Disentangled Adversarial Transfer Learning for Physiological Biosignals

EMBC 2020

Mo Han¹, Ozan Ozdenizci¹, Ye Wang², Toshiaki Koike-Akino² and Deniz Erdogmus¹ ¹Cognitive Systems Lab (CSL) - Northeastern University, Boston ²Mitsubishi Electric Research Laboratories (MERL), Cambridge

1. Introduction

- Physiological and Mental Status Monitoring
 - Traditional method: electroencephalography (EEG) signal
 - \circ surface (non-invasive) or implanted (invasive) electrodes
 - \circ frequent calibration
 - Non-EEG physiological biosignals: temperature, heart rate, and arterial oxygen, etc.
 - $\circ\,$ wrist-worn platform
 - $\circ\,$ more effective, comfortable, and less expensive
 - o Major issue: variability among different subjects or recording sessions
- Transfer Learning
 - \circ Cope with the change in data distributions, in order to fit a wider range of users
 - o Adversarial training
 - $\,\circ\,$ allow the representation to predict dependent variables
 - \circ simultaneously taking advantage of an adaptive measure
 - $\circ\,$ control the extent of its dependency during training

1. Introduction

- Our work: adversarial inference approach
 - \circ Exploit disentangled nuisance-robust representations
 - $\circ\,$ Trade-off between task-related features and person-discriminative information
 - Additional censoring network blocks: Adversary block and Nuisance block
 - \circ jointly train the adversary, nuisance and classifier units
 - task-discriminative features are incorporated for unknow users dissimilar from training data
 - o features from known subjects are projected to unknow but similar users' data
 - Proposed disentangled adversarial transfer learning is applicable to other deep learning network approaches that are available

 $X_i \in \mathbb{R}^{C \times T}$: raw data at trial *i* recorded from *C* dimensions for *T* time samples $y_i \in \{0, 1, ..., L - 1\}$: label of user stress level status or task among *L* categories $s_i \in \{1, ..., S - 1, S\}$: subject identification (ID) among S individuals

 $z = g(X; \theta)$: encoder, to learn the latent representation z from data X

Z : latent feature, concatenation of z_a and z_n on a ratio of $(1-r_N)$: r_N

 z_a : input to the *adversary* network, aims to **conceal user-related information** *s* Adversary : a classifier for user-related information *s*, with \hat{S}_A as the output

 \Rightarrow let feature z_a have a lower correlation on classifying s, i.e. **maximize** $loss_{adversary}(s, \hat{s}_A)$

 \Rightarrow let feature z_n have a higher correlation on classifying s, i.e. **minimize** $loss_{nuisance}(s, \hat{s}_N)$

- Dataset: physiological biosignal dataset for assessing human stress status levels
 o 4 stress status (L = 4):
 - (i). physical stress (ii). cognitive stress (iii). emotional stress (iv). relaxation
 - \circ 20 healthy subjects (S = 20)
 - \circ 7 channels (C = 7): biosensors containing

(i). electrodermal activity (ii). temperature (iii). heart rate (iv). arterial oxygen, (v-vii). acceleration

 \circ 300 time samples (T = 300): task of 5 minutes downsampled to 1 Hz

3. Experimental Evaluation and Results: Experiment Implementation

Parameters:

• known: channel number C = 7, time sample T = 300, label number L = 4, subject number S = 20 • to be optimized: adversary regularization weight λ_A and nuisance regularization weights λ_N • to be optimized: nuisance representation rate r_N among all features

Parameter optimization:

- 1. first optimize λ_A with only adversary block: $\lambda_A \in \{0.05, 0.1\}$ with $\lambda_N = 0$ and $r_N = 0$
- \circ 2. fix the nuisance rate to $r_N = 0.2$: assume that the subject-related feature z_N accounts for a small proportion among feature *z* and keeps constant for all users and tasks
- 3. second optimize λ_N with both adversary and nuisance blocks: $\lambda_N \in \{0.001, 0.005, 0.05, 0.01, 0.2\}$ with $r_N = 0.2$ and optimized λ_A from step 1
- Validation: cross-subjects validation using a leave-one-subject-out approach

3. Experimental Evaluation and Results: Results and Discussion

	λ_A	λ_N	r_N	Main Classifier	Adversary Network	Nuisance Network
Non-Adversarial	0	0	0	79.88%	71.13%	6.17%
Adversarial	0.005	0	0	79.97%	35.62%	6.15%
	0.1	0	0	80.34%	8.08%	6.20%
Disentangled Adversarial	0.1	0.001	0.2	80.62%	7.05%	39.03%
	0.1	0.005	0.2	80.66%	7.90%	55.54%
	0.1	0.05	0.2	80.04%	7.37%	78.83%
	0.1	0.1	0.2	80.36%	8.08%	83.72%
	0.1	0.2	0.2	80.22%	8.05%	87.26%

- Main classifier accuracy: 4-class decoding of human stress

 preferable: higher, indicates better discrimination of stress status levels
- Adversary network accuracy: 20-class decoding of subject ID

 preferable: lower, indicates less subject-specific information are preserved in feature z_a
- Nuisance network accuracy: 20-class decoding of subject ID

 preferable: higher, indicates more subject-specific information are preserved in feature z_n

3. Experimental Evaluation and Results: Results and Discussion

	λ_A	λ_N	r_N	Main Classifier	Adversary Network	Nuisance Network
Non-Adversarial	0	0	0	79.88%	71.13%	6.17%
Adversarial	0.005	0 0	0 0	79.97% 80.34%	35.62% 8.08%	6.15% 6.20%
Disentangled Adversarial	0.1 0.1	0.001 0.005	0.2 0.2	80.62% 80.66%	7.05% 7.90%	39.03% 55.54%
	0.1	0.05	0.2	80.04%	7.37%	78.83%
	0.1	0.1	0.2	80.36%	8.08%	83.72%
	0.1	0.2	0.2	80.22%	8.05%	87.26%

- Non-adversarial model: $\lambda_A = 0$, $\lambda_N = 0$, $r_N = 0$
- Adversarial network: $\lambda_A = 0.1$, $\lambda_N = 0$, $r_N = 0$
- Disentangled adversarial network: $\lambda_A = 0.1$, $\lambda_N = 0.005$, $r_N = 0.2$

3. Experimental Evaluation and Results: Results and Discussion

Non-adversarial model:

 $\lambda_{\rm A}=0,\,\lambda_{\rm N}=0,\,r_{\rm N}=0$

Adversarial network:

 $\lambda_{\mathrm{A}} = 0.1, \, \lambda_{\mathrm{N}} = 0, \, \mathrm{r_{\mathrm{N}}} = 0$

• Disentangled adversarial network: $\lambda_A = 0.1, \lambda_N = 0.005, r_N = 0.2$

Thank you.

