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ABSTRACT 

Digital twins are a promising technology for vapor compression cycles because their capabilities can enable 

new approaches to system analysis, design, and control.  As the computational models utilized by these 

digital twins must capture the observed dynamics of these physical systems, we describe important 

characteristics of these systems that impact the structure and implementation of these models.  Specific 

attributes of these systems that govern model development include large-scale structures with tens or 

hundreds of thousands of equations, time constants that range over 10 orders of magnitude, and derivative 

discontinuities that affect the performance of solvers.  We then describe candidate modeling, calibration, 

and estimation techniques that leverage modern mathematical and computational methods to meet these 

requirements, and present use cases demonstrating their efficacy. 

Keywords: Digital twin, Vapor compression cycles, Simulation, Calibration, Estimation, Control, Modelica, 

Differential algebraic equations 

1. INTRODUCTION 

A host of concerns related to climate impact, energy efficiency, and comfort performance are converging to 

make this a time of challenge and opportunity for vapor compression cycles, as one of the key technologies 

used in today's building energy systems.  While the energy efficiency of buildings is a perennial concern, the 

climate-related implications of traditional carbon-based energy sources and refrigerants with a high global 

warming impact have amplified the need for more sustainable approaches to space heating and cooling.  New 

technologies that enable high levels of system integration promise to increase electrification without 

sacrificing equipment performance, but these methods rely on a high bandwidth of information exchange 

between equipment, the building envelope, and the electrical grid.  As greater system integration is enabled 

by exposing more granular performance information that can be used to develop advanced control and 

optimization methods, system architectures for vapor compression cycles that can produce a wide range of 

data hold significant promise in the pursuit of sustainable design objectives. 

Digital twins are emerging as a potent new technology for enabling such new capabilities for multiphysical 

systems.  While the phrase "digital twin" has been rapidly adopted in the marketing domain and is 

consequently attached to a variety of overlapping meanings, one helpful definition proposed by the AIAA 

Digital Engineering Integration Committee (2020) is that a digital twin is "a set of virtual information 

constructs that mimics the structure, context and behavior of an individual / unique physical asset, or a group 

of physical assets, is dynamically updated with data from its physical twin throughout its life cycle, and 

informs decisions that realize value."  As simulation-oriented representations that track the behavior of 

physical systems, these tools are amenable to a wider range of performance monitoring and control analyses 

than is possible with strictly physical sensing approaches. 

As data can be used in virtual representations of system behavior in a variety of modalities, we explicitly 

distinguish between a digital model, which is a virtual representation that can be used to predict the behavior 



 

of the physical system but does not itself change in response to measurement data, and a digital twin, in 

which the output of the virtual representation is dependent upon current and past data obtained from the 

physical system by automatically evolving in response to measurement data.  This evolution ensures that the 

output of the digital twin automatically tracks the output of the physical system and enables actionable 

decisions to be made for the physical system on the basis of the behavior of the virtual representation. 

Thelen et al. (2022) provides an excellent review of digital twin technology across a wide variety of domains. 

More specialized treatments of digital twins in the building domain are covered by Das et al. (2022), who 

studies the application of machine-learning technology to digital twins of smart buildings, Vering et al. (2019), 

who investigates the use of digital twins in the design phase of building systems, and Xie et al. (2023), who 

applies digital twins to fault detection and diagnosis for HVAC systems.   

Whereas this prior work is focused almost exclusively on the application of digital twins to building-level 

behavior, digital twin technologies stand to provide important benefits to vapor compression cycles by 

providing a variety of new applications and capabilities, and by enabling computational models of these 

systems to adapt to the characteristics of specific physical assets which may vary across a fleet of equipment.  

For example, accurate digital twins may facilitate the development of advanced performance monitoring 

applications of such quantities as the total system refrigerant mass without being subject to conventional 

sensor limitations.  This technology could also be used in model predictive control applications to optimize 

the constrained closed-loop behavior of buildings and equipment by using accurate predictions of the system 

performance over long time horizons to determine control strategies.  Digital twins can thus be used to 

robustly integrate vapor compression cycles with other smart building/grid applications by leveraging their 

enhanced predictive capabilities.  

While the value of digital twins for vapor compression cycles is apparent, the complexity of these physical 

systems suggests a need to characterize the requirements on digital twins to ensure that their virtual 

representation can accurately and parsimoniously describe the behavior of the physical system.  We are thus 

motivated to understand the requirements imposed upon of virtual representations of vapor compression 

cycles, and seek to identify a set of candidate approaches that have these properties. 

The structure of this paper is as follows: Section 2 describes fundamental characteristics of vapor 

compression cycles that circumscribe the behavior of the models used in digital twins.  Section 3 then surveys 

candidate approaches that satisfy these requirements and enable the digital twin behavior to track that of 

the physical system as it changes over time, after which Section 4 enumerates two use cases that 

demonstrate a prototype application of these methods in practice.  Section 5 concludes the paper with a 

brief summary and pointers to directions for future research. 

2. CHALLENGES 

Computational models are the core of any digital twin, and must have two attributes to be successful: they 

must describe the expected behavior of the corresponding physical system, and adapt to changes in the 

physical system over time.  We therefore turn our attention first to the numerical and computational 

properties of vapor compression cycle models that are required to describe experimentally observed 

behavior.  We group the essential traits of these cycles into the following 4 categories: the systems exhibit 

dynamic behavior, are data rich but information poor, have large-scale structure, and possess nonlinear 

characteristics. 

2.1. Dynamic behavior 

All vapor compression cycles exhibit dynamic behavior during operation.  While steady-state models are 

valuable during equipment design and specification processes because the models are often simple and can 

be simulated rapidly, their predictions do not characterize the transient behavior of equipment in real-world 

scenarios.  State-of-the-art equipment relies upon automatic control systems to regulate variable actuators 

to achieve superior part-load system operating efficiency, but even simple window-mounted room air-



 

conditioners exhibit many dynamic phenomena due to disturbances and the effects of on/off cycling for 

temperature control. 

These systems also exhibit coupled multi-input, multi-output dynamic behavior due to the multiphysical 

interactions that take place in the equipment.  These system-level behaviors are most accurately described 

in a computational representation as sets of nonlinear differential algebraic equations (DAEs), resulting from 

the discretization of the partial differential equations (PDEs) governing multiphase fluid flow and conjugate 

heat transfer.  The hygrothermal behavior of the building is also described by a distinct set of DAEs that can 

be coupled to the cycle through fluid flow and heat transfer.  The resulting system behavior can then be 

studied by solving the coupled cycle/building system forward over the time horizon of interest (Li, 2014b).  

2.2. Measurements: Data rich but Information poor 

Although the continuing growth and expansion of the IoT market has provided new resources for monitoring 

system behavior in the field, most vapor compression cycles typically only operate over a limited set of 

conditions and do not produce sufficient information needed to characterize system operation for all 

scenarios of interest.  As it is incumbent upon equipment manufacturers to guarantee performance over all 

practical operating conditions, the robustness of these models to potential behavior is paramount.  For 

example, accurate predictions of cycle behavior during a heat wave may be valuable when planning demand 

response events and load curtailment procedures, but the infrequent occurrence of such high temperature 

events suggests that information about them will be relatively scarce. 

Physics-based modeling approaches are often advantageous in such information-poor scenarios because of 

their established extrapolative abilities and generalization properties (Bhattacharya et al., 2022), which 

ensure high predictive quality.  While data describing the observed performance of these systems is essential 

to overcome modeling limitations due to various sources of uncertainty, hybrid approaches that combine 

physics- and data-based approaches often yield more practical and robust results with contemporary tools 

than purely data-driven techniques.  Methods to calibrate and automatically adapt the structure of system 

models to account for uncertainties associated with the installation process will furthermore serve to 

constructively blend both physics- and data-based methods (Li, 2014a). 

2.3. Large-scale structure 

Contemporary HVAC systems built on vapor compression cycles can be spatially extensive, with tens of heat 

exchangers connected by hundreds of meters of pipe.  As each of these heat exchangers is described by a 

large set of DAEs, the size of an overall system model can become very large, with potential for thousands of 

states and millions of equations. 

 

Figure 2: Jacobian sparsity pattern for a system 

model of a vapor compression cycle in a building 

(Chakrabarty et al., 2021). 

 

Figure 1: Eigenvalues of the Jacobian for a four-

zone VRF system, with the real-axis on a 

logarithmic scale. 



 

In addition to the large spatial scale needed to describe these systems, they are also governed by a wide 

range of temporal scales.  The internal dynamics of the refrigerant flow typically evolve over times of 

milliseconds to seconds, while the hygrothermal behavior of a building often has time constants that range 

from days to weeks.  This can be seen in Figure 1, which illustrates the eigenvalues for a 4-zone VRF system 

coupled to a building; the fastest time constants for this system are on the order of 10!" seconds, while the 

slowest time constants are on the order of a day.  As these time constants are spread over more than 10 

orders of magnitude, these models are numerically stiff and require solvers that can manage these widely 

spaced time constants (Cellier, 2006).  Couplings between variables at the system scale also often confound 

popular assumptions; for example, refrigerant pressures are often incorrectly assumed to exhibit only fast 

dynamics, but their coupling to air-side volumes results in fast and slow modes that are both apparent during 

system operation. 

Fortunately, the structure of the overall system model is often quite sparse due to the local nature of the 

interactions between control volumes.  This can be seen in Figure 2, which shows the sparsity structure of 

the incidence matrix for a system model that comprises a small vapor compression cycle and a building.  The 

terms in the model corresponding to each subsystem are explicitly notated, as are the coupling terms relating 

the airflow and heat transfer between the two subsystems.  The high level of sparsity for these systems 

(typically >98%) thus makes the use of sparse solvers advantageous for these applications. 

2.4. Nonlinear characteristics 

Since many of the main performance advantages of vapor compression cycles stem from the large variations 

in the heat transfer coefficients associated with evaporating and condensing fluids, it is essential that cycle 

models for digital twins capture the nonlinear behavior of these systems.  Many physical processes of a cycle 

are also nonlinear, including the mass flow/pressure drop relations inside refrigerant tubes and expansion 

devices, the interactions between mass flow, pressure drop, and heat transfer during the compression 

process, and the process of water condensation or frost formation on the outside of refrigerant-to-air heat 

exchangers. 

These systems also exhibit hybrid and discontinuous dynamics that affect their behavior.  One example is 

illustrated in Figure 3, which shows the density of the popular refrigerant R32 as a function of pressure and 

specific enthalpy over a wide range of conditions.  The density derivatives with respect to both of these 

variables are discontinuous at the liquid and vapor saturation lines, imposing important requirements for any 

numerical solver used for these models.  Models that do not satisfy these constraints may produce results 

that have non-physical variations in the total refrigerant mass and exhibit attendant deviations in the overall 

cycle behavior (Laughman, 2017).  

 

Figure 3: Density surface of refrigerant R32 as a function of pressure and specific enthalpy. 



 

3. APPROACHES 

Practical realizations of digital twins for vapor compression cycles must satisfy an array of requirements to 

ensure that the behavior of the virtual representation conforms to that of the physical system.  In this section, 

we describe candidate technologies for this application by describing model representations that meet the 

performance requirements, parameter calibration techniques that are applicable to these large-scale and 

nonlinear systems, and state estimation methods that produce model output that is statistically consistent 

with the measured data to ensure that the virtual behavior tracks the physical behavior over time. 

3.1. System representation 

Many standard modeling tools and approaches are unable to correctly model vapor compression cycles 

because of their dynamic, large-scale, and nonlinear behavior.  Of the many extant open-source and 

commercial modeling approaches for model creation, Wetter, et al (2016) describes how component-based, 

equation-oriented modeling languages such as Modelica (Modelica Association, 2021) play a prominent role 

for these applications by enabling users to manage model complexity via the systematic construction of large-

scale physics-based models from component-based building blocks.  Such equation-oriented modeling 

languages automatically compile model code into a software representation of a DAE, and use state-of-the-

art DAE solvers to execute the model when running simulations.  This compiled DAE code can also be 

interfaced to other computational environments for the use in calibration or state estimation via the 

Functional Mockup Interface (Junghanns et al., 2021), which is particularly valuable for digital twins. 

A new tool named ModelingToolkit.jl (Ma et al., 2021) based on the Julia language (Bezanson et al., 2017). 

has recently emerged to further address the need for more advanced tools for equation-oriented acausal 

system modeling.  ModelingToolkit uses a symbolic computational algebra framework that enables the 

construction of large acausal system models from smaller component models and generates imperative Julia 

code; unlike Modelica, whose compilers often target low-level languages such as C or Java, the Julia model 

code emitted by the ModelingToolkit compiler can be easily interfaced with many of Julia's numerical 

programming capabilities, such as new DAE solvers for numerically stiff systems, machine learning 

frameworks, and other state-of-the-art computational tools. 

One example of ModelingToolkit's capabilities can be seen in its ability to interface with existing automatic 

differentiation (AD) tools (Baydin et al., 2018), which computationally generates derivatives of complex 

models.  Jacobians and gradients of these models are valuable in digital twins they enable the sensitivity of 

parameters and/or states of the models to be calculated for the purposes of model corrections or updates.  

Conventional approaches for these derivative calculations use finite difference methods to calculate 

numerical Jacobians, but these methods can be inaccurate near the derivative discontinuities that are 

common in vapor compression cycles.  In comparison, AD methods can symbolically calculate these 

derivatives for compiled model code at a given operating point, leading to derivatives of a much higher 

accuracy for similar or lower computational expense than numerical Jacobians. 

3.2. Calibration 

Models of vapor compression cycles typically have a wide range of geometric, performance (e.g., heat 

transfer coefficients), and equipment (e.g., compressor maps) parameters that need to be calibrated to 

ensure a good correspondence with physical systems.  While some of these values may be obtained from 

manufacturing specifications, there may be significant uncertainty for many other parameters due to 

installation- and equipment-specific variation.  System parameters may also vary slowly over the equipment 

life-cycle and affect the performance.  Online methods for determining parameter values for the model thus 

have significant value to improve the performance of the digital twin over the operational life of the cycle. 

These calibration processes typically proceed via sensitivity analyses, either by directly calculating the 

derivatives of specific outputs of the cycle model with respect to the parameters of interest, or by calculating 

the sensitivity of simulation outputs with respect to those same parameters.  The computational difficulty of 

employing the former approach has motivated an emphasis on the latter, in which the map between 



 

parameter variations and the residual between model outputs and measured data is used to drive the 

calibration process.  Because physics-based models are only valid for specific parameter ranges, calibration 

algorithms cannot apply arbitrary parameter variations to simulation models without occasionally causing 

the models to fail.  The significant computational expense of solving systems of DAEs also tends to make 

simulations of cycle behavior computationally expensive, so that Monte Carlo-based calibration methods 

that rely on thousands of simulations are often computationally impractical. 

Bayesian optimization-based methods have been demonstrated to be a promising technique for such 

calibration processes.  These methods are based on the use of Gaussian processes to determine the mean 

and uncertainty of an acquisition function over a sample space of candidate parameters, after which an 

optimization algorithm identifies candidate regions of the parameter space to sample next to characterize 

the uncertainty and identify parameters which minimize a calibration-cost function.  These methods have 

been demonstrated to be sample efficient, resulting in much faster convergence than Monte Carlo-based 

methods, and requiring fewer model simulations.  Prior work by Chakrabarty et al. (2022) has demonstrated 

that these methods are effective at calibrating simulation models of vapor compression cycles that are only 

valid for limited parameter ranges. Furthermore, they can efficiently identify parameter values that result in 

a good fit between simulation output and measurement data for an application on a model that comprises a 

vapor compression cycle under closed-loop control in a building (Chakrabarty et al., 2021) in a purely data-

driven manner.  These methods are agnostic to the type of simulation model used and treat the model as a 

black-box, allowing the methods to generalize to various digital twin architectures and enable learning from 

multiple building data sources (Zhan et al, 2022). 

3.3. State estimation 

Despite the significant effort that is often invested in model development and calibration, no model of a cycle 

will perfectly reproduce the observed behavior of a real system due to simplifications, unmodeled physics, 

and other factors.  Statistically consistent methods for correcting model state trajectories given a set of 

experimental observations, known as state estimators, ensure that digital twin predictions optimally trade-

off between the information available from measurements and the information encoded in the model 

structure. 

Kalman-based state estimators represent a popular and powerful approach to solving these problems, and 

function by first propagating the model forward between measurement times, and then calculating the state 

corrections to the model at measurement times on these basis of the mean and covariance of the corrections.  

These methods can either be implemented either online as a filter, or in an acausal manner as a smoother.  

A key advantage of these methods is that state estimates constructed from available measurements can be 

used to analyze other system variables that are otherwise impractical to measure.  These methods can also 

be extended to nonlinear systems via linearization and are known as extended Kalman filters (EKF) or 

smoothers (EKS) (Simon, 2006).  Such approaches are required for vapor compression cycles due to the 

nonlinear behavior of the models. 

While these methods have been successfully used for vapor compression cycles (Bortoff et al., 2019; Cheng 

et al., 2005), these prior applications have generally been focused on low-order component and system 

models.  Large-scale models for digital twins pose particular challenges for extended Kalman methods 

because of memory constraints on size of the covariance matrix, which increases with the square of the 

number of state variables.  In addition, the finite difference methods used to calculate the Jacobian for the 

extended Kalman estimators can be inaccurate due to discontinuities in the underlying nonlinear model.  

Finally, the calculated state corrections for these estimators are not guaranteed to satisfy physics-based 

constraints that are assumed by models.  Such constraint violations can result in erroneous model behavior, 

ranging from non-physical output values to computational model failure. 

Ensemble Kalman filters (EnKF) and smoothers (EnKS) (Evensen, 2009) represent alternative state estimation 

methods that address the limitations of the EKF and EKS.  Instead of integrating the covariance matrices 

forward over each time interval between measurements, ensemble Kalman estimators use a sequential 



 

Monte Carlo approach to directly estimate the covariance matrix under an assumption of normally 

distributed state variables from an ensemble of sampled state vectors, or particles, that are propagated 

through the system dynamics.  This dramatically reduces the memory storage and computational methods 

in comparison to the EKF and EKS, and even a small number of particles can result in state estimates with 

accuracies comparable to those of the extended Kalman methods.  These ensemble-based methods can also 

incorporate physics-based constraints (Deshpande et al, 2022) by recognizing that the classical state 

correction computation can be formulated as an optimization problem, and thus can be reformulated as a 

constrained optimization problem to manage such constraints. 

Beyond ensemble Kalman methods, alternative Monte Carlo-based estimation methods such as particle 

filters and smoothers that are not formulated under assumptions of normally-distributed variables may 

better represent the effect of model nonlinearities.  Such methods require large number of particles for good 

estimation accuracy, which incurs significant computational cost when full-order physics-based models are 

used.  Reduced-order or surrogate models which can efficiently simulate large sets of particles thus have 

potential to further improve the efficiency of particle-based estimation methods. 

4. USE CASES 

While digital twins in vapor compression cycles have a wide range of potential uses that employ these 

modeling, calibration, and state estimation methods, we focus here on two brief case studies that build on 

the cited literature to demonstrate the range of possibilities for this technology.  We first identify a set of 

digital twin model parameters to calibrate against measured data by performing a sensitivity analysis on a 

cycle model.  This uses the symbolic AD-compatible properties of the ModelingToolkit cycle models to 

efficiently calculate parametric derivatives of the cycle model, rather than using time-consuming and 

inaccurate numerical derivatives.  In the second case study, we estimate the refrigerant mass and pipe length 

for the same cycle for performance monitoring or diagnostics by using an EKF with temperature 

measurements located at the middle and outlet of each HEX as well as pressure measurements at both 

compressor ports.  We thus combine the information encoded in the structure of the physics-based models 

with data from system measurements to study the behavior of variables that are valuable but impractical to 

observe from direct experimental measurements. 

We developed these case studies on a full-scale dynamic ModelingToolkit model of a air-source vapor 

compression cycle with an evaporating and a condensing heat exchanger (HEX), as well as a variable speed 

compressor, variable speed fans, and a variable position expansion device (Deshpande et al., 2022).  Since 

the HEX dynamics dominate the overall behavior of the system, dynamic models for these components were 

constructed using finite volume discretizations with four volumes for each HEX that describe the one-

dimensional refrigerant flow, thermal behavior of the tube wall, and the airflow across the HEX.  Algebraic 

 

Figure 4: Local sensitivities of cycle states with respect to model parameters. Sensitivities are normalized 

and scaled between 0 and 1. 



models were used for the compressor and expansion valve.  The resulting cycle model consists of an index-1 

set of 278 DAEs, which was reduced via index reduction to a 24-dimensional set of nonlinear ODEs. The 24-

dimensional state vector consists of pressures (P), specific enthalpies (h), and wall temperatures (T) for each 

control volume in both HEXs.

Figure 4 illustrates a heatmap of local sensitivities of the cycle states (on the horizontal axis) to a set of model 

parameters (on the vertical axis) that were calculated directly from the cycle model via AD at a given 

operating point.  Since values corresponding to different state variables span several orders of magnitude, 

these sensitivities are normalized and scaled between 0 and 1 for the purposes of comparison.  As is evident 

from the figure, the dynamics of both HEXs are most sensitive to the refrigerant-side heat transfer coefficient 

hInner at the inner wall of the HEX pipes.  This type of analysis can automatically improve the speed and 

computational efficiency of the model calibration process, as it indicates that this effort should be focused 

on only two of the ten parameters in this set.

The AD compatibility of this model was also used for joint state and parameter estimation using the extended 

Kalman framework, which uses model Jacobians and local sensitivities for model linearizations.  This joint 

estimation is accomplished by first augmenting the model's state vector with unknown or uncertain model 

parameters of the model, and then estimating the augmented state vector using the EKS.  The accuracy of 

this approach is evident in Figure 5, where the left plot demonstrates the efficacy of this method by 

accurately estimating the pipe length of a cycle model from a limited set of temperature and pressure 

measurements.  Similarly, the right plot of this same figure demonstrates the ability of this method to 

simultaneously estimate the refrigerant mass as calculated from the calibrated pipe length and the estimated 

state variables.  For this simulated case, the total refrigerant mass of this system was estimated with less 

than 1% error.  As changes in the refrigerant mass can have a significant effect on the energy performance 

and direct climate impact of vapor compression cycles, the ability of this technology to effectively provide 

“virtual sensors” for otherwise unobservable phenomena has high potential value.

These demonstrations suggest that digital twins can add to the advantages of digital models by assimilating 

updated data that reflect important changes in the vapor compression cycle behavior over its lifecycle.  

Whereas digital models are generally only designed to represent the system during the design stage, the 

additional structure of digital twins of vapor compression cycles that satisfy the stated requirements can 

create new system-level capabilities that provide actionable performance information.  This information can 

be used in next-generation integrated building control and planning algorithms, as well as enable the 

development of advanced equipment control and optimization methods to enhance both system-level and 

fleet-level energy and climate-related performance.

Figure 5: Solid lines show estimated pipe length (left) and refrigerant mass (right) while shaded areas 

show 3# bounds. Dashed lines show reference parameter values.



 

5. CONCLUSIONS 

Digital twins have an opportunity to play a key role as we strive to convert the flood of data from low-cost 

sensors into actionable information.  While vapor compression cycles have characteristics that impose 

certain implementation challenges for digital twins, technology and methods are readily available to further 

develop these tools for performance monitoring, control, and diagnostic applications.  Future efforts to refine 

these methods and test them on experimental data promise to provide valuable insights and new avenues 

of investigation, as well as enable new applications that we hope will play some small part in achieving our 

larger climate and energy objectives. 
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