
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Safe multi-agent motion planning under uncertainty for
drones using filtered reinforcement learning

Safaoui, Sleiman; Vinod, Abraham P.; Chakrabarty, Ankush; Quirynen, Rien; Yoshikawa,
Nobuyuki; Di Cairano, Stefano

TR2024-048 May 02, 2024

Abstract
We consider the problem of safe multi-agent motion planning for drones in uncertain, cluttered
workspaces. For this problem, we present a tractable motion planner that builds upon the
strengths of reinforcement learning and constrained- control-based trajectory planning. First,
we use single-agent reinforcement learning to learn motion plans from data that reach the
target but may not be collision-free. Next, we use a convex optimization, chance constraints,
and set-based methods for constrained control to ensure safety, despite the uncertainty in the
workspace, agent motion, and sensing. The proposed approach can handle state and control
constraints on the agents, and enforce collision avoidance among themselves and with static
obstacles in the workspace with high probability. The proposed approach yields a safe, real-
time implementable, multi-agent motion planner that is simpler to train than methods based
solely on learning. Numerical simulations and experiments show the efficacy of the approach.

IEEE Transactions on Robotics 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139
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and Stefano Di Cairano

Abstract—We consider the problem of safe multi-agent motion
planning for drones in uncertain, cluttered workspaces. For this
problem, we present a tractable motion planner that builds
upon the strengths of reinforcement learning and constrained-
control-based trajectory planning. First, we use single-agent
reinforcement learning to learn motion plans from data that
reach the target but may not be collision-free. Next, we use a
convex optimization, chance constraints, and set-based methods
for constrained control to ensure safety, despite the uncertainty
in the workspace, agent motion, and sensing. The proposed
approach can handle state and control constraints on the agents,
and enforce collision avoidance among themselves and with static
obstacles in the workspace with high probability. The proposed
approach yields a safe, real-time implementable, multi-agent
motion planner that is simpler to train than methods based solely
on learning. Numerical simulations and experiments show the
efficacy of the approach.

Index Terms—Safe learning-based control, model predictive
control, reinforcement learning, optimization, collision avoidance

I. INTRODUCTION

Multi-agent motion planning in cluttered workspaces un-
der stochastic uncertainty arising from both perception and
actuation is a key challenge in designing reliable autonomous
systems. The need for such planners, especially for quadrotors,
arises in a variety of application areas including transportation,
logistics, monitoring, and agriculture. Recently, motion plan-
ning using reinforcement learning (RL) has gained attention,
due to its ability to leverage data to tackle generic dynamical
systems and complex task specifications [1]–[9]. A major
challenge for such efforts is the lack of safety guarantees,
since most of the existing RL-based approaches enforce safety
constraints by soft constraints and are subject to training
errors. Additionally, multi-agent RL is known to suffer from
non-stationarity and scalability issues, which may prevent the
training to converge [9]. We propose a tractable approach
to safe, multi-agent motion planning in stochastic, cluttered
workspaces that combines reinforcement learning and set-
based methods for constrained control. Our approach yields a
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Fig. 1. Existing reinforcement learning-based motion planners can generate
unsafe trajectories (yellow arrows), since they treat safety as soft constraints,
which is undesirable in safety-critical applications. We propose a constrained-
control-based safety filter that renders such motion planners safe (long
green arrows) by enforcing safety as hard constraints. See https://youtu.be/
QcCSYNwuuo8 for an overview and videos of the experiments.

safe, real-time implementable, multi-agent motion planner that
is simple to train and enforces safety with high probability, by
means of chance constraints.

In the deterministic setting, various approaches have been
proposed for multi-agent motion planning such as central-
ized scheduling and coordination [10], roadmap and discrete
search followed by trajectory refinement [11], sampling-based
rapidly-exploring random trees [12], adaptive roadmaps [13],
buffered Voronoi cells [14], mixed-integer programming [15],
sequential convex programming [16], [17], formal methods
and finite transition systems [18], and control barrier func-
tions [8], [19], [20]. Recently, RL-based planners have been
used in complex environments [1]–[9]. A key advantage of
learning-based planners is the ability to leverage past expe-
rience in future decision making [21]. Consequently, such
planners can tackle complex and high-dimensional motion
planning tasks, while incorporating prior information about
the planning task and accommodating uncertainty [9].

Our preliminary work [22] considered deterministic safe
multi-agent motion planning, where everything was known
exactly. We proposed a two-step approach where a single-
agent RL algorithm provided a reference command which was
subsequently filtered (or corrected) by a constrained control
module. The works closest to [22] are [23]–[26] that also
follow a similar two-step process. However, [23], [24] need
labelled data for supervised learning, and [25], [26] use multi-
agent RL. Multi-agent RL trains multiple agents to collectively
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complete the task, and as a consequence, is harder to train
than single-agent RL. Additionally, [26] relies on solving a
two-player game in problems with discrete state and action
space. Our approach utilizes single-agent RL that is simpler
to train, can accommodate continuous state and action spaces
for stabilizable linear dynamics, is real-time implementable,
and need not be retrained as the number of agents increase.

In the stochastic setting, the presence of probabilistic con-
straints makes the motion planning problem more challenging.
Here, we must balance the conservativeness of the motion
plans with the risk (the probability of violation of a desirable
property), while ensuring the existence of a solution that satis-
fies other problem objectives. The authors of [27], [28] propose
single-agent motion planners using chance constrained pro-
gramming, but these approaches may become prohibitively ex-
pensive when extended to multi-agent systems. [29] combined
artificial potential fields with stochastic reachability theory to
generate motion plans for a single-agent in stochastic, cluttered
workspaces. Recently, [30], [31] proposed using a reference
controller, such as an RL controller trained offline, followed by
a constrained-control-based online filtering step to guarantee
safety of the control action being applied to the system,
which was applied to autonomous racing [32]. However, to
the best of our knowledge, these works do not consider a
multi-agent setup. Another line of research for multi-agent
motion planning in stochastic settings uses buffered Voronoi
cells [33], where motion plans are restricted to safety sets
computed based on the “best” separating hyperplane between
two Gaussian distributions, further tightened by a safety buffer.
Such an approach couples planning and safety control, yet it
does not guarantee recursive feasibility.

We focus on safe multi-agent motion planning in appli-
cations where a centralized decision maker coordinates the
actions of the agents for safety and performance. Examples
of such applications include air traffic control and coordinated
traffic control centers [34]. The proposed centralized approach
may impose additional communication and computational
burden when compared to a decentralized method (for e.g.,
[33]). However, the ability to enforce coordination helps the
proposed approach typically generate safer and more efficient
trajectories for the overall system.

Contributions of this work: Since RL has been recently
of interest to the robotics community, we propose a solution
to address the lack of safety in RL-based planners, specifi-
cally in multi-agent motion planning settings. We propose an
optimization-based safety filter that, when used in conjunction
with RL, provides a safe, multi-agent motion planner in clut-
tered workspaces under stochastic uncertainty. The proposed
safety filter uses convex optimization and set-based control to
compute minimum-norm corrections to the RL-based motion
plan and guarantee probabilistic collective safety of the multi-
agent system. We use single-agent RL to learn from data, while
avoiding issues like non-stationarity and scalability that affect
multi-agent RL. We also describe how to design terminal state
constraints for the constrained-control-based safety filter by
using reachability to achieve recursive feasibility. Finally, we
demonstrate our approach by both numerical simulations and
experiments using quadrotors.

We note that while the proposed solution is discussed
in the context of RL, our approach is general and can be
used with another planner instead of RL. For instance, the
single-agent planner could be sampling-based (e.g. RRT-based
planners [35], [36]), and the advantage of our architecture
would be in the dimensionality reduction and reduced effort
for collision checking with respect to applying the sampling-
based planner to the full multi-agent problem.

Relationship with our preliminary work [22]: In [22], we
proposed a safe, multi-agent motion planner using reinforce-
ment learning and optimization for deterministic dynamics
and a known workspace. We generated continuous-time safety
guarantees under the assumption that the safety filter’s control
input is constant across the entire horizon of the safety filter. In
this work, we extend our preliminary work [22] to stochastic
workspace, dynamics, and sensing, and provide probabilistic
safety guarantees for the overall system without relying on the
constant control input assumptions. We also explicitly assess
recursive feasibility of the safety filter, and investigate the
importance of the RL controller, safety filter, and the terminal
constraints in the proposed approach using extensive hardware
and simulation experiments.

A. Notation

0d (0n,m) is a vector (matrix) of zeros in Rd (Rd×m), Id
is the d-dimensional identity matrix, and N[a,b] is the subset
of natural numbers between (and including) a, b ∈ N, a ≤ b,
and N[a,b] = ∅ when a > b. ⊕,⊖ are the Minkowski sum and
Pontyagrin difference, respectively, and ∥ · ∥ is the 2-norm of
a vector. The support function of a convex and compact set C
is SC(ℓ) ≜ supx∈C ℓ · x for any ℓ ∈ Rd [37].
(Ω,F ,P) is a probability space where Ω is the sample

space, F is a σ-algebra of subsets of Ω, and P is a probability
measure on F . We denote random vectors in bold x : Ω→ Rn

and their mean x ≜ E[x], where E is the expectation operator
with respect to P. We use x̂ to denote a realization of a random
vector x. We use N (µ,Σ) to denote a Gaussian random vector
with mean µ and covariance Σ, and refer to N (0n, In) as the
standard Gaussian random vector. For a vector v(t), v(k|t) is
the predicted value at k ≥ t based on the information available
at time t, and we denote v(t|t) = v(t). We use the same
notation when referring to the distribution of v(t).

The following abbreviations are used throughout the paper:
iid (independent and identically distributed), MPC (model
predictive control), QP (quadratic program), and PSD (positive
semidefinite).

II. PROBLEM FORMULATION

Dynamics: Consider N ∈ N homogeneous agents with the
discrete-time linear dynamics at time t,

xi(t+ 1) = Axi(t) +Bui(t) +wi(t), (1)

with state xi ∈ Rn, input ui ∈ U ⊂ Rm, process noise wi ∈
Rn, state update matrix A ∈ Rn×n, and input matrix B ∈
Rn×m for each agent i ∈ N[1,N ]. The input set U is a convex
and compact polytope, and the process noise is iid, zero-mean



Gaussian wi ∼ N (0n,Σw) for some known PSD matrix Σw ∈
Rn×n. The position of the agent i at time t is given by,

pi(t) = Cxi(t), (2)

for some C ∈ Rd×n, d < m. For k ≥ t, the mean state of the
agents is predicted according to the nominal dynamics,

xi(k + 1|t) = Axi(k|t) +Bui(k|t) (3a)
pi(k|t) = Cxi(k|t). (3b)

We assume that the nominal dynamics (3) are stabilizable, i.e.,
there exists a stabilizing gain matrix K ∈ Rm×n that ensures
that all eigenvalues of (A+BK) lie in the unit circle.

Measurement model: We assume that the initial state
of each agent xi(0) = xi(0) is known, i.e., deterministic.
However, for t > 0, we have access only to a noisy measure-
ment of the true state xi(t). Specifically, we assume that the
measurements ŷi(t) are a realization of a random vector y(t),

yi(t) = xi(t) + ηi(t), (4)

where η ∼ N (0n,Ση) is a zero-mean Gaussian noise with a
known PSD matrix Ση ∈ Rn×n.

Agent Representation: We consider agents with identical
convex and compact rigid bodies, denoted by A ⊂ Rd, such
that 0d ∈ A. The rigid bodies of the agents are rotation-
invariant [38]. So, we only consider translations.

Remark 1. We can generalize all the presented results to
account for heterogeneous agents with heterogeneous linear
dynamics, measurement models, and rigid bodies. We consider
homogeneity in all of these aspects to simplify the presentation.

Workspace Representation: We represent the workspace
using a convex and compact polytope K ⊂ Rd.

Obstacle Representation: The workspace has NO static
obstacles, each with a convex and compact rigid body Oj ⊂
Rd and 0d ∈ Oj (j ∈ N[1,NO]). The obstacle shapes are known
a priori, but their positions are available only via a noisy
measurement. Specifically, for each obstacle j ∈ N[1,NO],
the position of a representative point of the obstacle (e.g. the
center) is denoted by cj ∈ Rd where cj is an iid Gaussian
random vector cj ∼ N (cj ,Σcj ) with nominal position cj and
covariance matrix Σcj ∈ Rd×d.

A. Safe multi-agent motion planning under uncertainty

Given target positions qi ∈ Rd, we want to design a motion
planner that drives the agents towards their respective target
positions, while ensuring safety of the agents at all times,
despite the uncertainty in the dynamics and the noisy estimates
of the agent and obstacle positions. Here, we formalize the
required features of safety in the multi-agent motion planning
problem by introducing the notion of probabilistic collective
safety, inspired by existing literature [22], [38].

Definition 1 (PROBABILISTIC COLLECTIVE SAFETY). The
agents are said to be probabilistically collectively safe at time
t when all the following criteria are met:

Fig. 2. The proposed solution combines single-agent RL-based motion
planning with a constrained-control-based safety filter for safe multi-agent
motion planning. It computes a sequence of RL states and controls for the
horizon T using a predict block. Next, it uses a safety filter to render these
controls safe for each agent. The predict block uses a policy network (trained
offline) and the nominal dynamics (3) to compute the RL controls and states.

1) Static obstacle avoidance constraints: The probability of
collision of agent i ∈ N[1,N ] with obstacle j ∈ N[1,NO]

is less than a pre-specified risk bound αi,j,t ∈ (0, 1),

P((pi(t)⊕A) ∩ (cj(t)⊕Oj) ̸= ∅) ≤ αi,j,t. (5)

2) Inter-agent collision avoidance: The probability of col-
lision between agents i, i′ ∈ N[1,N ], i ̸= i′ is less than
a pre-specified risk bound βi,i′,k ∈ (0, 1),

P((pi(t)⊕A) ∩ (pi′(t)⊕A) ̸= ∅) ≤ βi,i′,t. (6)

3) Keep-in constraints: The probability of agent i ∈ N[1,N ]

exiting the keep-in set K is less than a pre-specified risk
bound κi,k ∈ (0, 1),

P(pi(t)⊕A ⊈ K) ≤ κi,k. (7)

Next, we formulate the problem tackled in this paper.

Problem 1 (SAFE MULTI-AGENT PLANNING). Given user-
specified risk bounds αi,j,t, βi,i′,t, κi,t, for every i ∈
N[1,N ], i′ ∈ N[1,i−1], j ∈ N[1,NO] and t ∈ N, design a
multi-agent motion planner that navigates the agents with
dynamics (1) to their respective targets such that the agents
are probabilistically collectively safe at all times t.

In the statement of Problem 1, we specified a risk bound for
every time step (αi,j,t, βi,i′,t, κi,t). On the other hand, when a
risk bound for the entire planned trajectory (e.g. αi,j) is given
over a planning horizon T ∈ N, one can arrive at αi,j,t via
risk allocation [27] — divide the risk equally across time steps
with αi,j,t = αi,j/T for every t ∈ N[1,T ].

III. PROPOSED SOLUTION

We solve Problem 1 by the following two steps.
1) RL training (Offline): We train a neural network to drive

a single agent with nominal (deterministic) dynamics
(3) from any initial state in the workspace to a final
desired state. The resulting policy learns to perform
static obstacle collision avoidance and remain within



the workspace while transferring a single agent from
its initial state to the final state.

2) Safety Filter (Online): We use a constrained-control-
based safety filter that uses an online evaluation of
the RL-based motion planner. The safety filter suitably
modifies the motion plan to enforce probabilistic collec-
tive safety at all time steps. The safety filter solves a
real-time implementable, convex, quadratic program to
determine the modifications.

Figure 2 depicts the proposed solution. In the following,
we describe the RL-based motion planner, provide details of
constructing the safety filter to enforce probabilistic collective
safety, and discuss various aspects of the proposed solution.

A. Reinforcement learning-based single-agent motion planner
We design a RL-based motion planner that drives the agent

with nominal dynamics (3) to a specified target position
q ∈ Rd in presence of NO static obstacles located at nominal
positions cj ∀j ∈ N[1,NO]. Here, we train a single-agent RL-
based planner in an environment devoid of other agents. After
briefly discussing the motivations for such an approximation,
we set up the Markov decision process used for training and
characterize the neural policy obtained via single-agent RL
training.

The advantage of using a single-agent RL-based planner
instead of the full multi-agent RL-based planner is in the
ease of training. Specifically, a single-agent RL-based planner
avoids some issues of multi-agent RL such as non-stationarity,
scalability, and the diminished ability to accommodate po-
tential changes in team size post training. Recall that in
multi-agent RL, all agents learn concurrently and thus an
action taken by an individual agent affects both the reward
of the other agents and the evolution of the state of the
system. From the agent’s perspective the environment is non-
stationary [9]. By approximating the problem and eliminating
the other agents, training a single-agent RL is a stationary
problem which is key for convergence results of RL training
and for the reduced training effort [9]. Moreover, compared
to multi-agent RL training, whose joint state space and joint
action space grow rapidly in dimension with the number of
agents, the state space and the action space dimensions are
fixed and independent of the team size in the single-agent RL
training. Finally, if the team size changes post training, the
proposed single-agent RL-based planner in Figure 2 can still
be used without any modifications as compared to a complete
multi-agent RL-based planner, which may require re-training
to handle changes in the team size.

Consider a feedforward-feedback controller π : Rn×Rd →
Rm with

u = π(x, r) = Kx+ Fr, (8)

where K is a stabilizing gain matrix, F ∈ Rm×d provides
closed loop unitary gain with the nominal dynamics (3), i.e.,
C(I−(A+BK))−1BF = Id, and r ∈ Rd is the reference po-
sition command. We obtain the following stabilized, nominal,
prediction model for the agent at any time k ≥ t,

x(k + 1|t) = (A+BK)x(k|t) +BFr(k|t), (9)

by closing the loop of the dynamics (3) with the controller (8).
For the measurement model (4), the predicted measurements
are ŷ(k|t) = x(k|t) for every k ≥ t. By construction, the
mean predicted position p(k|t)→ r as k →∞ for a constant
reference command r(k|t) = r.

We use the following Markov decision process for training:
• Observation space: We define the observation vector

o ∈ Rn+d+NOd as the concatenated vector containing
the current measurement of the agent ŷ ∈ Rn, the
displacement of the agent’s current measured position to
the target (p − q) ∈ Rd and to the NO static obstacles
(p− cj) ∈ Rd, for all j ∈ N[1,NO], where p = Cŷ.

• Action space: The action a ∈ A ⊂ Rd determines the
reference position as a perturbation a to the target q, r =
q + a. The set A is compact.

• Step function: The next predicted measurement
ŷ(t+ 1|t) = x(t+ 1|t) is given by (9).

• Reward function: The instantaneous reward function is

R(o) = ζobs

NO∑
j=1

1

∥p− cj∥2 − γ2
j

+ ζtgt∥p− q∥, (10)

with reward parameters ζobs, ζtgt ≤ 0 and γj ≥ 0. Here, γj
is the radius of the smallest volume ball that covers the set
Oj⊕(−A) for each j ∈ N[1,NO]. We terminate an episode
when the agent either reaches the target or violates
the nominal single-agent safety conditions, namely the
static obstacle avoidance and keep-in constraints. These
constraint violations are given by:

(pi(t)⊕A) ∩ (cj(t)⊕Oj) ̸= ∅ and pi(t)⊕A ⊈ K.

When the episode terminates, we add a terminal reward
or penalty as follows:

R(o∞) =


Rtarget, if ∥p∞ − q∥ ≤ d ,

Pkeep-in, if p∞ ⊕A ̸⊆ K,
Pobstacle, if agent hits an obstacle,

with o∞ and p∞ denoting as the observation and position
vectors upon termination respectively, Rtarget ≥ 0, and
Pkeep-in, Pobstacle ≤ 0.

We have set up the Markov decision process to consider
deterministic nominal dynamics (3) instead of the original
stochastic dynamics (1) in order to simplify the RL training.
Our numerical and hardware experiments show that the re-
striction to deterministic nominal dynamics does not affect
the proposed solution severely.

Remark 2. Our approach can also accommodate a known,
time-varying target and biased measurement models η ̸= 0.
We have considered a time-invariant target q and an unbiased
measurement model here to simplify the presentation. Addi-
tionally, we use the minimum volume balls with radius γj in
(10) instead of Oj ⊕ (−A) to simplify the collision detection
while training the RL-based motion planner.

Upon completion of training, most of the existing RL
algorithms return a policy ν : Rn+d+NOd → A that provides
the action to apply given an observation vector, e.g., by a



neural network [39]. Additionally, we can “rollout” the policy
network ν to obtain a trajectory based on the RL motion
planner for a planning horizon T ∈ N. Consider any agent
i ∈ N[1,N ] that starts with the measurement ŷi(t). We compute
the RL motion plan {xRL

i (k|t)}t+T
k=t , where xRL

i (t|t) = ŷi(t),
by alternating between finding the control uRL

i (k|t) given the
predicted RL state xRL

i (k|t) and predicted observation vector
oi(k|t) at some time k ≥ t using π,

uRL
i (k|t) = π

(
xRL
i (k|t), q + ν(oi(k|t)

)
, (11)

and predicting the next RL state xRL
i (k + 1|t) using (9) and

the corresponding predicted observation vector oi(k + 1|t).
The generated motion plan {xRL

i (k|t)}t+T
k=t does not sat-

isfy probabilistic collective safety, since RL cannot guarantee
collision-free trajectories (it only penalizes collisions and is
subject to training errors), and the generated RL motion plan
completely ignores inter-agent collision avoidance and the
effect of the process and measurement noises.

B. Safety Filter
We now generate corrections to the RL-based motion plan

{xRL
i (k|t)}t+T

k=t using a constrained-control-based safety filter
that ensures the satisfaction of probabilistic collective safety
at all times. Consider the following optimization problem with
the stochastic information,

min
{Us

i (t)}
N
i=1

∑
k∈N[t,t+T−1]

∑
i∈N[1,N]

λi,k∥uRL
i (k|t)− usafe

i (k|t)∥2 (12a)

s.t. Dynamics (1) and (2) with u = usafe, (12b)

xi(t|t) = ŷi(t)− η(t), ∀i ∈ N[1,N ], (12c)

usafe
i (k|t) ∈ U , ∀k ∈ N[t,t+T−1], ∀i ∈ N[1,N ], (12d)

Probabilistic collective safety at k, ∀k ∈ N[t,t+T ], (12e)

Terminal constraints for recursive feasibility, (12f)

where U s
i (t) = {usafe

i (k|t)}t+T−1
k=t for each i ∈ N[1,N ],

and λi,k ≥ 0 are pre-specified weights on the deviations
∥uRL

i (k|t)− usafe
i (k|t)∥2 for i ∈ N[1,N ] and k ∈ N[t,t+T−1].

The safety filter (12) takes the RL control sequence
{uRL

i (k|t)}t+T−1
k=t that is generated using the RL-based single-

agent motion planner, and computes safe control inputs
{usafe

i (k|t)}t+T−1
k=t within the control set (12d) that minimally

deviate from the corresponding RL control inputs (12a), while
enforcing probabilistic collective safety constraints (12e). The
constraint (12c) defines the distribution of the noisy current
state x(t|t) from the current measurement ŷ(t) and the mea-
surement model (4). Additionally, to avoid computing control
actions usafe

i that may render the optimization problem (12)
in the safety filter infeasible in the future, we include termi-
nal state constraints (12f) that, when designed as explained
later, provide recursive feasibility. Only the first safe control
usafe
i (t|t) is applied for each agent i, and then (12) is solved

again at time t+ 1 in an MPC-like fashion [40].
The safety filter (12) is a nonlinear, non-convex, and

stochastic optimization problem due to (12e) and (12f), and
as a consequence in general not real-time implementable.
Therefore, we reformulate (12) by convexifying the constraints
and replacing the chance constraints by deterministic risk-
tightened constraints, which we describe next.

C. Convexified constraints for probabilistic collective safety

We now present a convex, deterministic reformulation of
(12e) that relies on well-known properties of Gaussian random
vectors and the generated motion plan {xRL

i (k|t)}t+T
k=t .

Lemma 1 (GAUSSIAN RANDOM VECTORS [41, SEC. 4.4.2]).
1) Let NI ∈ N. Given n-dimensional Gaussian random vectors
yi ∼ N (yi,Σyi

) with yi ∈ Rn, Σyi
∈ Rn×n, and matrices

Yi ∈ Rm×n for each i ∈ N[1,NI ], then the random vector
y =

∑NI

i=1 Yiyi is also Gaussian, with

y ∼ N
(∑NI

i=1
Yiyi,

∑NI

i=1
YiΣyi

Y ⊤
i

)
. (13)

2) Given y ∼ N (y,Σy) with y ∈ Rn,Σy ∈ Rn×n, a ∈ Rn,
b ∈ R, and the risk bound α, then

P(a · y ≤ b) ≤ α ⇐⇒ a · y ≥ b− ∥Σ1/2
y a∥Φ−1(α), (14a)

P(a · y ≥ b) ≤ α ⇐⇒ a · y ≤ b− ∥Σ1/2
y a∥Φ−1(1− α), (14b)

where Φ−1 is the inverse cumulative distribution function of
a standard Gaussian random variable.

From (12c) and (4), x(t) ∼ N (ŷi(t),Ση). For every agent
i ∈ N[1,N ], the predicted state and position at any time k > t,

xi(k|t) ∼ N (xi(k|t),Σxi
(k|t)), (15a)

pi(k|t) ∼ N (pi(k|t),Σpi
(k|t)), (15b)

xi(k|t) = Ak−tŷi(t) +

k−1∑
j=t

Ak−(j+1)Busafe
i (j|t), (15c)

pi(k|t) = Cxi(k|t), (15d)

Σxi(k + 1|t) = AΣxi(k|t)A⊤ +Σw, (15e)

Σpi(k|t) = CΣxi(k|t)C⊤. (15f)

using the stochastic dynamics (1), (12c), and (14a) in
Lemma 1. We observe that xi(k|t) and pi(k|t) depend on
the decision variables usafe

i , but Σxi
(k|t) and Σpi

(k|t) do not.
Thus, Σxi(k|t) and Σpi(k|t) may be computed offline.

Proposition 1 (RISK-TIGHTENED SUFFICIENT
SAFETY CONSTRAINTS). Given a polytope
K = ∩i∈N[1,NK]

{
p ∈ Rd : hi · p ≤ gi

}
with NK ∈ N

halfspaces characterized by {hi, gi}NK
i=1, hi ∈ Rd and gi ∈ R,

and user-defined unit vectors zobs
ij , zagt

ij ∈ Rd. Then, for every
i ∈ N[1,N ] and k ∈ N[t,t+T ], (16) is sufficient for (5), (6),
and (7) to hold.

We provide the proof of Proposition 1 in Appendix A.
The reformulation in Proposition 1 follows from applying

computational geometry arguments to convexify the chance
constraints (5)–(7) using supporting hyperplanes defined by
user-specified vectors zobs

ij , zagt
ij , and then applying Lemma 1

and Boole’s law to arrive at (16). From (15c) and (15d), the
constraints in Proposition 1 are linear inequalities in the deci-
sion variables {usafe

i (k|t)}t+T−1
k=t for every i ∈ N[1,N ]. Figure 3

illustrates the reformulated constraints of Proposition 1.



∀j ∈ N[1,NO], zobs
ij · (pi(k|t)− cj) ≥ SOj (z

obs
ij ) + S(−A)(z

obs
ij )− ∥(Σpi(k|t) + Σcj )

1/2zobs
ij ∥Φ−1(αi,j,t), (16a)

∀j ∈ N[1,i−1], zagt
ij · (pi(k|t)− pj(k|t)) ≥ SA(z

agt
ij ) + S(−A)(z

agt
ij )− ∥(Σpi

(k|t) + Σpj
(k|t))1/2zagt

ij ∥Φ
−1(βi,j,t), (16b)

∀j ∈ N[1,NK], hj · pi(k|t) ≤ gj − SA(hj)− ∥Σ1/2
pi

(k|t)hj∥Φ−1 (1− (κi,t/NK)) . (16c)

Fig. 3. Probabilistic collective safety constraints (Definition 1) enforced as linear constraints — (Left) Keep-in constraint (black) tightened by the support
of A (red). (Right) Inter-agent collision avoidance constraint uses the support of A⊕−A (red). Both red constraints are tightened by the chance constraint
term resulting in a new constraint (dashed green).

D. Ensuring recursive feasibility using reachability

We now turn our attention to (12f) that is designed to ensure
that (12) remains feasible in subsequent control time steps.
For recursive feasibility (12f), we enforce the existence of a
terminal set and a control urecurse

i (k) ∈ U for all k ≥ t + T
for each agent i such that the following constraints hold for
all k ≥ t+ T ,

P((pi(k|t)⊕A) ∩ (cj ⊕Oj) ̸= ∅) ≤ δ, (17a)
P((pi(k|t)⊕A) ∩ (pj(k|t)⊕A) ̸= ∅) ≤ δ, , (17b)

P((pi(k|t)⊕A) ̸⊆ K) ≤ δ, (17c)

where δ ∈ (0, 1) is a (small) user-specified risk threshold.
Existing literature in constrained control typically enforces

recursive feasibility using control invariant or positive invariant
sets [40], [42]. However, characterization of such sets can be
challenging in our setting due to the inherent non-convexity
of the probabilistic collective safety constraints. Alternatively,
one can approximately enforce these constraints by truncating
the recursive feasibility criterion to a finite but long horizon,
and then utilizing stochastic reachability [29], [43], [44].

For the sake of tractability, we enforce (17) approximately
by imposing chance constraints on the terminal states, while
ignoring the stochasticity in the future time steps. We char-
acterize these constraints using appropriately defined avoid
sets (also known as inevitable collision states [29] or capture
sets [45]) and viability sets (also known as controlled invariant
sets) [40], [46].

Definition 2 (AVOID SET AND VIABILITY SET [40]). For
a (bad) set B ⊂ Rn, linear dynamics (3), and a control
constraint set U , we define an avoid set as follows,

AvoidSet(B) =

{
x̄(0)

∣∣∣∣ ∃t ∈ N, ∀u(t) ∈ U ,
x̄(t+ 1) = Ax̄(t) +Bu(t) ∈ B

}
For a (good) set G ⊂ Rn, we define a viability set as follows,

ViabilitySet(G ) =

{
x̄(0)

∣∣∣∣ ∀t ∈ N, ∃u(t) ∈ U ,
x̄(t+ 1) = Ax̄(t) +Bu(t) ∈ G

}
.

By construction, we have

Rn \ViabilitySet(G ) = AvoidSet(Rn \ G ). (18)

Informally, AvoidSet(B) is the set of mean initial states
from which the mean trajectory of (3) enters the bad set B at
some time t, irrespective of the control choices. On the other
hand, ViabilitySet(G ) is the set of mean initial states from
which the mean trajectory of (3) remains within the good set
G for all time t, by some appropriate choice of control actions.

For any time t, assume that the agents evolve by stochastic
dynamics (1) with imperfect measurements according to (4)
during the planning interval (k ∈ N[t,t+T−1]), and they evolve
by nominal dynamics (3) with perfect measurements beyond
the planning horizon (k ≥ t + T ). Since the safety filter
solves (12) at every t based on the new measurement, the
impact of this assumption is mild for sufficiently long planning
horizon T . Under this assumption, we construct the following
approximation of (17) using Definition 2,

P((xi(k + T |k)− clift
j (k + T |k)) ∈ AvoidSet(Oj ⊕ (−A))) ≤ δ,

(19a)

P((xi(k + T |k)− xj(k + T |k)) ∈ AvoidSet(A⊕ (−A))) ≤ δ,

(19b)

P(xi(k + T |k) ̸∈ ViabilitySet(K ⊖A)) ≤ δ,

(19c)

where clift
j ∈ Rn is obtained by lifting the position to Rn with

added components set to zero, since the obstacles are static.
(19c) uses (18) for ease in implementation. Informally, (19a)
and (19b) require the agents to be in configurations that lead
to collision with static obstacles or each other with at most
a probability of δ, and (19c) requires the probability that the
agents are in configurations from which they can not remain
within the workspace is at most δ.

The constraints (19) are tractable when the sets
AvoidSet(A ⊕ (−A)), AvoidSet(A ⊕ (−Oj)),
and ViabilitySet(K ⊖ A) are convex. Recall that
AvoidSet(B) is typically non-convex, even when



∀j ∈ N[1,NO], ℓobs
ij · (xi(t+ T |t)− clift

j ) ≥ SAOj
(ℓobs

ij )− ∥(Σxi(t+ T |t) + Σclift
j
)1/2ℓobs

ij ∥Φ−1(δ), (20a)

∀j ∈ N[1,i−1], ℓagt
ij · (xi(t+ T |t)− xj(t+ T |t)) ≥ SAA − ∥(Σxi(t+ T |t) + Σxj (t+ T |t))1/2ℓagt

ij ∥Φ
−1(δ), (20b)

∀j ∈ N[1,NV ], hj · xi(t+ T |t) ≤ g
j
− ∥Σ1/2

xi
(t+ T |t)hj∥Φ−1 (1− (δ/NV )) . (20c)

Algorithm 1: Computation of AvoidSet+(B)
(See [40, Sec. 10.2] for recursion)

Input: Linear dynamics (3), control constraint set U ,
convex and compact polytope B.

Output: AvoidSet+(B).
1: ListOfSets← [B], CurrentSet← B
2: while CurrentSet is non-empty
3: CurrentSet← A−1(CurrentSet⊖BU)
4: Append CurrentSet to ListOfSets
5: ConvexHullOfList← convex hull of ListOfSets
6: AvoidSet+(B)← minimum volume ellipsoid

containing ConvexHullOfList (see [41, Sec. 8.4.1])

Algorithm 2: Computation of ViabilitySet(G ) [46]
Input: Linear dynamics (3), control constraint set U ,

convex and compact polytope G .
Output: ViabilitySet(G ).

1: CurrentSet← G , PrevSet← ∅
2: while CurrentSet is not equal to PrevSet
3: PrevSet← CurrentSet
4: CurrentSet← G ∩A−1(CurrentSet⊕ (−BU))
5: ViabilitySet(G )← CurrentSet

B ∈ {A ⊕ (−A),A ⊕ (−Oj)} is a convex polytope [40].
This complicates the enforcement of (19a) and (19b). For the
sake of tractability and ensuring conservativeness, we propose
Algorithm 1 to compute an ellipsoidal outer-approximation
of AvoidSet(B). Outer-approximations of AvoidSet are
also sufficient to enforce (19a) and (19b). On the other
hand, Algorithm 2 provides an exact approach to compute
ViabilitySet(K ⊖ A) for convex and compact polytopes K
and A. All operations in Algorithms 1 and 2 can be easily
accomplished using computational geometry tools and convex
optimization, see [40], [41], [46], [47] for more details.

We conclude this section by characterizing a set of linear
constraints that are sufficient to enforce (19). The proof
of Proposition 2 uses the same arguments as that seen in
Proposition 1.

Proposition 2 (RISK-TIGHTENED SUFFICIENT TERMINAL
RECURSIVE FEASIBILITY CONSTRAINTS). Given a col-
lection of user-defined unit vectors ℓobs

ij , ℓagt
ij ∈ Rn, let

AOj
≜ AvoidSet+(Oj ⊕ (−A)) and AA ≜ AvoidSet+(A⊕

(−A)) denote ellipsoidal outer-approximations of the cor-
responding avoid sets, and V ≜ ViabilitySet(K ⊖ A)
denote a polytope with NV halfspace constraints, V =

∩i∈N[1,NV ]

{
x ∈ Rn : hi · x ≤ g

i

}
. Then, for every i ∈ N[1,N ],

(20) is sufficient for (19) to hold.

Proposition 2 characterizes linear constraints that are suf-
ficient to enforce (19). For (19a) and (19b), the sufficient
condition is obtained by tightening the complement of a
supporting halfspace of the convex outer-approximations of the
avoid set. For (19c), the sufficient condition utilizes Boole’s
inequality and uniform risk allocation.

E. Reformulated Risk-Tightened MPC Safety Filter

Following the reformulations discussed in Sections III-C
and III-D, we obtain a quadratic program (21),

minimize
{Us

i (t)}N
i=1

(12a)

subject to (12d), (15c), (15d), (15e), (15f),
(16) for every i ∈ N[1,N ], k ∈ N[t,t+T ],
(20) for every i ∈ N[1,N ],

(21)

where U s
i (t) = {usafe

i (k|t)}t+T−1
k=t for each i ∈ N[1,N ]. (21)

uses the mean states and positions of the agents, and the
deterministic linear constraints characterized in Propositions 1
and 2 for probabilistic collective safety and recursive feasibil-
ity. A solution of (21) is a feasible (but not necessarily optimal)
solution of (12).

From the setting of (21), it is evident that the specialization
of the RL-based motion planner to the deterministic nominal
dynamics (3) does not affect the proposed solution adversely.
Motivated by the superposition principle, we have used a
simpler RL-based motion planner that considers deterministic
dynamics (3) instead of the stochastic dynamics (1), and
delegated the responsibility of probabilistic collective safety
under (1) to the safety filter.

F. Discussion

1) Choice of Dynamics: Our primary targets are quadrotors
as we describe in Section IV. Waypoint tracking for quadrotors
using on-board controllers is now well-known [17], [48].
Consequently, assuming linear dynamics (1) is appropriate
since the safety filter can generate safe waypoints that deviates
minimally from the RL-based motion plan.

Theoretically, it is possible to apply the proposed solution to
nonlinear dynamics. However, the construction of terminal sets
for collision avoidance and recursive feasibility, similar to the
sets proposed in Section III-D, become more challenging [42]
On the other hand, our approach achieves recursive feasibility
in the presence of stochastic process noises. Using process
noise to (conservatively) model the linearization error when
using linear models for nonlinear dynamics, we can use the
proposed approach to provide (conservative) safety guarantees.



2) Gaussian Noise Assumption: In our problem statement,
we assumed Gaussian noise and imposed chance constraints.
Alternatively, we can use other risk metrics based on axiomatic
risk theory and more generalized noise distributions [49]–[51].
However, most of these approaches either do not admit closed-
form deterministic reformulations resulting in high compu-
tational costs, or are overly conservative. For example, our
assumptions on w and η having a Gaussian distribution can be
relaxed to any probability distribution that has a pre-specified
mean and covariance. In this case, the reformulated constraints
are similar to (16) and (20) but with Φ−1(α) terms replaced
by the Chebychev bound

√
1−α
α [52]. However, the resulting

deterministic sufficient conditions are far more conservative
than those in Propositions 1 and 2 [53, Fig. 2].

3) Ellipsoidal Convex Set Usage: We recommend using el-
lipsoidal representations (or outer-approximations) for various
convex sets, primarily due to the convexification step presented
in Section III-D. Ellipsoids E(c,Q) = {x|(x− c) · (Q−1(x−
c)) ≤ 1} admit a closed form solution for the support function
ρE(c,Q)(ℓ) = ℓ · c+

√
ℓ · (Qℓ), and the supporting hyperplane

changes smoothly along the set boundary with changing ℓ.
Compared to that, the support function of a polytope requires
solving a linear program, and may change abruptly when
changing ℓ.

4) Safety Filtering with Other Motion Planners: We use the
proposed safety filter (12) in conjunction with single-agent
RL motion planning, since RL-based planners have become
popular in recent literature (see discussion in Section I) but
lack safety guarantees especially in terms of enforcing (hard)
constraints. While the proposed combination of RL and safety
filter can provide hard constraint satisfaction guarantees, the
safety filter’s applicability is not limited to single-agent RL-
based planners. As illustrated in Figure 2 and as seen from
the derivations, the safety filter only requires the agents’
reference state and control trajectories. These inputs may
also be obtained from many other planners, including more
traditional ones such as sampling-based. For example, RRT-
based planners [35], [36] can be used for single-agent motion
planning while avoiding static obstacles in the environment.
The multi-agent plans can then be obtained by combining
separate single-agent RRT-based plans using the proposed
safety filter to guarantee inter-agent collision avoidance. This
allows more efficient computations and memory reduction
with respect to applying sampling-based planning to the multi-
agent problem due to the smaller dimension and reduced
number of collisions to be checked.

5) Intermediate multi-agent RL-based planners: The pro-
posed approach can also be applied to the intermediate case
of a planner for multiple agents Nfew, but less than the total
number N . In this case, multiple planners generate plans each
for Nfew agents up to the total number N . Each group of
Nfew may be collision-free, but the safety filter is applied to
ensure safety between agents in different groups. Overall, the
fundamental idea behind our approach is to take a challenging
motion planning problem, approximate it by a problem that is
significantly simpler to solve, at the price of losing safety due
to the approximation, and then recovering it by the safety filter.

In the case of multi-agent planning, approximation is done by
reducing the amount of agents, hence here we discussed the
largest possible reduction that provides the largest simplifica-
tion, that is only one agent is considered in planning, but the
approach will also work for any intermediate case.

IV. IMPLEMENTATION DETAILS AND EXPERIMENT SETUP

Dynamics: We used the Crazyflie 2.1 quadrotors [54] as
our target platform. We flew all the quadrotors at the same
height of 0.95 m to make the collision avoidance problem more
challenging. While it would be possible to resolve collisions
by flying the drones at different heights, this solution does not
generalize to other systems where more spatial dimensions
do not exist (e.g. ground robots), and would not scale well
to increasing number of robots or physically constrained
environments.

We approximated the 2D motion of the quadrotors using 2D
double integrator dynamics, and thus, A,B,C are given by

A =

[
I2 TsI2
02,2 I2

]
, B =

[
T2
s
2
I2

TsI2

]
, C =

[
I2 02,2

]
,

(22)

with sampling time Ts = 0.1. We model the quadrotors as
circles (A is a circle of radius rA = 0.1) to include the
0.092 m Crazyflie diameter as well as leave extra margin for
aerodynamic effects and a safety padding.

Hardware setup: We used six quadrotors (N = 6) in
our experiments. We relied on the Crazyswarm platform [48]
to communicate and control the quadrotors at 10Hz. The
drones are equipped with IR-reflective markers detected by
an OptiTrack motion capture system running at 120Hz. The
Crazyswarm package tracked the Crazyflies using the raw
point-cloud data from the OptiTrack motion capture system,
and it issued desired waypoints at a nominal 10 Hz update
frequency over radio. The Crazyflies tracked those waypoints
using their standard on-board controllers. In addition to the
uncertainty in the Crazyflie position estimate induced by the
Crazyswarm tracking algorithm, we added a position estima-
tion noise η defined in (4). Such measurement noises affects
the safety filter, but is not visualized in the plotted physical
experiment trajectories.

Workspace: We considered a 3× 3 meter workspace with
seven circular obstacles and two goal regions. The obstacles
are depicted by black circles and the goal regions are depicted
by transparent circles with a star at the center (see Figure 7).
We also added position estimation noise to the nominal
obstacle locations.

Safety filter parameters: We used Gaussian noise with the
following covariances: Σw = Ση = diag(10−4, 0, 10−4, 0)
and Σcj = diag(10−4, 10−4) ∀j ∈ N[1,NO]. As for the risk
bounds, we used κi = αi,j = βi,i′ = 0.01 and divided them
equally across the planning horizon T = 10. We used δ = 0.1
for the terminal constraints. For the purposes of constructing
the terminal sets, we select velocity bounds of 1 m/s in the
simulation, and 0.2 m/s in the experiments.

Computer setup: We used an Ubuntu 20.04 LTS worksta-
tion with an AMD Ryzen 9 9590X 16-core CPU, a Nvidia



GeForce GTX TITAN Black GPU, and 128GB of RAM for
all training, simulation, and hardware experiments.

RL training: We used Stable-Baselines3’s imple-
mentation of the PPO (proximal policy optimization) algo-
rithm [39] to train the RL agents. We ran two training sessions,
one for each goal, for 10 million time steps each. We used
the default parameters of Stable-Baselines3 with the
following modifications: 0.01 entropy coefficient, 2021 seed,
and cpu device. We use ζobs = −0.001, ζtgt = −0.1, Rtarget =
104, Pkeep-in = −104, and Pobstacle = −500 for the reward
function parameters.

After training, we selected the trained policy at about
9.7 million steps and 9.44 million steps for the two targets
respectively. Each training session took just over 11 hours.

Choice of unit vectors in Proposition 1, 2: Inspired
by [17], we used the following unit vectors:

zobs
ij (k|t) ≜

pRL
i (k|t)− cj

∥pRL
i (k|t)− cj∥

, z
agt
ij (k|t) ≜

pRL
i (k|t)− pRL

j (k|t)
∥pRL

i (k|t)− pRL
j (k|t)∥

(23a)

ℓobs
ij (k|t) ≜

xRL
i (k|t)− clift

j

∥xRL
i (k|t)− clift

j ∥
, ℓ

agt
ij (k|t) ≜

xRL
i (k|t)− xRL

j (k|t)
∥xRL

i (k|t)− xRL
j (k|t)∥

(23b)

where pRL
i (k|t) = CxRL

i (k|t). Such a choice used the predicted
RL states and positions and the nominal obstacle locations to
produce a heuristic for the computation of the safe halfspace
polytopes. For the 2D double integrator dynamics (22), the
lifted state is the position vector with zeros appended for the
velocity components, i.e. clift

j = [c⊤j 0⊤2 ]
⊤.

Solving the QP: We modeled the QP associated with
the safety filter in Python 3.7 using CVXPY [55], utilizing
parameters for values in (21) that change at every control
time step, and solved it using ECOS [56] in experiments,
and GUROBI [57] in simulations.

V. EXPERIMENTS

We present results of the experimental validation of our
approach on a quadrotor testbed. We show that the trained,
single-agent RL-based motion planner generalizes well when
used with the proposed safety filter. We also compare the
proposed approach with a MPC-based multi-agent motion
planner in simulation to emphasize the benefits of the RL step
as well as the effects of the terminal constraints. We conclude
with a demonstration of the scalability of our approach.

A. Experimental validation

Figure 4 shows snapshots of two experiments and their
reconstructed plots. In these experiments, we compare the
proposed solution with a safety-filtered baseline controller.
Here, the baseline controller is a proportional controller that
regulates the drones to the target while ignoring all static and
dynamic obstacles, which are handled by the safety filter (21).

In Figure 4, the top two rows are for the proposed solution
with the RL controller and the proposed safety filter (21) while
the bottom two rows use the baseline controller instead of
the RL controller. In both cases, the proposed safety filter
ensures that the agents remain safe. In the RL case, the agents
manage to reach their goals more rapidly, while the baseline
controller case, the agents take significantly longer to reach

Fig. 4. Safe multi-agent motion planning using the proposed safety filter
in conjunction with the RL-based controller and a classical proportional
controller (baseline). (Top two rows) Snapshots and reconstructed illustrations
of the hardware experiment’s trajectories when using the RL-based controller
with the safety filter at 7, 14, and 21 seconds. (Bottom two rows) Trajectories
of the hardware experiment when using the baseline controller with the safety
filter at times 13, 21, and 70 seconds. The black circles and boundary are
the obstacles and keep-in set. Transparent starred circles depict the targets.
Colored circles denote the agents’ starting and goal positions. The colored
paths indicate the trajectory and the shaded regions are the static obstacle-
free positions at the current control time step (determined via convexification).

their goals. In fact, when using the baseline controller instead
of the RL controller, we found that the pink agent typically
gets stuck between two obstacles and fails to reach its goal
(see the bottom two rows of Figure 4).

Figure 5 shows the clearances between each agent (15 pairs
for the six agents) during the physical experiment. Specifically,
it plots the inter-agent distances minus twice the agent radius,
i.e. ∥pi(t)− pj(t)∥− 2r ∀i, j, i ̸= j. Thus, a negative distance
indicates a collision. Due to the use of probabilistic constraints,
the distances are always positive, which shows that the system
is collectively safe.

Figure 6 shows the QP setup time (blue) and the total
time for setting up and solving the QP (orange) over the
RL experiment’s duration. The total time spent setting up and
solving (21) for six agents was on average 0.05 seconds. Since
the time spent was always less than 0.06 seconds, we had a
sufficient margin to the 0.1 control sampling period.

Figure 7 shows the reconstruction of the agent trajectories
for both the RL and baseline controllers based on the data
collected during the experiments. As expected, the final trajec-
tories for both RL and baseline controllers remain sufficiently
far from the obstacles and the keep-in set bounds. While



Fig. 5. Clearance between the agents during the physical experiment with RL
controller, where a clearance (distance to collision) accounts for the physical
dimensions of the agents. A negative clearance indicates a collision. Stars
indicate one of the two agents reaching the target.

Fig. 6. Problem setup and solution durations to solve the quadratic program
(21) in the experiment using CVXPY [55] and ECOS [56].

avoiding the red padding, which represents the enlargement
of the obstacle rigid body by the agent’s radius, is sufficient
for collision avoidance, the chance constraints prevent the
trajectories from getting too close and hence result in the
additional virtual padding around the obstacles.

Fig. 7. Reconstruction of the RL (left) and baseline (right) trajectories
from the experiments. The red padding around the keep-in set and obstacles,
representing the agent radius, is never crossed and hence all trajectories are
safe.

B. Evaluation of the RL motion planner

The deterministic evaluation of the learned policy over a
100× 100 grid is presented in Figure 8 (top row).

We observe that the RL agents learned to navigate to
the goal starting from most initial conditions. As expected,
the learned policy is not perfect and sometimes results in
collisions with the obstacles or the workspace (Rows 1 and 3).
Nevertheless, the combination of RL and the safety filter
ensures safe motion planning (Rows 2 and 4). For less than
2% of the initial conditions, the RL policy did not reach
the target within 800 time steps (80 s), which we mark as
“loiter”, i.e., static/dynamic deadlock, but safety was still
guaranteed. In practice, it is usually possible to recover from
such deadlock conditions by small state perturbations. We
plan to investigate formal methods for avoiding and recovering
from such deadlocks in future studies.

C. Simulation study: Impact of RL and terminal constraints

Next, we compare our approach with a pure MPC-based
motion planner in simulation. Specifically, we solved (21),
where the objective (12a) is replaced with a set point regulation
cost, which results in the optimization problem,

min
{Us

i (t)}N
i=1

∑t+T
k=t

∑N
i=1 λi,k∥pi(k|t)− qi∥2 + ε∥usafei (k|t)∥2,

s. t. Constraints of (21),
(24)

with U s
i (t) = {usafe

i (k|t)}t+T−1
k=t for each i ∈ N[1,N ], pre-

specified weights λi,t ≥ 0 on the deviations ∥pi(k|t)− qi∥2,
and a penalty for inputs ε > 0.

Problem (24) is a convex quadratic program, thanks to
the convexification step (Propositions 1 and 2) that uses a
modified version of (23). Recall that the constraints of (21)
included constraints (16) and (20) that required user-specified
unit vectors zobs

ij , zagt
ij , ℓ

obs
ij , and ℓagt

ij , which were defined using
the RL trajectory in (23). When formulating (24), we defined
these vectors using the baseline controller trajectory instead
of the RL trajectory for a fair comparison. One can view
(24) as an extension of existing single-agent motion planners
under uncertainty (for example, [27], [28]) for multi-agent
motion planning, with the addition of terminal constraints
for recursive feasibility proposed in Section III-D. Note that
(24) enables explicit coordination between agents as they
move towards their goal, while the proposed safety filter
(21) only minimizes deviations from RL-based single-agent
motion planners. We now study the RL block and the terminal
constraints (Proposition 2) by comparing the performances of
the proposed approach and a pure MPC approach (24), with
and without terminal constraints (Proposition 2).

Table I summarizes the performance of both the approaches
in 100 Monte-Carlo simulations. We observe that the proposed
approach (21) completed the motion planning task for a
significantly larger number of simulations than a pure MPC
approach (24) (99% vs 55% success), illustrating the benefits
of including RL. The sources of failure in these simulations
include collisions with static or dynamic obstacles (safety is
enforced in probability) as well as numerical issues for the



TABLE I
COMPARISON OF THE PROPOSED SAFETY FILTER (21) WITH A PURE MPC-BASED MOTION PLANNER (24). THE PROPOSED APPROACH COMPLETES THE

MOTION PLANNING TASK FOR MORE PERCENTAGE OF TRIALS. WE REPORT THE (5, 50, 95)-PERCENTILES OF THE RESULTS OF THE SUBSET OF 100
MONTE-CARLO SIMULATIONS THAT COMPLETED THE TASK SUCCESSFULLY.

Safe controller Term. const. % Success Task completion time Min. obstacle separation Min. agent separation
Proposed approach Yes 99 (206, 236, 401) (0.15, 0.21, 0.26) (0.31, 0.32, 0.36)

RL + Safety filter (21) No 92 (229, 325, 648) (0.15, 0.19, 0.24) (0.25, 0.27, 0.28)

Pure MPC (24) Yes Failed at control time step (10, 10, 10)
No 55 (110, 150, 194) (0.15, 0.16, 0.17) (0.23, 0.23, 0.23)

solver. For the proposed approach (21), the use of terminal
constraints for recursive feasibility (Proposition 2) typically
resulted in a larger minimum separation between agents and
obstacles, and among agents. The use of terminal constraints
also led to smaller task completion time, possibly due to the
larger minimum separations. On the other hand, the use of
similar terminal constraints in the MPC approach (24) made
the problem considerably harder and led to numerical issues
in all trials, possibly because the trajectory of the baseline
controller may not be as informative as the RL trajectory for
the convexification step. Finally, we observe that the proposed
approach takes longer to complete the motion planning task
than the pure MPC approach without the terminal constraints,
when the latter does not result in safety violations. This
is expected since the terminal constraints impose additional
restriction on the generated trajectory to achieve recursive
feasibility. The single agent motion planner combined with
safety filter is suboptimal when applied to a multi-agent
motion planning problem and is more conservative due to the
terminal constraints, but guarantees safety. Thus, there is a
trade-off between safety and performance.

D. Scalability study of the proposed approach

To perform scalability analysis of the safety filter, we
reduced rA to 0.01, reduced the noise covariance from 10−4

to 10−6, and collected computational times for the safety filter
for 1000 control time steps starting from randomly initialized
locations for the agents in simulation.

Figure 9 shows the computation time to solve (21), where
the number of agents ranges from 2 to 24. The compute
time of the safety filter increases only moderately with the
number of agents, thanks to the convex quadratic program
structure of (21). Compared to our preliminary work in the
deterministic setting [22], (21) needs a larger computational
effort, possibly due to the larger number of decision variables
and larger number of constraints. Specifically, (21) computes
time-varying control commands over the planning horizon
compared to constant input approach used in [22], and (21)
includes additional constraints for recursive feasibility (20).

VI. CONCLUSION

We presented a solution for the multi-agent motion planning
problem that combines reinforcement learning and constrained
control. We utilize single-agent RL to train a policy for travers-
ing a cluttered workspace while ignoring inter-agent collision
avoidance, and use a real-time implementable, constrained-
control-based safety filter to account for inter-agent collision

avoidance and ensure probabilistic collective safety of the
agents. The formulated QP includes chance constraints to
achieve safety under process and measurement noise as well as
probabilistic recursive feasibility constraints. We demonstrated
the efficacy of our approach via numerical simulations, and
validated our approach on a hardware testbed using quadrotors.

In our future work, we will investigate the application of
the proposed approach in a decentralized setting, consider
safe multi-agent motion planning for agents with nonlinear
dynamics, and evaluate RL-based planning with a subset of
the multiple agents larger than one.

APPENDIX

PROOF OF PROPOSITION 1
Static obstacle collision avoidance ((16a) ⇒ (5)): Us-

ing computational geometry arguments, (5) is a non-convex
chance constraint, and is equivalent to

P(pi(k|t)− cj(t) ̸∈ Oj ⊕ (−A)) ≥ 1− αi,j,t. (25)

To convexify it, we use a separating hyperplane for (pi(k|t)−
cj) and Oj ⊕ (−A) along the direction of a user-specified
direction zobs

ij [41]. Thus,

P(zobs
ij · (pi(k|t)− cj) ≥ SOj

(zobs
ij ) + S−A(z

obs
ij )) ≥ 1− αi,j,t

⇐⇒ P(zobs
ij · (pi(k|t)− cj) ≤ SOj (z

obs
ij ) + S−A(z

obs
ij )) ≤ αi,j,t

=⇒ (25).

We use (14a) in Lemma 1 to reformulate the left hand side
of the above implication to arrive at (16a). Thus, (5) holds, if
(16a) holds.

Inter-agent collision avoidance ((16b) ⇒ (6)): Using argu-
ments similar to the above with zagt

ij , pj(k|t),Σpj
(k|t) instead

of zobs
ij , cj ,Σcj , we can show that (6) holds, if (16b) holds.

Keep-in constraint ((16c) ⇒ (7)): From the definition of
Pontryagin difference, (7) is equivalent to

P(pi(k|t) ̸∈ K ⊖ A) ≤ κi,t. (26)

Here, K ⊖A is easy to compute [37, Thm 2.3]. Specifically,
K⊖A = ∩i∈N[1,NK]

{p : hi · p ≤ gi−SA(hi)}. Using Boole’s
inequality and assuming that the risk bound is divided equally
across all halfspaces, we have

P(hj · pi(k|t) > gj − SA(hj)) ≤
κi,t

NK
, ∀j ∈ N[1,NK] ⇒ (26).

We use (14b) in Lemma 1 to reformulate the left hand side
of the above implication to arrive at (16c). Thus, (7) holds, if
(16c) holds.



Fig. 8. Evaluation of the learned policy for a single agent over a 100× 100
grid of initial positions. (Left column) policy for target 1. (Right column)
policy for target 2. From top to bottom: (Row 1) RL policy, no noise; (Row
2) RL+Filter, no noise; (Row 3) RL policy, with noise; (Row 4) RL+Filter,
with noise. We observe that the combination of safety filter and single-agent
RL controller achieves the highest generalization, with and without noise.

Fig. 9. Computation times (in (5, 50, 95) percentiles) of the safety filter show
a modest increase as the number of agents increases. The computation times
were collected from 1000 control time steps of the simulated workspace. We
used GUROBI [57] to solve the quadratic program (21).
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