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Abstract
The rapid growth of artificial intelligence is revolutionizing classical engineering society, offer-
ing novel approaches to material and structural design and analysis. Among various scientific
machine learning techniques, physics- informed neural network (PINN) has been one of the
most researched subjects, for its ability to incorporate physics prior knowledge into model
training. However, the intrinsic continuity requirement of PINN demands the adoption of
domain decomposition when multiple materials with distinct properties exist. This greatly
complicates the gradient computation of design features, restricting the application of PINN
to structural shape optimization. To address this, we present a novel framework that employs
neural network coordinate projection for shape optimization within PINN. This technique al-
lows for direct mapping from a standard shape to its optimal counterpart, optimizing the
design objective without the need for traditional transition functions or the definition of
intermediate material properties. Our method demonstrates a high degree of adaptability,
allowing the incorporation of diverse constraints and objectives directly as training penalties.
The proposed approach is tested on magnetostatic problems for iron core shape optimization,
a scenario typically plagued by the high permeability contrast between materials. Validation
with finite-element analysis confirms the accuracy and efficiency of our approach. The re-
sults highlight the framework’s capability as a viable tool for shape optimization in complex
material design tasks.
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ABSTRACT

The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches
to material and structural design and analysis. Among various scientific machine learning techniques, physics-
informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate
physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the
adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates
the gradient computation of design features, restricting the application of PINN to structural shape optimization.
To address this, we present a novel framework that employs neural network coordinate projection for shape
optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart,
optimizing the design objective without the need for traditional transition functions or the definition of intermediate
material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse
constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic
problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between
materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results
highlight the framework’s capability as a viable tool for shape optimization in complex material design tasks.

Introduction
Recent advances in large foundation artificial intelligence (AI) models have demonstrated their potential in addressing
intricate real-world challenges1, 2, consequently drawing an increasing number of researchers to apply AI to scientific
problems, such as carbon capture3, 4, weather forecast5, 6, material discovery7, 8, simulation acceleration9, 10, etc. One
major characteristic that distinguishes scientific problems from other AI tasks is the existence of prior knowledge.
Prior knowledge can manifest in various forms in scientific problems, and may significantly enhance the performance
of ML models, particularly when ground truth data is insufficient11, 12. A prime example is the incorporation of
governing partial differential equations (PDEs) through PINN, into the training of machine learning (ML) models
for predicting engineering problems13, 14.

Originally proposed as a forward solver to PDEs, PINN has been receiving growing research attention recently,
for its data-free self-supervised training process14, 15. The major advantages of PINN over classical numerical
methods include mesh-free representation, higher parameter efficiency in high dimensional systems, general and
concise training formulation13, 16, 17. Researchers have implemented PINN to solve PDEs in various real-world
engineering systems including solid mechanics18, fluid mechanics16, thermodynamics19, electromagnetism20, etc.
On the other hand, the following disadvantages of PINN still impede its use in industry, and pose the necessity
of further exploration: optimization error, intractable integral (can only be approximated)16, 21. Most importantly,
empirical studies suggest that employing PINN as PDE solvers can introduce considerable computational costs, both
in terms of memory space and processing time, when compared to classical numerical methods22.

Despite its subtle performance as a PDE solver, physics-informed training strategy shows greater potential
in design exploration tasks, as it converts an equation solving process into an optimization problem. Compared
to traditional optimization algorithms, for instance adjoint method based sensitivity analysis23, physics-informed
design optimization is significantly more general and easier for adaptation. Cutting-edge research progress in
physics-informed design optimization concentrates on two main directions. The first direction is to establish a



Figure 1. Reference domain shapes of two iron core shape optimization case studies: optimize for target magnetic
flux density under current sources (A), and optimize for target electromagnetic torque subject to a uniform magnetic
flux density boundary condition (B).

surrogate ML model that learns a response function for the parameterized shape or topology design space24–28.
A well-trained surrogate model can typically accelerate the PDE solution process by at least 3− 4 orders of
magnitude, with negligible prediction error18, 29. Recent efforts have discovered novel neural operator architectures
that allow projection among infinite-dimensional function spaces30, 31. The input space of these architectures
possesses discretization-invariance and is inherently closer to physics fields, thus achieving higher prediction
accuracy when fed with sufficient data. However, surrogate-model based methods assume relatively simple geometry
parameterization that is concise enough to be included as part of the model inputs. This assumption becomes invalid
for general shape representations that may involve hundreds of thousands of parameters. On the other hand, the
second research direction focuses on direct optimization of some parameterized property field32, 33. The design space
(property field) is typically parameterized explicitly as a density field34–38 or implicitly as a level-set function39–41.
These parameterization techniques can be applied to numerous design tasks. This type of method assumes continuity
and differentiability of the material density distribution over space and thus introduces transition regions across
subdomain interfaces, which may generate inaccurate physics solutions when large material property gaps exist (an
example shown in SI Appendix). This inaccurate approximation due to material field smoothing becomes particularly
challenging when neural networks are utilized to parameterize material property fields or physics fields, as neural
networks are highly smooth, and sometimes possess an infinite degree of differentiability like sinusoidal waves.

This work aims to address the discontinuity of material property fields in the context of physics-informed
design optimization problems. Current solutions to this problem diverge into two paths: The first involves direct
parameterization of material properties over the computation domain, such as density-based methods or level-set
methods as detailed in42, 43. To retain differentiability, the abrupt material property changes across subdomain
interfaces are typically approximated through smooth transition functions. These approximations, while offering
broad adaptability, might yield inaccurate results when subdomains have highly contrasting property values. The
second path involves domain decomposition44. Exact material properties are assigned to collocation points within
each decomposed subdomain while the PDE residual loss is replaced with a boundary condition loss on subdomain
interfacial points, allowing more accurate PINN solutions to PDEs (an example shown in SI Appendix). While this
ensures precise solutions regardless of property disparities across subdomain interfaces, the material properties
on collocation points become non-differentiable as they are determined by indicator functions (if in a specific
subdomain). In this case, an alternate shape parameterization method is essential. In this work, we propose to
parameterize the property field design space through coordinate projection, in the form of a neural network. The
proposed method decouples the definition of shapes and material properties, allowing exact material property
representation through fixed spatially discontinuous functions, while providing differentiable parameterization of
arbitrarily complex domain shapes. Moreover, the shape projection neural network can be smoothly incorporated
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with PINNs, enabling physics-informed shape optimization which offers significantly better adaptability towards
practical engineering problems compared to classical methods. However, we want to make a note here that the
current framework does not allow the change of topology, and should thus be treated as a shape optimization method.
The proposed framework is showcased in optimizing the shape of iron cores in 2D static magnetic fields. The
proposed optimization framework includes a domain decomposition PINN solver that can properly handle the large
permeability contrast between neighboring subdomains. Therefore, the training process optimizes the shape and
solves for the physics field simultaneously based on loss functions, without the aid of ground truth generated by
external PDE solvers. The performance of the optimized iron core is subsequently validated by finite-element
analysis (FEA) using commercial software COMSOL Multiphysics.

To showcase the capability of our proposed physics-informed shape optimization framework, we aim to optimize
the shape of ferromagnetic iron cores for generating desired static magnetic fields. For simplicity, the two case
studies are solved in 2D space with governing equations and neural network architectures described in the Methods
section.

Fig. 1A illustrates the reference domain shapes of a 2D C-shape iron core problem (the first case study). The
reference iron core domain Ωz_in is initialized to be a C-shape with a thickness of 1 and relative permeability of 1000.
When such an extreme property gap exists, PINN with domain decomposition provides more accurate solutions
compared to domain smoothing (comparison given in SI Appendix). The iron core rests in a circular vacuum domain
Ωz_out of radius 8 with two current sources Ωz_sc1, Ωz_sc2 of density 0.5 and −0.5 on its sides. The goal is to find a
projection from Ωz_in to Ωx_in that generates some desired magnetic flux density within the query domain Ωz_q.

Fig. 1B illustrates the reference domain shapes of a magnetic torque problem (the second case study). The
reference iron core domain Ωz2 is initialized to be an ellipse with major axis 1.5, minor axis 0.7, and 45◦ inclination.
The iron core rests in a circular vacuum domain Ωz1 of radius 8 with a uniform external magnetic flux density
on boundary ∂Ωz. The existence of the iron core may distort the external magnetic field, yielding a magnetic
torque that can be estimated by performing the integral in Eq. 11 along any close trajectory Γ around the iron
core. In this scenario, we assume infinite permeability on the iron core to examine a slightly different physics loss
formulation (detailed in Results and Discussion), which yields similar solutions to any large relative permeability
(e.g. µ = 1000).

Fig. 2 illustrates the entire optimization framework that will be implemented to address the case studies
aforementioned; it consists of a shape neural network NNφ and a physical field neural network NNθ (formal
definitions in the Methods section). In this work, shapes are defined using a reference shape and the shape neural
network NNφ . The reference shape Ωz is mathematically approximated by a point cloud with fixed coordinates z.
The coordinates of the reference point cloud are projected by the shape neural network NNφ to new coordinates
x. This projected point cloud represents the optimized (deformed) shape once the neural networks are trained.
Meanwhile, the positive Jacobian constraint is required for the entire point cloud to preserve topology and avoid
any unphysical deformation. A typical PINN NNθ is then responsible for predicting the correct physical field,
specifically the magnetic vector potential (MVP) field in this work, over the projected spatial coordinates x.
Such parameterization incorporates all design information within a neural network NNφ . As a result, it allows
physics-informed loss functions defined on decomposed computation domains, while keeping all geometry features
differentiable, including domain, boundary, and interface shapes. It is worth noting that defining shapes through
boundary parameterization is not advisable. While it’s feasible to parameterize a smooth and closed curve, the
material properties at domain collocation points become nondifferentiable. This is because they are determined by
an indicator function determining whether they lie inside the curve.

The proposed physics-informed shape optimization framework is completely self-contained, learning physics
and searching for better designs all by itself. Therefore, the loss function is composed of multiple components
including residuals from strong and weak form governing equations, boundary conditions, design constraints, and
design objectives, whose expressions depend on the actual problem of interest. The training process employs
self-adaptive weights to effectively balance the contributions of loss functions from different sources. Each loss term
is prefixed with adaptive weights λ . These weights are dynamically updated to maximize the overall loss, thereby
placing greater emphasis on constraints that are not well met45. This allows user-defined design constraints to be
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Figure 2. General framework for shape optimization using coordinate projection PINN. The shape network NNφ

projects the coordinates of the reference point cloud to the actual shape with topology preserved. In other words, the
white ellipse on the projected domain Ωx is represented by the same set of points sampled within the white triangle
on Ωz, but projected by NNφ . The PINN NNθ predicts physical fields on the actual shape coordinates. φ and θ are
updated to minimize a loss function which is a combination of design objectives, shape constraints, and governing
equations.

added effortlessly as penalty functions, without derivation of Lagrangian multipliers46.

Results

Case Study One
To optimize the C-shape iron core in case study one, the MVP field neural network NNθ and NNφ are initialized
according to the Methods section. The training function (Eq. 1) is then calculated on point sets sampled from the
given reference domains Ze,Zg,Zc1 ⊂ Ωz, Zc2 ⊂ Ωz_in, Zb,Zc3 ⊂ ∂Ωz, Zc4 ⊂ Ωz_sc1 ∪Ωz_sc2 ∪Ωz_q, and Zd ⊂ Ωz_q.

NNθ ◦NNφ represents the composition of the shape and the physics neural networks, projecting a reference
coordinate z to the predicted MVP value on the corresponding spatial coordinate x. Lb in Eq. 1 calculates the
strong form PDE residual (Eq. 6) for each collocation point, which is the most commonly seen domain loss in
PINNs. Le facilitates a Monte Carlo estimation of the magnetic energy (Eq. 7). A Jacobian factor is multiplied
to Le as the collocation points are no longer uniformly distributed on the projected spatial coordinate x. A valid
MVP solution should minimize this energy loss. Notice that minimizing the strong form Lg or the weak form Le

would produce the same MVP field solution. However, incorporating both forms into the final loss function proves
to be advantageous in navigating local minima, especially when seeking a continuous MVP solution on a heavily
discontinuous permeability field (more details discussed in SI Appendix). The Dirichlet boundary condition is
addressed in Lb which penalizes any non-zero boundary MVP. Lc1 preserves topology by constraining Jacobian
within a certain positive range to avoid infeasible or highly distorted shape changes. Lc2 penalizes volume change
in the iron core. Lc3 and Lc4 prohibit deformation at the outer boundary, current sources, and the query region as
they are fixed external objects that are not part of the design variables. Ld is the objective function with a target
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Lg = |∇2
x(NNθ ◦NNφ )(z)+µ(z)J(z)|2 ∀z ∈ Zg

Le =
1

|Ze| ∑
z∈Ze

(
1

2µ(z)
|∇x ×NNθ ◦NNφ (z)|2 − J(z)NNθ ◦NNφ (z)) · Jacφ (z)

Lb = |NNθ ◦NNφ (z)|2 ∀z ∈ Zb

Lc1 = |ReLU(Jacφ (z)−1.6)+ReLU(0.4− Jacφ (z))|2 ∀z ∈ Zc1

Lc2 = | 1
|Zc2| ∑

z∈Zc2

Jacφ (z)−1|2

Lc3 = |NNφ (z)− z|2 ∀z ∈ Zc3

Lc4 = |NNφ (z)− z|2 ∀z ∈ Zc4

Ld = |( 1
|Zd | ∑

z∈Zd

∇x ×NNθ ◦NNφ (z) · [0,1]T )−Btarget |2 = |Bq −Btarget |2

L = λeLe +λdLd +λc2Lc2 + ∑
k∈{c1,c3,c4,b,g}

1
|Zk| ∑

zi∈Zk

λ
i
kLk(φ ,θ ,zi)

(1)

value for the vertical component of the magnetic flux density in the query domain. To best satisfy the design goal,
any Bq values that deviate from Btarget will be penalized. The total training loss L is a weighted summation of the
abovementioned loss components. Self-adaptive updating is utilized to automatically adjust the loss weights except
for λe which has a fixed value of 3.3. This is due to the fact that the minimal value of magnetic energy Le isn’t zero.
Meanwhile, we notice that all loss terms should ideally stay at 0 values regardless of the projected shape, except for
Le which should only be minimized given a fixed NNφ . Therefore, ∂Le

∂φ
is excluded from the computation graph so

that the energy minimization loss Le only affects the physics model NNθ without directly deforming NNφ .
To calculate the total training loss, 35600 random collocation points are sampled over the entire domain Ωz

and shared by Ze, Zg,Zc1. Another 5000 random collocation points are sampled in the reference iron core domain
for Zc2. 6000 uniform boundary points are sampled for Zc3. 300, 300, and 66 points are sampled for Zsc1, Zsc2
and Zq to constrain shape change. The sampled training points together with the neural networks (architectures
detailed in the Methods section) take approximately 4 GB of GPU memory. NNφ is first initialized to make identity
prediction z = NNφ (z) over the entire domain Ωz through 8000 epochs of supervised training. At this initialization
stage, the ground truth label is identical to the input coordinate z. NNφ and NNθ are then updated simultaneously by
minimizing the complete loss function L in Eq. 1. Initial learning rates are set as 0.001 for φ and 0.002 for θ , where
both decay exponentially by a factor of 0.9 for every 1000 epochs, with a total of 60000 epochs.

We first solve the magnetic flux density field B for the initial reference C-shape iron core by holding NNφ to be
the constant identity mapping. The solution is shown in Fig. 3A with a vertical flux density of Bq =−0.34 at the
query region. A similar value of Bq =−0.36 is computed by FEA with COMSOL, validating the formulation of the
physics loss. Fig. 3B shows the optimized iron core shape projected by the trained NNφ when the design objective is
set as Btarget =−0.55. It can be observed that the training process attempts to pull the iron core towards the query
region to enhance the magnetic flux around the query domain. The training curves are plotted in Fig. 4A, including
the evolution of magnetic energy, governing equation (PDE) residual Lg, shape constraint losses Lc1 −Lc4, and the
queried vertical magnetic flux density. We notice that all zero target constraints (including Ld) in the training curves
converge relatively fast within 10000 epochs, whereas the remaining training process focuses on correctly resolving
the physical fields by minimizing the magnetic energy. The optimized iron core contour is exported and validated
in COMSOL, providing Bq =−0.491. The difference between the queried flux density from PINN (Bq =−0.55)
and COMSOL (Bq =−0.491) is likely caused by two major sources: numerical discrepancy between Monte Carlo
sampling and shape function approximation (FEA), and balance among multiple penalty losses over training.

We also explored optimizing the iron core shape by switching the design objective (Ld in Eq. 1) to Ld =−|Bq|,
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aiming to directly reduce the vertical flux density within the query area. In this case, the objective function Ld
lacks a zero minimum. As a result, a fixed value 0.005 is assigned to λd , with adaptive weight update disabled.
Minimizing Bq without a target value makes the problem more challenging as it permits the violation of physical
and shape constraints, especially with extreme Bq values. To avoid exhaustive hyperparameter searching, we choose
to record the training progression at every 500 epochs, subsequently selecting a suitable checkpoint model based on
the observed training trends.

Fig. 4B plots the training progress during the optimization of the iron core to achieve the minimum value of
−|Bq|. We select the model from epoch 15000 as the checkpoint, given that it manifests the lowest energy and Bq

values before the shape constraints and PDE residual begin to evolve sharply. Post the 15000 epoch mark, the shape
projection model, denoted as NNφ , appears to either inflate the volume of the iron core or induce unphysical shape
changes (negative Jacobian). This leads to hallucinated readings for magnetic energy and flux density. It is worth
noting that the direct minimization of −|Bq| enables the two neural networks to adapt more rapidly compared to
the approach where a target value, |Bq −Btarget|2, is specified. This acceleration is mainly attributed to the small
constant weight of 0.005 associated with the direct minimization of objective function. In contrast, when a specific

Figure 3. Comparison of domain shapes and magnetic flux density fields among the reference (A), the optimized
iron core for Btarget =−0.55 (B), and the optimized iron core for maximizing magnetic flux density (C). The second
row shows a point cloud approximation of the reference shape and the optimized shapes. Boundaries are highlighted
to help distinguish different subdomains. For better visualization, the plots only show 10% of the actual point cloud
used for training.
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Figure 4. Evolution of magnetic energy, PDE residual, shape constraint losses, and the queried vertical magnetic
flux density Bq over the training process for NNθ and NNφ , when optimizing for a target flux density
Btarget =−0.55 (A) and directly minimizing −|Bq| (B). The red lines highlight the model checkpoint.

target value is present, the use of initially randomized adaptive weights takes additional epochs to rectify the physical
field prediction. However, the application of adaptive weights in front of a zero-target loss can greatly alleviate the
efforts required for hyperparameter tuning.

In Fig. 3C, we present the iron core’s optimized shape and the corresponding predicted magnetic flux density.
The deformation observed here is similar to that in Fig. 3B, but with the core tips drawn more proximate to the query
region. Specifically, while Fig. 3B shows a tendency to “bend” the core tips towards the query area, Fig. 3C seems to
“extend” the tips by eliminating material from other regions. Parameterizing the shape change through a coordinate
projection neural network brings huge freedom to the design space and yields infinite solutions, which depend both
on the form of objective function and hyperparameters, especially fixed weights λe and λd . The projected iron core
contour is exported and validated in COMSOL, giving Bq = −0.561, a stronger magnetic flux than the previous
targeted optimization. However, the symmetric form of NNφ as outlined in Eq. 12, coupled with the penalty on
positive Jacobian, prevents the algorithm from extending the iron core further towards the query domain. It is not
surprising that the shape projection PINN overestimates the design objective (Bq is approximately −0.7 from Fig.
4B), primarily owing to the involvement of multiple penalty constraints.

Case Study Two
The electromagnetic torque generated by an iron core subject to a uniform magnetic flux density boundary condition
(illustrated in Fig. 1B) can be calculated by Eq. 10 and 11 in the Methods section based on the MVP field solution
NNθ . Therefore, to find a proper iron core shape NNφ that generates some target torque, we minimize the following
training function (Eq. 2) that is calculated on point sets sampled from the reference domains Zg,Zc1,Zc2 ⊂ Ωz1,
Zb1,Zc3 ⊂ ∂Ωz, Zb2,Zc4 ⊂ ∂Ωz2, and Xd ⊂ Γ:

The governing equation residual loss Lg remains the same as in Eq. 1. As we are assuming infinite permeability
over the iron core domain Ωz2 (Fig. 1B), both NNφ and NNθ are defined only in Ωz1. Therefore, Neumann boundary
conditions (Eq. 8 and 9) are needed on ∂Ωz2 to correctly solve the MVP field. Although the magnetic flux density B
isn’t properly defined in a domain with infinite permeability, the tangential component of magnetic field strength H
should always be 0 due to the infinite denominator as implemented in Eq. 2 Lb1. Meanwhile, the energy loss Le is no
longer necessary as the entire computation domain is homogeneous. Lc1 is again added to penalize any unphysical
deformation, while Lc2 conserves the total volume. Lc3 holds still the external boundary of the computation domain
so that only the iron core is deformed. Lc4 penalizes any large curvature on ∂Ωz2 that is beyond 5. The design
objective function Ld computes the squared distance between the target torque and the magnetic torque which is
numerically estimated on Γ. The total training loss L is again a weighted summation of all the loss components in
Eq. 2 through the self-adaptive training scheme.

To calculate the total training loss, 30000 random collocation points are sampled within the vacuum domain
Ωz1 and shared by Zg,Zc1,Zc2. 6000 uniform boundary points are sampled and shared by Zb1,Zc3. 1250 uniform
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Figure 5. Evolution of the projected iron core contour over training, when target torque is set to 0. The final
optimized contour shape and flux density field are shown on the bottom left.



Lg = |∇2
x(NNθ ◦NNφ )(z)+µ(z)J(z)|2 ∀z ∈ Zg

Lb1 = |∇x ×NNθ ◦NNφ (z)− [0,1]T |2 ∀z ∈ Zb1

Lb2 = |∇x ×NNθ ◦NNφ (z) · t|2 ∀z ∈ Zb2

Lc1 = |ReLU(Jacφ (z)−1.6)+ReLU(0.4− Jacφ (z))|2 ∀z ∈ Zc1

Lc2 = | 1
|Zc2| ∑

z∈Zc2

Jacφ (z)−1|2

Lc3 = |NNφ (z)− z|2 ∀z ∈ Zc3

Lc4 = |ReLU(curv(NNφ (z))−5)|2 ∀z ∈ Zc4

Ld = | ∑
x∈Xd

r(x)× (T(x) ·n(x))d − τtarget |2

L = λdLd +λc2Lc2 + ∑
k∈{c1,c3,c4,b1,b2,g}

1
|Zk| ∑

zi∈Zk

λ
i
kLk(φ ,θ ,zi)

(2)

boundary points are sampled and shared by Zb2,Zc4. A set of 800 equally spaced query points Xd is sampled along
Γ (a circle of radius 4, centered at the origin) to estimate τ . Notice that Xd (and Γ) is defined on the projected
space x instead of the reference space z to avoid unnecessary design parameters. NNφ is first initialized to make
identity prediction z = NNφ (z),∀z ∈ Zg through 8000 epochs of supervised training. NNφ and NNθ are then updated
simultaneously by minimizing the complete loss function L in Eq. 2. Initial learning rates are set as 0.0005 for φ and
0.005 for θ , where both decay exponentially by a factor of 0.9 for every 1000 epochs, with a total of 28000 epochs.

Fig. 5 shows the evolution of ∂Ωz2 projected by NNφ over the training procedure, with a zero target torque
τtarget = 0. The pronounced permeability disparity between the iron core and the vacuum causes the external
boundary’s uniform magnetic flux density B = [0,1]T to distort. This distortion results in the MVP field exerting a
torque on the initially inclined elliptical iron core. When estimated using FEA simulation and assuming a permeability
gap multiplied by 1000, this torque amounts to 2.849. The zero torque optimization problem technically has infinitely
many solutions, including any ellipses whose main or minor axis is aligned with the external magnetic flux density.
It is observed that the training process eventually converges to the circular shape as shown on the bottom left of Fig.
5. This shape seems to be the optimization algorithm’s preference for any random seed. The magnetic flux density
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Figure 6. Evolution of the projected iron core contour over training, when target torque is set to −3. The final
optimized contour shape and flux density field are shown on the bottom left.

inside of the iron core is not well-defined and is thus masked from all the plots. The final contour (projected Xd) is
exported and verified with FEA, with iron core permeability set to 1000. According to FEA result, the optimized iron
core produces a minuscule torque of 0.017, a value substantially smaller than the original torque. It’s worth noticing
that our shape projection parameterization method offers a versatile way to incorporate design constraints, like the
curvature penalty in Eq. 2. However, it does present challenges in converging precisely to an optimal solution, such
as a perfect circle.

Fig. 6 shows the evolution of ∂Ωz2 projected by NNφ over the training procedure, under a different scenario
with a target torque of τtarget =−3. As the original shape generates a torque of 2.849, we expect the final optimized
shape to be similar to the reflection of the original ellipse about the vertical axis. The training process eventually
converges to the shape as shown on the bottom left of Fig. 6, with a peanut-like shape inclined to the left. Owing
to the application of Jacobian penalty Lc1 and curvature penalty Lc4, a smooth shape transition can be observed
where the iron core gets compressed gradually along its main axis and then extended to the opposite direction.
The magnetic flux density inside of the iron core is again masked due to infinite permeability. The final contour
is exported and verified in COMSOL, with iron core permeability set to 1000. The optimized iron core reports a
torque of −3.105 from FEA simulation, agreeing well with the design objective.

Discussion

The rapid advancement of AI has showcased its capabilities in tackling complex material design challenges. Among
various methodologies, PINN is notable for its ability to perform self-supervised learning in physics problems.
Several researchers have demonstrated the feasibility of optimizing material topology using physics-informed
machine learning, showing great promise. Nonetheless, a potential obstacle for the broad adoption of PINN
is its inherent need for continuity, particularly in scenarios with multiple domains having distinct properties.
Oftentimes, this continuity is achieved by introducing smooth transition functions at domain boundaries. However,
this approximation can lead to inaccuracies when the property difference is significant.

In this work, we addressed the field discontinuity challenge in physics-informed material design optimization
problems by introducing the shape projection neural network NNφ . Unlike a direct shape definition through boundary
curve parameterization, NNφ parameterizes the shape in an implicit manner, thus requiring a point cloud to keep
track of the reference shape. However, this approach is very beneficial in the context of physics-informed machine
learning where the geometric features of all training points (including domain collocation points and boundary
points) should be differentiable from an objective function. Once the reference point cloud is projected through
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NNφ , it can be used as training points to compute the residual loss of any physics field neural network NNθ or a
design objective. The cumulative loss function is then backpropagated to correct physics (θ ) and shape design (φ )
simultaneously.

The proposed framework is applied to optimize iron core designs in two benchmark magnetostatic problems:
shape optimization of a C-shape iron core to generate a concentrated magnetic field in a query region subject to
current sources, and shape optimization of an elliptical iron core to generate target electromagnetic torque subject to
a uniform magnetic flux density boundary condition. FEA simulation is used to validate the performance of the
optimized iron core designs. The following takeaways can be summarized from our results: The shape projection
method offers robust expressiveness for parameterizing a wide range of shapes with both smooth and sharp features;
Physics can be solved with domain decomposition, eliminating the need for transition function or intermediate
material properties; This framework is capable of solving physics and optimizing domain shapes simultaneously,
operating entirely without the need for external data; The training process is efficient (both case studies take
approximately 1 hour to train) and accurate (validation result shows a small discrepancy from the target value);
Classical optimization techniques (either density-based or level-set parameterizations) require strict derivation of
design sensitivity which is tedious or sometimes intractable, while adding custom constraints and design objectives
is straightforward (as seen in Eq. 1 and 2) through the proposed framework by incorporating penalty functions
directly into the self-adaptive training loss. On the other hand, the following perspectives should be further studied or
improved in the future: The current framework only allows shape optimization on a fixed topology; The involvement
of constraints as penalty loss functions makes the optimization process difficult to converge precisely at the target
objective value; The shape neural network tends to learn a projection that’s in the vicinity of the reference domain
shape, emphasizing the importance of shape initialization (reference point cloud). Future work can be dedicated
to studying the effect of reference shape, and domain reinitialization to address unsatisfactory reference shapes.
Besides, a more comprehensive investigation is needed to understand how various hyperparameters (such as model
architectures, weight initialization, learning rate, optimization scheduler, etc.) affect the training performance,
especially the density of collocation points which dominates the accuracy of shape and physics approximations.

Methods

Governing Physics Equations
The governing PDEs for a magnetostatic problem in 2D space can be expressed in the following general forms:

B = ∇x ×A = ∇x × (Ae3) (3)

∇x ×H = J = (Je3) (4)

B = µH (5)

where A is the out-of-plane component (e3) of the magnetic vector potential (MVP) field which is treated as a scalar
field in the 2D plane and B is the magnetic flux density vector. The introduction of MVP field automatically satisfies
Gauss’s law requiring the divergence of B to be always 047. H is the magnetic field strength vector, µ is the magnetic
permeability, J is the scalar value current density (perpendicular to the 2D plane), and the subscript x of the curl
operator indicates the corresponding coordinate system that spatial differentiation is taken. Proper Dirichlet or
Neumann boundary conditions on ∂Ω are needed for a unique solution of A or B. When permeability is a constant
locally, Eq. 3, 4, 5 can be rewritten more compactly as:

∇
2
xA =−µJ (6)

One can alternatively obtain the MVP solution to a 2D magnetostatic problem by minimizing the magnetic energy
EB defined by

EB =
∫

Ω

(
1

2µ
|B|2 − JA)dΩ. (7)
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Evaluating EB requires the magnetic field over the entire computation domain Ω. EB is proven to a minimum when
the weak form of Eq. 3, 4, 5 is solved48.

When domain decomposition is needed, one can use Divergence and Green’s Theorem to rewrite Eq. 3 and 4 as
Neumann boundary conditions on the domain boundary (interface):

B1 ·n = B2 ·n (8)

H1 · t = H2 · t (9)

where the normal component of B and the tangential component of H should always remain continuous across any
material boundary; the subscript indicates the region where the fields are evaluated. Note that all physical quantities
are dimensionless in this work.

Given the magnetic flux density field B, one can further calculate the magnetic stress tensor T and magnetic
torque τ:

T =
1
µ
(BBT − 1

2
I|B|2) (10)

τ =
∫

Γ

r× (Tn)dS (11)

where I, r, n, and Γ denote the identity matrix, position vector, normal vector, and some integration trajectory.

Neural Network Architectures
In this work, we use neural networks to define the MVP field as NNθ : Ωx → R and the shape projection parameteriza-
tion as NNφ : Ωz → Ωx. NNθ takes the spatial coordinate x ∈ Ωx as input and predicts A. As the MVP field is always
continuous over the space regardless of material properties, it is more suitable to be represented as neural networks.
For the conciseness of mathematical expressions, the predicted vector form MVP field NNθ (x)e3 is abbreviated
as NNθ (x) in this work. NNφ takes the material coordinate z ∈ Ωz as input and predicts the corresponding spatial
coordinate. This projection helps define the actual optimized shape Ωx projected from a given reference shape Ωz
through φ . In the first case study, the shape projection is defined to be an odd function in the vertical coordinate to
enforce symmetry:

NNφ (z) = [z1,z2]
T +[1,1]T · N̂Nφ (z1,z2)+ [1,−1]T · N̂Nφ (z1,−z2) (12)

While in the second case study, the shape function is simply:

NNφ (z) = [z1,z2]
T + N̂Nφ (z) (13)

Both NNθ and N̂Nφ share the same architecture with 6 hidden layers of width 50 and the hyperbolic tangent
activation. Note that the network architecture is directly adapted from31 without hyperparameter tuning, as the focus
of this work is on the general physics-informed shape optimization framework. The training of NNφ and NNθ is
conducted using Pytorch and DeepXDE on an NVIDIA A40 GPU. Training point sampling, loss functions, and
optimization strategies are detailed in the corresponding sections.
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