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Connecting Robust ML to Privacy/Rate-Distortion Theory

Motivation: Adversarial Examples, small input perturbations fool deep neural networks

! Robust Learning !
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Privacy-Utility :
, maxp ming ,

Optimal Privacy-Utility Tradeoff for Data Release [Calmon, Fawaz, 2012]
® Perturbation is Data Release Mechanism, Classifier is Privacy Adversary
® Mechanism design: maximin problem reduces to max entropy
Robust Machine Learning [Madry et al, 2018]
® (Classifier is Robust Model, Perturbation is Adversarial Input Attacker
® Robust model design: minimax solution can be found via max entropy

Similar minimax result of [Tse, Farnia, 2016] limited by technical conditions
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Adversarial Examples

Discovered by [Szegedy et al, 2013] in “Intriguing properties of neural networks”

® “Explaining and Harnessing Adversarial Examples” [Goodfellow et al, 2014]
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® Small, imperceptible perturbations can fool deep neural networks
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Many Other Adversarial Examples
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[Sharif et al, 2016], [Athalye et al, 2018], [Eykholt et al, 2018], [Carlini, Wagner, 2018]
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Adversarial Examples Vulnerability in Tesla Auto-Pilot

Tencent Keen Security Lab: first demo of attack on commercial vision product
bOiNGhOiNG

Small stickers on the ground trick Tesla
autopilot into steering into opposing traffic lane

Fig 35. In-car perspective when testing, the red circle marks, the interference markings are marked
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Why do Adversarial Examples Matter?

Besides safety, security, reliability . ..
® Better understanding might yield fundamental insights on machine learning
Potential to broadly impact how we understand and apply ML
® How do we fix broken systems? More data/training? Model depth/architecture?
® What does adversarial fragility imply about generalizability?

® How do we avoid overfitting with highly overparameterized models?

-6 = =7 0 2 B

Adversarial examples and defenses are a cat-and-mouse game in the literature

® Fundamental guarantees to break this cycle?
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Robust Machine Learning Formulation

Conventional supervised learning formulation: ming E[¢(fo(X),Y)]
® Example: classifier fo(X) estimates posterior gg(y|X) over finite label set Y
® Cross-entropy loss: ¢(fo(X),Y) = —logqs(Y|X)
® Note that E[—log go(Y|X)] = KL(pyx (| X)llge (y| X) | Px) + H(Y]X)
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Robust Machine Learning Formulation

Conventional supervised learning formulation: ming E[¢(fo(X),Y)]
® Example: classifier fo(X) estimates posterior gg(y|X) over finite label set Y
® Cross-entropy loss: ¢(fo(X),Y) = —logqs(Y|X)
® Note that E[—log go(Y|X)] = KL(pyx (| X)llge (y| X) | Px) + H(Y]X)

Robust learning formulation [Madry et al, 2018]

meinE max L fo(Z2),Y)
d(X,Z)<e

® Allow perturbations within distance € > 0 for some metric d : X x X — [0, o]
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Generalizing the Robust ML Formulation

meln]E max U fo(2),Y)
d(X,2)<e
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Generalizing the Robust ML Formulation

melnE max U fo(2),Y)
d(X,2)<e

can be reformulated to allow mixed (randomized) strategies for the attacker

mein max _ E[{(fo(2),Y)]

Pz1x, v €D ¢
where the constraint represents the allowable perturbation

D;,e = {pz|X7y c P(Z|X,y) : Pr[d(X, Z) < E] = 1}
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Generalizing the Robust ML Formulation

melnE max U fo(2),Y)
d(X,2)<e

can be reformulated to allow mixed (randomized) strategies for the attacker

mein max _ E[{(fo(2),Y)]

Pz1x,v €D
where the constraint represents the allowable perturbation
Dj.. :={pzix,y € P(Z|X,Y) : Pr[d(X,Z) < ¢ =1}
Alternatively, can strengthen adversary by constraining only expected distortion

Da,e :={pz|x,y € P(2|X,Y): E[d(X, 2)] < ¢}
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Generalizing the Robust ML Formulation

melnE max U fo(2),Y)
d(X,2)<e

can be reformulated to allow mixed (randomized) strategies for the attacker

mein max _ E[{(fo(2),Y)]

Pz1x,v €D
where the constraint represents the allowable perturbation
Dj.. :={pzix,y € P(Z|X,Y) : Pr[d(X,Z) < ¢ =1}
Alternatively, can strengthen adversary by constraining only expected distortion
D :=A{pzix,y € P(Z|X,Y) :E[d(X,2)] < €}
More generally, we can consider closed, convex constraint set D C P(X x ))

min p}glggDE[ﬂ(fe (X),Y)]
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Ideal Robust ML Equivalent to Privacy-Utility Tradeoff Problem
Consider ideal minimax solution over all classifiers (distributions) ¢ € P(Y|X)

Theorem (Minimax Result)

For any finite sets X and ), and closed, convex D C P(X,Y), we have

i axE[—log ¢(Y|X)] = ma: i E[—logq(Y|X
qeg%‘;?\x)?eg [ gq(Y]X)] gle%qeg%gl\x) [ ga(Y1X)]

=max H(Y|X) =: h* < log ||
peD

where expectations and entropy are with respect to (X,Y) ~ p. Further, the solutions
for g € P(Y|X) that solve the minimax (LHS) problem are given by

ﬂ {ge PIX) : Ex,y)~pl—logq(Y|X)] <A™} £ @.

peD

RHS is a well-known, info-theoretic formulation of privacy-utility tradeoff
® Robust rule ¢* (for LHS) must be consistent with pj- x (from RHS optimum)

® Solving the max-entropy problem helps find minimax robust solution
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Characterization of Robust Models

Corollary (Solution Set)

Under paradlgm of above theorem, let D* := {p € D: H(Y|X) = h*,(X,Y) ~ p}.
For all p* € D*, the corresponding terms of the solution set ﬂpeD Q(p) are given by

Q") = {g € POV|X) : E(x,y)~p= [~ logg(Y]|X)] < b7}
= {q e PQ|X) : V(z,y), q(ylx)p" (z) = p"(z,9)}
Further, if

U {rex:p(z)>0} =2,

p*eD*

then the solution set contains exactly one point and is given by

N ew)=()Qwp

p*ED* pED

If there exists p* € D* with full support over X (in marginal Px), then ¢* = p*(y|z)
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Necessity of Stochastic Perturbation

Mixed (stochastic) strategies for adversary essential to the minimax equality

® No inherent disadvantage in playing first versus second

However, pure (deterministic) strategy adversaries at disadvantage when playing first

min E| max —logq(Y|Z)| > i E[fl Y|g(X,Y }
a€P(V|2) ZER: oga(YlZ)| = g:XIE%i):X q67r’n(1313\3) qu( lo€ ))
d(X,2)<e d(X,9(X,Y))<e
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Necessity of Stochastic Perturbation

Mixed (stochastic) strategies for adversary essential to the minimax equality
® No inherent disadvantage in playing first versus second

However, pure (deterministic) strategy adversaries at disadvantage when playing first

B E| max —logg(Y|2)| 2 max qeg}lyn\@E[ log q(Y]g(X, Y))}
d(X,2)<e d(X,9(X,Y))<e

Example demonstrating strict inequality: Pzixy
X =Y =1{0,1,23,4}, X ~ Unif{0,2,4}, X:YZO\I)
X=Y,andd(X,Y) =|X—-Z|<e=1 },Zzl

e Stochastic Py xy = a = 0.5, X=Y=2_1-,

max H(Y|Z) = ha(1/3) Ty
® Deterministic ¢* = a=0,1 X =V =4 —

Deterministic adversary: LHS (minimax) h2(1/3) > (2/3)log(2) RHS (maximin)
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Clean vs Robust Performance Tradeoffs

Theoretical analysis of “clean data penalty” for a robust model ¢*
@ Ideal Bayes risk (of non-robust model on clean data): H(Y|X)
@ Loss for robust model on clean data: H(Y|X) + KL(py|x||¢*|px)
© Worst-case attack loss for robust model: max,y , ep H(Y|X)
Note that (1) < (2) < (3)
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Clean vs Robust Performance Tradeoffs

Theoretical analysis of “clean data penalty” for a robust model ¢*
@ Ideal Bayes risk (of non-robust model on clean data): H(Y|X)
@ Loss for robust model on clean data: H(Y|X) + KL(py|x||¢*|px)
© Worst-case attack loss for robust model: max,y , ep H(Y|X)
Note that (1) < (2) < (3)

Mismatch between robust decision rule and attack strength leads to suboptimality
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Conclusions and Further Work

! Robust Learning !

. 1
ming max

cross-entropy loss _—" q P

perturbation classifier

(X.Y) = pyxy € D[ Z 7 g(ylz) [ El-loga(V]2)] _1

Privacy-Utility .
ymaxp ming ,

Minimax result offers approach toward attaining robust models
® Solve max-entropy problem to find universal adversarial perturbation
® Optimal response to the universal adversary produces a robust model
® Considering stochastic adversaries necessary for saddle point

® Connections to privacy-utility theory help understand clean vs robust tradeoffs

See our extended paper on arXiv [2007.11693] for further details
® Generalization of main result to continuous alphabets
® Fixed-point characterization under Wasserstein ball constraints

® Ongoing investigation and application to robust learning methods
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