

Learning Theory I L10.4

Stochastic Bottleneck: Rateless Auto-Encoder for Flexible Dimensionality Reduction

Toshiaki Koike-Akino

Ye Wang

June 2020

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA <u>http://www.merl.com</u>

© MERL

- Motivations
 - Machine learning for real-world data analysis
- Dimensionality reduction
 - Principal component analysis (PCA)
 - Auto-encoder (AE)
- Rateless property
 - Fountain codes
- Stochastic bottleneck
 - Stochastic Width vs. Stochastic Depth
 - TailDrop regularization
- Multi-objective learning
- Experiments
 - MSE
 - SSIM
 - Accuracy
- Summary

How many latent variables required?

• Gartnar's Hype Cycle for Emerging Technologies, 2019 August

- Deep learning = fancy name of multi-layer perceptron neural networks.
 - 2006 Hinton: Many layers, layer-wise pre-training, massive data sets
- Massively parallel computation
 - Driver: graphic processor units, tensor processor units ...
- Variants:
 - Deep belief networks
 - Deep convolutional networks
 - Deep recurrent networks

 \mathbf{h}^{\perp}

- Deep Boltzmann machines
- Deep autoencoder

Deep Boltzmann Machine

Deep Belief Network

 \mathbf{W}^3

 \mathbf{W}^2

Convolutional Networks

Recurrent Networks

• Audio & Visual Applications

motor scooter	leopard				
motor scooter	leopard				
go-kart	jaguar				
moped	cheetah				
bumper car	snow leopard				
golfcart	Egyptian cat				

"man in black shirt is playing guitar."

AI Surpassing Human-Level Performance

• The hit count of articles per year in GoogleScholar; Wireless Communication applications

• Raw data dimensionality is often extremely large

IN MARTE OF MERCENIN AND INCOMES AND AND INCOMES, MILL MERCENING.

• Data-space volume exponentially increases with dimensionality

• Classifier performance drops for high-dimension data with finite training samples

Hughes Phenomenon (Hughes, 1968)

or so called curse of dimensionality, peaking phenomenon

- Principal component analysis (PCA)
- Kernel PCA
- Independent component analysis (ICA)
- Isomap

PCA₂

PCA1

• High-dimensional data may be well-described by lower-dim latent variables

Hessian LLE (3 sec)

LLE (0.93 sec)

t-SNE (43 sec)

Manifold Learning with 5000 points, 10 neighbors

LTSA (4.8 sec)

Modified LLE (1.9 sec)

MDS (1.1e+02 sec) SpectralEmbedding (1.2 sec)

- Bottleneck neural network architecture: M<N
- Encoder and decoder networks are jointly trained such that latent variables can regenerate original data with smallest distortion

$$egin{array}{lll} \min_{ heta,\phi} & \mathbb{E} \ \mathbf{x} \sim \Pr(\mathbf{x}) & \left[\mathcal{L}ig(\mathbf{x},g_{\phi}(f_{ heta}(\mathbf{x}))ig) & \ \mathbf{x} \in \mathbb{R}^N & \ \mathbf{x} \in \mathbb{R}^M & \ \mathbf{z} \in \mathbb{R}^M & \end{array}
ight.$$

Original data

Latent variable

Encoder network

Decoder network

$$\mathbf{z} = f_{\theta}(\mathbf{x})$$

 $\mathbf{x}' = g_{\phi}(\mathbf{z})$

Loss function (e.g. MSE)

$$\mathcal{L}(\mathbf{x},\mathbf{x}')$$

- AE is often called NLPCA due to analogy
- Without nonlinear activations, an optimal AE model coincides with PCA for Gaussian data under MSE distortion (Karhunen-Loeve)

• Random matrix theorem:

If covariance matrix follows i.i.d. Gaussian Gram matrix, eigenvalue distribution follows Marchenko-Pastur distribution

> $\mu(A) = egin{cases} (1-rac{1}{\lambda}) \mathbf{1}_{0\in A} +
> u(A), & ext{if } \lambda > 1 \
> u(A), & ext{if } 0 \leq \lambda \leq 1, \end{cases}$ $ar{\mathcal{L}}_M = \mathbb{E}_{\mathbf{x}} \Big[\| \mathbf{W}'(\mathbf{W}\mathbf{x} + \mathbf{b}) + \mathbf{b}' - \mathbf{x} \|^2 \Big] = \sum_{n=1}^N \lambda_n$ 0.5 1.0 2.0 1.5 2.5

Cumulative is well approximated by exponential

- PCA universally achieves best MSE for all dimensionality 1<*M*<*N* under Gaussian datasets
- The downstream users can freely change the dimensionality by discarding the leastprincipal components or appending the most-principal components without changing encoder and decoder models
- The MSE is gracefully improved by increasing the compression rate *M/N*
- We do not need to pre-determine the dimensionality when training the model
- This rateless property can resolve the issue:

How many latent variables do we need for training the AE model?

MITSUBISHI Changes for the Better Changes for the Better

 Capacity approaching codes need to pre-determine code rates under the knowledge of channel capacity

- Continue sending more redundant parity until the user satisfies
 - Luby-Transform (LT) codes [2002], Online codes [2002], Raptor codes [2006], Tornado codes [2004]
- We do not pre-determine the code rates
- Rateless codes are capacity-achievable
- We introduce "**rateless**" AE which does not have to determine the dimensionality beforehand

- For PCA, principal components are sorted in significance, thus scalable
 - For AE, latent variables are equally important, thus not adaptable
- Once AE is learned with pre-determined dims, it requires another learning to reduce or expand dims
 - Hierarchical AE (hAE) to append dim for residual reconstruction
 - Stacked AE (sAE) to further reduce dimensionality
- Conditional update for progressive learning usually does not work best and often finite-tuning is required while flexibility is compromised
- We propose a very simple dropout mechanism to realize ratelessness

- Dropout is an effective method to prevent over-training by regularizing over-parameterized networks
- It can be viewed as Bayesian approximation [Gal2016]
- There are many different regularization techniques: DropConnect, DropBlock, StochasticDepth, DropPath, ShakeDrop, SpatialDrop, ZoneOut, Shake-Shake, etc.

• Simple idea: Non-uniform dropout mechanism

Probabilistically Low-Dim Latent

(b) Sparse AE

(c) Stochastic Bottleneck AE

- Non-uniform dropout has been used in StochasticDepth for ResNet
- Not only depth direction, we use width direction to concentrate important feature in upper neurons

- We tested various eigenspectrum model: Poisson, Laplacian, exponential, sigmoid, Lorentzian, polynomial, and Wigner distribution
- Power cumulative mass function (CMF) showed a good tradeoff between distortion and compression rate.
- Best power order parameter is Power CMF 0.8 chosen dependent on datasets 0.6 $\Pr(D < \tau M) = \tau^{\beta}$ 0.4 0.2 x**0.5 x**3 $x^{**}(1./3.)$ 0 0.2 0.4 0.6 0.8

• Rateless objective is multi-task learning
Single:
$$\min_{\theta,\phi} \underset{\mathbf{x} \sim \Pr(\mathbf{x})}{\mathbb{E}} \left[\mathcal{L}(\mathbf{x}, g_{\phi}(f_{\theta}(\mathbf{x}))) \right]$$

$$\prod_{\mathbf{x} \sim \Pr(\mathbf{x})} \left[\mathcal{L}(\theta, \phi; 1), \bar{\mathcal{L}}(\theta, \phi; 2), \dots, \bar{\mathcal{L}}(\theta, \phi; M) \right]$$

$$\overline{\mathcal{L}}(\theta, \phi; L) : \text{Expected loss when the first } L \text{ latent variables retained by user}$$

$$\min_{\theta,\phi} \sum_{L=1}^{M} \omega_L \bar{\mathcal{L}}(\theta, \phi; L)$$

$$\Pr(D = M - L) = \omega_L$$
e.g.) balanced weights: $\omega_L \simeq 1/\bar{\mathcal{L}}^*(\theta, \phi; L)$

Weighted metric method, ...

- AE architecture
 - 3 layers 1024 or 2048 nodes
 - Adam (0.001)
 - Mini-batch 100
 - Max 500 epochs
 - Power CMF TailDrop
- Datasets •
 - MNIST
 - CIFAR-10
 - FMNIST
 - KMNIST
 - SVHN
 - CIFAR-100

airplane	2 I	the second	-	X	*	1	2	-17	-	
automobile			1		-	The state			-	*
bird	Ser.	ſ	2			4	1	N.	1	4
cat	1	E.	1	Sul.			E.	Å.	No.	1
deer	L	40	X	R		Y	Y	Y	-	5
dog	1	(.	-	% .	(Free			13	A	1¢
frog	.7	13	1		2 🖘			5		5
horse	Pr	The second	1	2	1	TAB	-	2h		T.
ship	T	المكنوبي ا	20	-	Law.		2	15	1	
truck	AT INCOME		1	R.			Arts .	(h		det

• MSE does not fully tell perceptual distortion

MSE=309, SSIM=0.987

MSE=309, SSIM=0.580

MSE=309, SSIM=0.641

MSE=309, SSIM=0.730

SSIM Distortion Measure (MNIST)

• The first 2 latent variables

- 32x32 color images
- 10-class natural photos
- 50,000 training
- 10,000 test

- MNIST data is gray-scale image, but nearly binary (white or black) whose statistics are far from Gaussian distribution
- CIFAR-10 uses color natural photos. Such photos are well modeled by Gauss-Markov random field (GMRF)
- Hence, PCA surprisingly performs well for CIFAR-10 if we consider MSE distortion
- However, SSIM and accuracy measure ...

MNIST: Bernoulli like

Gauss-Markov

Reconstructed Image Snapshots (CIFAR-10)

Conventional AE

Proposed AE

Dimensionali	ty L	64	54	44	34	24	14	4
MSE (dB)	Conv. AE Prop. AE	$-5.92 \\ -6.19$	$-4.96 \\ -6.43$	$-3.96 \\ -6.30$	$-2.97 \\ -5.82$	$-1.91 \\ -5.11$	$-0.96 \\ -4.05$	$\begin{array}{c} 0.92 \\ -1.92 \end{array}$
SSIM Index	Conv. AE Prop. AE	0.64 0.66	0.61 0.67	0.57 0.67	0.53 0.64	0.48 0.60	0.44 0.54	0.37 0.44
SVM Acc.	Conv. AE Prop. AE	$\begin{array}{c} 0.47 \\ 0.47 \end{array}$	0.47 0 .48	0.46 0 .47	0.44 0 .48	0.40 0 .46	0.32 0 .42	0.20 0.29

for application invariant Moderate dimension we need to diagnose!

- Single unified AE model regardless of dimensionality

Rateless:

Conventional: - What purpose? - Dimensionality? - Which AE models?

All dimensions

we need to analyze!

Patients& Families

We do not care many but final results

- We introduced a new rateless concept in auto-encoder design
- We proposed Stochastic Bottleneck architecture
 - Non-identical dropout rates for Stochastic Width and Depth
- New regularization called **TailDrop** was investigated
- Proposed AE offers an excellent trade-off between distortion and compression rates
 - Benefits in MSE, SSIM, and SVM accuracy were confirmed
- Demonstrated the benefit for various benchmark datasets
- Questions?
 - koike@merl.com
 - More results in arXiv 2005.02870

(c) Stochastic Bottleneck AE

More Results in ArXiv

- Datasets
 - MNIST
 - CIFAR-10
 - FMNIST
 - KMNIST
 - SVHN
 - CIFAR-100

- 28x28 gray-scale images
- 10-class fashion photos
- 60,000 train
- 10,000 test

MSE Measure (FMNIST)

Proposed AE

Conventional AE

- 28x28 gray-scale images
- 10-class ancient Japanese letters
- 60,000 training data
- 10,000 test data

- 32x32 color images
- 10-class cropped digits
- 73,257 training
- 26,032 test

- 32x32 color images
- 100-class natural photos (20 super-classes)
- 50,000 training data, 10,000 test data

MITSUBISHI ELECTRIC Changes for the Better

Some pictures were reused from Google search. Do not redistribute.