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Abstract
In this paper, the problem of safe motion planning of the mobile agent in the presence of
multiple static obstacles is investigated. In addition to the collision avoidance, an additional
objective of joint minimizing the energy consumption for con- trolling its dynamic move-
ment and maximizing the instantaneous post-processing signal-to-noise ratio (ISNR) that
determines the accessing capability of spectrum allocated to the licensed users is taken into
account. Due to a non-existing system setup for single carrier transmissions in the spatial-
temporal correlated frequency selective fading channel and non-existing feasible mathematical
analysis to maximize the distribution of the ISNR over the energy conscious motion planning,
we propose a model- free and off-policy soft actor critic (SAC) to learn and make an action
by the mobile agent to achieve the following three objectives simultaneously from interactions
with the environment: i) achieve the safe motion planning that avoids collision with the static
obstacles; ii) minimize the control energy consumption; and iii) maximize the ISNR. Simu-
lation results verify that these three objectives can be achieved efficiently by the proposed
SAC-based safe motion planning.

IEEE International Conference on Communications Workshops (ICC) 2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Spectrum Sharing-inspired Safe Motion Planning
Kyeong Jin Kim, Abraham P. Vinod, Jianlin Guo, Vedang Deshpande, and Kieran Parsons

Abstract—In this paper, the problem of safe motion planning
of the mobile agent in the presence of multiple static obstacles is
investigated. In addition to the collision avoidance, an additional
objective of joint minimizing the energy consumption for con-
trolling its dynamic movement and maximizing the instantaneous
post-processing signal-to-noise ratio (ISNR) that determines the
accessing capability of spectrum allocated to the licensed users
is taken into account. Due to a non-existing system setup for
single carrier transmissions in the spatial-temporal correlated
frequency selective fading channel and non-existing feasible
mathematical analysis to maximize the distribution of the ISNR
over the energy conscious motion planning, we propose a model-
free and off-policy soft actor critic (SAC) to learn and make an
action by the mobile agent to achieve the following three objec-
tives simultaneously from interactions with the environment: i)
achieve the safe motion planning that avoids collision with the
static obstacles; ii) minimize the control energy consumption; and
iii) maximize the ISNR. Simulation results verify that these three
objectives can be achieved efficiently by the proposed SAC-based
safe motion planning.

Index Terms—Motion planning, cyclic prefixed single carrier
transmissions, spectrum sharing, reinforcement learning, soft
actor critic, optimal policy.

I. INTRODUCTION

Unmanned Autonomous ground vehicles (AGVs) and mo-
bile robots become indispensable tools for Industry 4.0, smart
manufacturing, and the future revolutionary industrial, man-
ufacturing, and smart factory innovations [1], [2]. They can
be deployed for transportation, environmental monitoring, and
accomplishing tasks impossible and dangerous for human
workers.

Motion planning is mainly related with the movement of
AGV or robots between multiple points under uncertain envi-
ronments. Via safe motion planning, they can find a route un-
der an evaluation criterion, while avoiding static and dynamic
obstacles [3]–[5]. AGVs and transportation robots are seen as
unsustainable equipment that demand a high level of energy
consumption for the movement, communications, sensing, and
computation since batteries are usually used to provide energy
for them. In particular, how to optimize energy consumption
for dynamic movement is an important issue for economic
and environmental reasons since this accounts for most of
it. Thus, energy-efficient trajectory planning of an industrial
robot have been proposed by many existing works such as
[3], [6], [7]. In the cloud networked multi-robot system [3], the
authors considered cloud computing to reduce execution time
and energy consumption, which is possible by offloading its
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computation into cloud. In [6], the authors proposed an energy-
efficient motion planner for multi-robot coordination. Each
robot is forced to reach an exploration target with the lowest
energy consumption. For a material handling robot, the authors
in [7] investigated an energy conscious scheduling under the
bound of movement. In recent years, model free or data-driven
machine learning (ML) techniques that do not require to know
the parametric model have led to exceptional improvements
in a wide range of applications. The ability of ML to learn
complex hidden models from data has proven quite success-
ful, quickly surpassing most state-of-the-art human-designed
algorithms. In particular, the authors in [4], [8]–[10], leveraged
reinforcement learning (RL) in developing the safe motion
planning. In their approaches, a mobile robot is recognized as
a mobile agent in the environment to learn its motion policy
by maximizing a specific criterion while avoiding collision
with static and mobile obstacles. By employing the deep
Q-learning (DQL), the mobile robot is trained to make its
action with no explicit information about the environment
[9]. Jointly considering competition and cooperation among
multi-unmanned aerial vehicles (UAVs), a multi-agent deep
deterministic policy gradient (MADDPG) algorithm was used
in [10] for the safe motion planning.

Dedicated private spectrum is allocated by the German,
Japan, and USA governments for industrial use to support
innovation and enable new use cases in the private network
such as control, resilient and reliable low latency wireless au-
tomation, extensive Internet of Things (IoT) and industrial IoT
(IIoT), and secured network within premise [11]. Unlicensed
spectrum can be used for their operation. However, its usage
may raise some concerns due to external interference and ma-
licious jamming that can result in service disruptions. The role
of spectrum sharing has become key in spectrum management,
allowing access to new bands and carrier aggregation to boost
network performance, while protecting their operations and
the access rights of incumbents or those of multiple different
use cases, with distinct priorities. Many mathematical analyses
have been developed for the frequency selective fading chan-
nel. However, to the best our knowledge, performance analysis
of spectrum sharing in the frequency selective fading channel
with spatially and temporally correlated shadow fading has
never been investigated.

In contrast to the mentioned works, the following problems
are still open for further investigation with the safe motion
planning.

• How to conduct a safe motion planning of the mo-
bile agent while maximizing the instantaneous post-
processing signal-to-noise ratio (ISNR) and minimizing



control energy consumption being used for its dynamic
movement. Thus, this will be a novel problem compared
with those of [4], [8]–[10], and [12]

• How to incorporate a more realistic frequency selective
fading channel jointly taking into account of spatial-
temporal correlation in shadow fading over the safe
motion control. Thus, in contrast to the work [5], [12],
it is desirable to obtain the motion planning policy of
the mobile agent without exact knowledge of the channel
model.

• How much spectrum sharing and energy saving can
benefit from the joint optimization under the framework
of the safe motion planning is also an important problem.

II. SYSTEM AND CHANNEL MODELS

Fig. 1 illustrates the considered network operating in the
environment with multiple obstacles that work as the primary-
user (PU)-receivers (PU-RXs), {obsj ,∀j}, one secondary-user
(SU)-TX, and a mobile agent that works as the SU-receiver
(SU-RX). We assume that every node is equipped with a single
antenna to transmit and receive the signals. All PU-RXs are
coexistent in the same licensed frequency band. However, SUs
are assumed to be operating in a unlicensed different frequency
band. However, when the mobile agent wants to accomplish
a reliable task with a higher priority, it is necessary to access
the licensed frequency band.

Definition 1: (COLLECTIVE SAFETY [4]) The agent is
assumed to be collectively safe with its motion planning
at a particular time epoch when i) the agent with its size
ra avoids collision with obstacles with size ro, located at
poj ∈ R2×1, ∀j; and ii) the agent is moving within the
working area. In particular, since the SU-TX is mounted at
a higher height over that of the agent, it is not recognized as
the static obstacle.

A. Dynamic model of the mobile agent

We setup a discrete-time dynamic model of the mobile
agent, similar to [4]. We describe the dynamics as follows:

x(k + 1) = Ax(k) +Bu(k),

pr(k) = Hx(k) (1)

where discrete-time state x(k)
△
= [x(k), vx(k), y(k), vy(k)]

T ,
input u(k)

△
= [ux(k), uy(k)]

T , matrices

A
△
=

[
ΦT 02×2
02×2 ΦT

]
and B

△
=

[
ϕT 02×1

02×1 ϕT

]
with ΦT

△
=

[
1 ∆T
0 1

]
and ϕT

△
=

[
(∆T )2/2

∆T

]
for

some sampling time ∆T > 0, and H
△
=

[
1 0 0 0
0 0 1 0

]
.

We define the observation vector, pr(k)
△
= [x(k), y(k)]T

as the position coordinates of the agent at k∆T in the
2D-space. Similarly, we define an agents’s velocity vector
v(k) = [vx(k), vy(k)]

T .

For the ease of training an RL policy to control (1), we use
following low-level, tracking controller,

uRL(k) = −Kx(k) + Fr(k) (2)

where r(k) is the command set by the RL-based motion
planner [4], and the matrices K,F are determined via standard
LQR theory [14]. In particular, the controller gain K is
obtained by K = (BTSB + R)−1BTSA, where S is the
solution to the algebraic Riccati equation given by

S = AT
(
S − SB(BTSB +R)−1BTS

)
A+Q,

and pre-specified matrices Q and R are respectively positive
semidefinite and positive definite matrices associated with the
quadratic costs defined for state and control vectors. We then
solve the following equation to compute F ,

H(I4×4 − (A−BK))−1BF = I2×2 (3)

By construction, the use of uRL(k) in the dynamics (1)
guarantees limk→∞ pr(k) = r for a constant r(k) = r. In
other words, the controller (2) ensures that the system (1)
drives the system such that when the position r(k) specified
by the RL-based planner is held (nearly) constant to r, the
position of the agent converges to r.

Definition 2: (ENERGY) We define the energy needed to
control the mobile agent,

Econtrol
△
=

∑K

k=1
∥uRL(k)∥2 (4)

where K denotes a finite horizon to arrive at the target
position, t ∈ R2×1, within the displacement threshold, denoted
by rd.

B. Frequency selective fading channel model

A communication channel between two nodes can be mod-
eled by using small-scale fading for multipath, large-scale
fading for shadowing and path loss. For two nodes i and
j, respectively located at pi and pj , the logarithm of the
squared channel magnitude of f(pi,pj ,hi,j) ∈ CNh×1 with
Nh multipath components is expressed as follows [15]:

FdB(pi,pj ,hi,j)
△
= 10 log10(∥f(pi,pj ,hi,j)∥2)
= −η10 log10(∥pi − pj∥) + FSH(pi,pj)+

FSF(pi,pj ,hi,j) (5)

where η is the path loss exponent. A fading channel between
these two node is assumed to be a frequency selective fad-
ing channel denoted by hi,j . In addition, FSH(pi,pj) and
FSF(pi,pj ,hi,j) respectively represent the effects of shadow
fading and frequency selective fading channel, hi,j , in dB. A
zero-mean Gaussian distribution with an exponential spatial
correlation is used to model FSH(pi,pj). How large-scale
shadow fading components are changing spatially, the covari-

ance between pi and pj is given by Ωi,j = (ϵdB)
2e

−
∥pi−pj∥

ηS ,
where (ϵdB)

2 and ηS respectively denote the variance of the
shadow fading component in dB and decorrelation distance
that controls the spatial correlation [15].
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Fig. 1. Illustration of one use case of the cyclic prefixed single-carrier (CP-SC) transmissions in the wireless network in which a mobile agent that employs
CP-SC transmissions [13] makes a motion planning to arrive at the target location, t, in the environment coexisting with multiple static obstacles. Centers of
node location are denoted by pSU-TX, poj , and pr , for a secondary-user (SU)-transmitter (SU-TX), jth obstacles, obsj , and mobile agent.

For a frequency selective fading channel, hi,j ,
FSF(pi,pj ,hi,j) is modeled by the following probability
density function (PDF):

fΥSF(pi,pj)(w) =
log(10)

10

10
w
10

Γ(Nh)
e−10

w
10 (10

w
10 )Nh−1 (6)

where Γ(·) denotes the Gamma function.

C. Spectrum sharing

Many measurement campaigns have demonstrated that a
large amount of licensed radio spectrum is inefficiently utilized
due to the existence spatial and temporal holes. To counter
these inefficient use of scarce radio spectrum, the cognitive
radio (CR) network [16] was proposed. How the SU is allowed
to access spectrum, three different types of spectrum sharing,
namely, overlay, underlay, and interweave have been proposed.
As an underlay scheme, spectrum sharing is effective in im-
plementing dynamic spectrum management. Spectrum sharing
allows the SU to co-occupy target spectrum as long as its
interference to the PU is under a threshold, i.e., the PU can
tolerate to interference produced on its assigned spectrum [12].
Thus, it can reduce the need of strict interference management
[17], [18] for spectrum sharing.

Referring to Fig. 1, let us model that to meet the reliable
transportation at a particular time the mobile agent that op-
erates in the unlicensed spectrum wants to occupy the target
spectrum assigned to the PUs. Let PT denote the peak transmit
power at the SU-TX, and IP be the maximum allowable
interference at all the PU-RXs. Under these two constraints,
the transmit power allocation at the SU-TX is given by [12]:

Ps = min

(
PT ,

Ip
maxk ∥f(pSU−TX,pok ,hk)∥2

)
(7)

where hk is the frequency selective fading channel with Ng
multipath elements from the SU-TX to the kth obstacle. Based
on received signals transmitted from the SU-TX, the ISNR is
given by

γspectrum = min

(
PT ,

Ip
maxk ∥f(pSU−TX,pok ,hk)∥2

)
(∥f(pSU−TX,pr, g)∥2) (8)

where g is the frequency selective fading channel with Ng
multipath elements from the SU-TX to the receive antenna at
the mobile agent. As was verified by [12], the spectrum access
capability of the mobile user is determined by the magnitude
of γspectrum, which is a random variable. To simplify the model,
we assume that Ng and Nh are independent of indices of k,
that is, the number of multipath elements is independent of
the connection to obstacles.

III. SOFT ACTOR-CRITIC NETWORK FOR MOTION
PLANNING

We first define the deterministic Markov decision process
(MDP) for the mobile agent with the defined linear dynamics,
expressed by (1), with a prescribed target position t in the
2D space. Unlike the description in [4], the following MDP
explicitly considers the energy costs of motion planning.

A. Deterministic MDP

1) Observation space: The observation space is composed
by the state vector and the displacement of the agent’s
current position to the target and obstacles’ positions as
follows:

o(k) = [x(k)T , (pr(k)− t)T ,

NO∑
n=1

(p(k)− pon)
T ]T (9)



where NO denotes the number of obstacles.
2) Action space: The continuous action space, a(k), is

defined to refine the position command for control-loop
control input defined by (2) as follows :

r(k) = αcontrola(k) + t (10)

where αcontrol is a constant determined by the size of the
working area. To reduce the overshooting by the action,
we limit the range of the action as: |a(k)| < 12×1, where
1 is a column vector of ones.

3) Step function: With the position command r(k), this
function generates the next state x(k + 1).

4) Expected reward function: The expected reward function
that minimizes the energy consumption for controlling
and maximizes the ISNR is given by

R(p(k)) = αobs

NO∑
n=1

1

∥p(k)− pon∥2
+ αtgt∥p(k)− t∥2

+IE · αE · E + IS · αCR · γspectrum + pcollision

+pout of range + rreach target (11)

where the expected reward is inversely proportional to
the displacement to obstacles whereas it is proportional
to the displacement to the target position. αobs and αtgt
are the corresponding penalty parameters for them. In
addition, αE is another penalty parameter related with the
control energy consumption. They are all real negative.
pcollision = −c and pout of range = −c denote actual
penalties when the agent collides with any of the obstacles
and moves out from the working area. rreach target = c
denotes the reward when ∥p(k)−t∥2 ≤ rd. Furthermore,
a positive αCR denotes a parameter related with the ISNR.
Two indicator functions IE ∈ {0, 1} and ICR ∈ {0, 1}
are also specified to compare with the case with non-
optimized control energy and ISNR.

5) Optimal policy π∗: The objective of the motion planning
is to determine its subsequent safe movement meanwhile
minimizing the energy consumption used by the agent to
control its movement and maximizing the ISNR to access
the shared spectrum.

B. SAC

The SAC [19], [20] has been developed under the RL
framework with an objective of maximizing the entropy, in
which the actor that tries to learn a stochastic policy, described
as the distribution over continuous action space, attempts to
maximize the expected rewards and entropy. The optimal
policy, is modeled as Gaussian over the action space, a, with
mean and covariance estimated by the neural network. We can
summarize SAC as follows:

• The SAC model defines soft functions instead of general
functions defined for actor critic. It enables exploration
by adding an entropy term to the general function.

• Maximum entropy processing conducts a search to avoid
suboptimal local minima. The entropy coefficient can be

fixed as a constant, but can be updated through training
as well.

• Policy network, πϕ(a|x), two value networks,
{Vψ(x), Vψ̄(x)}, Q-network, Qθ(x,a), are required.
Neural networks parameterize Vψ(x) and Qθ(x,a).

• The value can be obtained from the Q value, but in
SAC, a separate value network, Vψ̄(x), is provided for
the stability of the model. Note that Vψ̄(x) is not a train
target, but is updated as an exponential moving average
from Vψ(x).

• SAC is the off-policy model that uses relay buffer D,
expressed as: D =

{(
p(k);a(k);p(k + 1);R(p(k))

)}
.

• Value function loss being used to train Vψ(x) is given by
(12), where ā(k) is generated from the policy network.

• Q-function loss being used to train Qθ(x,a) is given by
(13). A batch of experiences is uniformly sampled from
D and used for the expectation. Note that Vψ̄(x(k + 1))
is used as for the target value instead of Vψ(x(k + 1)).

• Policy loss function is given by (14), expressed
by means of the expected KL-divergence. In SAC,
exp(Qθ(x(k), ·)) is normalized by Zθ(x(k)) and re-
garded as a probability distribution. Thus, the new policy
and the KL-divergence of exp(Qθ(x(k), ·)) is forced to
be minimized. As for the value network training, the
expectation is computed by the samples from D.

• Target value network is updated periodically.
• Without using the value network, SAC can be imple-

mented via two Q-networks and policy network [21] to
reduce the possible overestimation.

IV. SIMULATION RESULTS

We use the following parameters for the evaluation of the
proposed approach.

• Dimension of the working area: ±20 [m]
• Q = 1I4×4 and R = 0.1I4×4 for LQR algorithm; and
T = 0.1 [sec].

• αcontrol = 20; αobs = −0.2; αtgt = −2; αE = −0.001;
αCR = 0.5; and c = 1000.

• ro = 1 [m]; ra = 0.5 [m]; and rd = 1 [m].
• γ = 0.99 for the discount factor; lr = 0.0003 for

the learning rate; τ = 0.005 for a target smoothing
coefficient; α = 0.2 for the reward scale of entropy
regularization, that is, we do not train α; B = 256 for
the batch size; and Gaussian-based policy for SAC.

• No = 5; PT = 10 [dB]; Ip = 1 [dB]; Nh = 4; and
Ng = 3.

• η = 2.3; (ϵdB)2 = 6; and ηS = 1.2.
For the considered three cases, the proposed safe motion

planning makes the mobile agent arrive at the target location
successfully avoiding collision with obstacles, PU-RXs. The
cases with (IE = 1, IS = 1), where the control energy
consumption and ISNR are computed by applying a joint
optimization, have different trajectories over the case with
(IE = 0, IS = 0), where control energy consumption and
ISNR are computed without a joint optimization. Furthermore,



JV (ψ) = Ex(k)∼D

[
0.5

(
Vψ(x(k))− Eā(k)∼πϕ

[Qθ(x(k), ā(k))− log πϕ(ā(k)|x(k)]
)2]

, (12)

JQ(θ) = E(x(k),a(k))∼D

[
0.5

(
Qθ(x(k),a(k))−R(p(k))− γVψ̄(x(k + 1))

)2]
, (13)

Jπ(ϕ) = Ex(k)∼D

[
DKL

(
πϕ (·|x(k))

∥∥∥∥exp (Qθ (x(k), ·))Zθ (x(k))

)]
. (14)

Fig. 2. One example of a determined path determined by a set of p(k)s, i.e.,
{p(k), 1 ≤ k ≤ K}.

a different value of αE results in somewhat different trajectory
even for the joint optimization. For a different number of mul-
tipath components of the SU channel, i.e., {Ng = 2, Ng = 3},
this figure shows that the agent reaches the target position
using the closed-loop RL based control policy.

At every 10,000 training episodes, we have tested the trained
model by using 100 independent testing episodes. The average
rewards for 100 testing episodes is plotted in Fig. 3 over the
determined safe path with one example provided in Fig. 2.
This figure shows that both cases with (IE = 0, IS = 0) has
greater rewards than the cases with (IE = 1, IS = 1) since we
give a more penalty for the energy consumption in the reward
function, which is expressed by (11). In general, at least 10,000
training episodes is required to have a reliable safe motion
planning. Furthermore, as |αE | increases, the achieved rewards
decrease due to a greater penalty for the energy consumption.

In the following two figures, Fig. 4 and 5, we have compared
the prediction of the control energy consumption, E, and
ISNR.

These two figures show that the SAC-based joint optimiza-
tion can reduce the control energy consumption and increase
ISNR. In particular, more than 10% energy can be saved.
In addition, more than three times greater ISNR can be
achieved. However, these two figures suggest that a more
hyper-parameter tuning for αE and αCR is required to achieve
separate goals of minimizing E and maximizing γspectrum.
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Fig. 4. Control energy consumption, E.

In Fig. 6, the impacts of multipath diversity gain on the
ISNR is invested. As was verified by [12], multipath diver-
sity gain exploited over the SU channel, expressed by Ng ,
influences the γspectrum. In particular, this figure shows that
with a less number of multipath components over the SU
channel, the SAC-based joint optimization results in a greater
γspectrum over the motion planning that does not employ the
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joint optimization.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed SAC-based safe motion
planning for a single mobile agent. To finish high priority
tasks, a new spectrum-sharing scheme that support a high
reliable movement is integrated into the energy conscious
motion planning. Without explicit knowledge of the channel
and dynamic environment, the simulation results have shown
that the proposed SAC-based safe motion planning can achieve
the desired three goals: i) avoiding collision with the static ob-
stacles; ii) minimizing the control energy consumption; and iii)
maximizing the ISNR. The future will consider multi-mobile
agents coordination and competition to achieve a common
goal, in which avoiding an intra-collision with other agents
will be a challenging problem. How to minimize the overall

control energy consumption and maximize the overall ISNR
will be another open problem with an adaptive coordination
and competition among the mobile agents.
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