optimal response to the universal adversary produces a robust model

• Considering stochastic adversaries necessary for saddle point

• Connections to privacy-utility theory help understand clean vs robust tradeoffs

See our extended paper on arXiv [2007.11693] for further details

• Generalization of main result to continuous alphabets

• Fixed-point characterization under Wasserstein ball constraints

• Ongoing investigation and application to robust learning methods
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