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Abstract
We introduce a framework for audio source separation using em- beddings on a hyperbolic
manifold that compactly represent the hi- erarchical relationship between sound sources and
time-frequency features. Inspired by recent successes modeling hierarchical rela- tionships in
text and images with hyperbolic embeddings, our algo- rithm obtains a hyperbolic embedding
for each time-frequency bin of a mixture signal and estimates masks using hyperbolic softmax
layers. On a synthetic dataset containing mixtures of multiple peo- ple talking and musical
instruments playing, our hyperbolic model performed comparably to a Euclidean baseline in
terms of source to distortion ratio, with stronger performance at low embedding dimen- sions.
Furthermore, we find that time-frequency regions containing multiple overlapping sources are
embedded towards the center (i.e., the most uncertain region) of the hyperbolic space, and
we can use this certainty estimate to efficiently trade-off between artifact intro- duction and
interference reduction when isolating individual sounds.
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ABSTRACT

We introduce a framework for audio source separation using em-
beddings on a hyperbolic manifold that compactly represent the hi-
erarchical relationship between sound sources and time-frequency
features. Inspired by recent successes modeling hierarchical rela-
tionships in text and images with hyperbolic embeddings, our algo-
rithm obtains a hyperbolic embedding for each time-frequency bin
of a mixture signal and estimates masks using hyperbolic softmax
layers. On a synthetic dataset containing mixtures of multiple peo-
ple talking and musical instruments playing, our hyperbolic model
performed comparably to a Euclidean baseline in terms of source to
distortion ratio, with stronger performance at low embedding dimen-
sions. Furthermore, we find that time-frequency regions containing
multiple overlapping sources are embedded towards the center (i.e.,
the most uncertain region) of the hyperbolic space, and we can use
this certainty estimate to efficiently trade-off between artifact intro-
duction and interference reduction when isolating individual sounds.

Index Terms— audio source separation, hyperbolic space,
speech, music, sound hierarchy

1. INTRODUCTION

A fundamental paradigm in deep learning-based audio source sep-
aration algorithms is the idea of applying a mask to a feature rep-
resentation (e.g., a magnitude spectrogram or learned basis) of an
audio mixture signal [1–4]. By inverting or decoding the masked
feature representation, we obtain the isolated time-domain source
signals. While techniques that learn feature encoders and decoders
directly based on waveform signals have achieved impressive per-
formance [3, 5], they lack interpretability compared to techniques
based on time-frequency (T-F) representations such as the short-time
Fourier transform (STFT) spectrogram [6, 7]. Among these, algo-
rithms such as deep clustering [2] and deep attractor networks [8]
learn an embedding vector for each T-F bin, and create masks us-
ing classifiers and/or clustering algorithms to assign embeddings to
sources. A fundamental problem for these approaches then becomes
how to best learn a discriminative embedding for each T-F bin.

In this work, we take inspiration from recent advances in model-
ing language [9–11], graphs [11–13], images [14–19]in hyperbolic
space, and explore their relevance for audio source separation. Un-
like Euclidean spaces, hyperbolic spaces have an inherent ability to
infer hierarchical representations from data with very little distor-
tion [20, 21]. Hierarchical and tree-like structures are ubiquitous in
many types of audio processing problems such as musical instrument
recognition [22, 23] and separation [24], speaker identification [25],
music synthesis [26], and sound event detection [27, 28]. However,
all of these approaches model the hierarchical information globally
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Fig. 1: Illustration of hyperbolic source separation. Left plot demonstrates
the process of taking a T-F bin from a mixture spectrogram Xt,f and pro-
jecting its Euclidean embedding to zht,f on the Poincaré ball (red squares);
the dashed purple arrow represents the distance of the resulting embedding to
the hyperplane Hc

pk,ak
. Right plot shows the Poincaré ball with the result-

ing decision boundaries from a trained model (top). The mixture embeddings
(scatters) are colored-coded according to the maximum softmax layer output.
The predicted T-F masks for each of the leaf sources (bottom) are plotted sim-
ilarly, and silent bins (-40 dB and below) are colored in white.

by computing a single embedding vector for an entire audio clip.
Recent work in image segmentation [17] learns a hyperbolic embed-
ding at the pixel level, and we take a similar approach by computing
a hyperbolic embedding for each T-F bin of an audio mixture spec-
trogram, as illustrated in Fig. 1.

As has been shown by many recent computer vision studies [14,
19], hyperbolic network layers [29] can be added to the end of ex-
isting network architectures to learn and classify hyperbolic em-
beddings. In addition to benefits in terms of hierarchical model-
ing, hyperbolic layers can learn strong embeddings at low dimen-
sions [25, 26], represent uncertainty [14, 19], and estimate features
such as edges in images based on their distance to the origin in the
hyperbolic space [17]. Our main contribution is to explore whether
similar observations are applicable to hyperbolic embeddings of T-
F bins, and we propose new avenues for interpreting and interacting
with hyperbolic embeddings in audio source separation applications.

Specifically, we use a simulated dataset containing multiple
overlapping speakers and musical instruments to illustrate our ap-
proach as shown in Fig. 1. We classify each T-F bin embedding
using hyperbolic softmax layers [29], and each T-F bin is further
assigned to both a parent and child class using a hierarchical soft-
max [17]. We compare various widely used source separation loss
functions, but find that energy-weighted cross-entropy performs
best. Corroborating work in application domains such as computer
vision and speaker identification, we find that performance with low
embedding dimensions is relatively strong in hyperbolic space. In



terms of uncertainty, we show how the distance to the origin can be
used to approximate computationally expensive certainty estimates
obtained with Monte-Carlo dropout [30] using only a single forward
pass. We also observe that T-F bins containing multiple overlap-
ping sources are consistently embedded near the origin (i.e., they
are considered the most uncertain embeddings). We then provide
experiments demonstrating how this uncertainty can be exploited
to navigate the trade-off between interference reduction and artifact
introduction, which is fundamental to audio source separation.

2. HYPERBOLIC AUDIO SOURCE SEPARATION

2.1. Embedding-based source separation

We consider the problem of separating a mixture audio signal into
K sources of interest. While we later focus more precisely on class-
based separation, where the sources belong to K different sound
classes, we first give a general presentation of separation approaches
relying on time-frequency (T-F) embeddings.

Source separation is often formulated as a mask-inference prob-
lem [1] in a time-frequency domain, such as that obtained by a short-
time Fourier transform (STFT), where one seeks to obtain the com-
plex spectrogram Sk ∈ CT×F of each of the K sources by multiply-
ing element-wise the spectrogram of the mixture X ∈ CT×F with a
real-valued mask Mk ∈ RT×F : Ŝk = Mk ⊙ X. A common way
to obtain the mask Mk

t,f at time-frequency bin (t, f) relies on first
computing an L-dimensional Euclidean embedding ze

t,f ∈ RL from
X using a deep neural network fθ(.) parameterized by θ, such that
Ze = fθ(X) ∈ RT×F×L. These embeddings can be projected to
dimension K and passed through mask-output non-linearities such
as sigmoid or softmax, or clustered in RL to obtain a clustering of
the T-F bins, such as in deep clustering [2]. In this work, we are in-
terested in replacing these Euclidean embeddings and the way they
are used to derive masks by equivalents in a hyperbolic space, as we
hope that this leads to better embeddings that encompass hierarchi-
cal relationships between sounds. As a starting point, we focus here
on the case of class-based separation with a softmax output layer,
as this has been the primary non-linearity used in hyperbolic neu-
ral networks in computer vision [14, 17, 19], where the Euclidean
embeddings and the multinomial logistic regression (MLR) classi-
fication approach applied to them are replaced by hyperbolic em-
beddings and a hyperbolic MLR. We leave the application to other
non-linearities and to deep clustering to future work.

2.2. Hyperbolic embedding-based source separation

We first briefly review several notions pertaining to Riemannian
manifolds and hyperbolic spaces that are useful in introducing hy-
perbolic embeddings and MLR, following [10, 29, 31].

A Riemannian manifold is defined as a pair consisting of a mani-
fold M and a Riemannian metric g, where g = (gx)x∈M defines the
local geometry gx (i.e., an inner product) in the tangent space TxM
at each point x ∈ M. While g defines the geometry locally on M,
it also defines the global shortest path, or geodesic (analogous to a
straight line in Euclidean space), between two given points on M.
One can define an exponential map expx which projects any vector v
of the tangent space TxM onto M, such that expx(v) ∈ M, and in-
versely a logarithmic map which projects any point in M back onto
the tangent space at x.

The L-dimensional hyperbolic space is an L-dimensional Rie-
mannian manifold of constant negative curvature −c. It can be de-
scribed using several isometric models, among which we focus here
on the Poincaré unit ball model (DL

c , g
D
c ), defined in the space DL

c =

{x ∈ RL | c||x||2 < 1}}. We assume c > 0, such that DL
c corre-

sponds to a ball of radius 1√
c

in Euclidean space. Its Riemannian

metric is given by gDc (x) = (λc
x)

2gE , where λc
x = 2/(1 − c∥x∥2)

is a so-called conformal factor and gE the Euclidean metric. Given
two points x, y ∈ DL

c , their induced hyperbolic distance dc is ob-
tained as

dc(x, y) =
2√
c

tanh−1(
√
c∥ − x⊕c y∥), (1)

where ⊕c denotes the Möbius addition in DL
c , defined as

x⊕c y =
(1 + 2c⟨x, y⟩+ c∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x, y⟩+ c2∥x∥2∥y∥2 . (2)

One way to go back and forth between the Euclidean space RL

and the hyperbolic space DL
c is to use the exponential and logarith-

mic maps at the origin 0, as T0DL
c = RL, which can be obtained for

v ∈ RL \ {0} and y ∈ DL
c \ {0} as:

expc
0(v) =

tanh(
√
c∥v∥)√

c∥v∥
v, logc0(y) =

tanh−1(
√
c∥y∥)√

c∥y∥
y. (3)

We can thus obtain hyperbolic embeddings zht,f ∈ DL
c at the

output of a classical neural network such as fθ by simply projecting
the usual Euclidean embeddings in that way:

zht,f = exp0(z
e
t,f ) = exp0(fθ(X)t,f ). (4)

To define a hyperbolic softmax based on these hyperbolic embed-
dings, the Euclidean MLR can be generalized to the Poincaré ball as
in [29]. In the Euclidean space, MLR is performed by considering
the logits obtained by calculating the distance of an input’s embed-
ding z ∈ RL (such as z = zet,f ) to each of K class hyperplanes,
where the k-th class hyperplane is determined by a normal vector
ak ∈ RL and a point pk ∈ RL on that hyperplane. Analogously, one
can define a Poincaré hyperplane Hc

pk,ak
by considering the union of

all geodesics passing by a point pk and orthogonal to a normal vec-
tor ak in the tangent space TpkD

L
c at pk. Hyperbolic MLR can then

be defined by considering the distance from a hyperbolic embedding
z = zdt,f ∈ DL

c to each Hc
pk,ak

, leading to the following formulation
as shown in [29]:

p(κ=k|z)∝ exp
(λc

pk∥ak∥√
c

sinh−1
( 2

√
c|⟨−pk⊕cz, ak⟩|

(1−c∥−pk⊕cz∥2)∥ak∥

))
.

(5)
We can use the probability p(κ = k|zdt,f ) that T-F bin (t, f) is dom-
inated by the k-th source to obtain K source-specific mask values
for each T-F bin in the input spectrogram X . This procedure is il-
lustrated in Fig. 1. Note that pk and ak both parameterize the k-th
hyperbolic hyperplane and are trainable. All parameters of the net-
work fθ and of the hyperplanes can be optimized using classical
source separation objective functions, either on the masks or on the
reconstructed signals.

2.3. Uncertainty in Audio Source Separation

It has been shown repeatedly [14, 17, 29, 31] that the distance
dc(0, z

h
t,f ) of the projected embeddings to the center of the Poincaré

ball can serve as a reliable measure of classification certainty. This
hyperbolic distance can be computed from the L2 norm of zht,f as
considered in the Euclidean space using the monotonous relation-
ship log((1 + c∥zht,f∥2)/(1 − c∥zht,f∥2)), so that the L2 norm can
equivalently be considered as a measure of certainty. We here aim
at validating this hypothesis with audio embeddings and bringing
further light onto the notion of certainty in the context of audio
source separation. While hyperbolic uncertainty has previously
been exploited towards the network optimization stage [25], the
direct impact of this notion on quality criteria such as amount of



artifacts, distortion, or interferences present in resulting signal has
yet to be explored.

Furthermore, following the observation presented in [17], we ar-
gue that the notion of certainty observed on audio embeddings pro-
vides meaningful insights of signal content, such as the complexity
of the scene or the number of active sources it may contain.

3. EXPERIMENTAL SETUP

LibriSpeech Slakh Unmix (LSX): To test our proposed method we
built a simple hierarchical source separation dataset containing mix-
tures from two “parent” classes - music and speech, and five “leaf”
classes - bass, drums, guitar, speech-male, and speech-female. As
building blocks, we use the clean subset of LibriSpeech [32], and
Slakh2100 [33], which is a dataset of 2,100 synthetic musical mix-
tures and containing bass, drums, and guitar stems in addition to
various other instruments. We built a dataset consisting of 1947
mixtures, each 60 s in length, for a total of about 32 hours. The
data splits are 70%, 20%, and 10% for training, validation, and test-
ing sets, respectively. The speech-male and speech-female source
targets consist of utterances randomly picked (without replacement)
and concatenated consecutively (without overlap) until the 60 s track
length is reached. Any signal from the last concatenated utterance
exceeding that length was discarded. For Slakh2100, we only se-
lected the first 60 s of the bass, drums, and guitar stems for each
track. Any tracks with a duration less than 60 s were discarded. All
sources were summed using their original gain to make the overall
mixture. This led to challenging input SDR values (“No Proc.” in
Table 1), with standard deviation values ranging from 2-13 dB de-
pending on the class.
Network architecture and training setup: Our model consists of
four BLSTM layers with 600 units in each direction, followed by
a dense layer to obtain an L-dimensional Euclidean embedding for
each T-F bin. A dropout of 0.3 is applied on the output of each
BLSTM layer, except the last. For the hyperbolic models (c > 0),
an exponential projection layer is placed after the dense layer, map-
ping the Euclidean embeddings onto the Poincaré ball with curvature
−c. As discussed in Section 2, MLR layers, either Euclidean or hy-
perbolic with softmax activation functions are then used to obtain
masks for each of the source classes. In practice, we follow the hier-
archical softmax approach from [17], and have two MLR layers: one
with K=2 for the parent (speech/music) sources, and a second with
K=5 for the leaf classes. We use the mixture phase for resynthesis
and compare multiple training objectives in Section 4.

We use the ADAM optimizer for Euclidean parameters, and the
Riemannian ADAM [34] implementation from geoopt [35] for hy-
perbolic parameters. All models are trained using chunks of 3.2 s
and a batch size of 10 for 300 epochs using an initial learning rate
of 10−3, which is halved if the validation loss does not improve for
10 epochs. We use an STFT size of 32 ms with 50% overlap and
square-root Hann window.

4. EXPERIMENTAL ANALYSIS

Model comparisons: Table 1 presents the scale-invariant signal-
to-distortion ratio (SI-SDR) [36] on the LSDX dataset described in
Sec. 3. We include the no processing condition (lower bound, using
the mixture as estimate) and oracle phase sensitive mask [1] (upper
bound). For loss functions, we use the phase-sensitive approxima-
tion (PSA) [1] with L1 loss [37], and the waveform approximation
(WA) loss training through the iSTFT [38]. Additionally, to compare

Table 1: SI-SDR in dB on the LSX test set with different loss functions and
embedding dimensions L. The “Hyp.” column denotes whether the model
was trained using hyperbolic (c = 1) or Euclidean embeddings.

Parents Music Leaves Speech Leaves

Loss L Hyp. Music Speech Bass Drums Guitar Male Female Avg.

No Proc. -2.9 3.0 -8.8 -11.8 -8.7 -3.2 -4.2 -5.2

OraclePSF 10.3 13.8 5.6 9.8 7.0 10.1 11.1 9.7

PSA 2 × 7.7 11.3 2.7 4.5 3.0 6.2 6.5 6.0
WA 2 × 7.1 10.8 2.8 3.2 2.3 5.5 5.6 5.3
CEIBM 2 × 5.1 8.8 -2.3 1.8 -1.0 2.8 2.9 2.6
CEIBM, W. 2 × 8.0 11.5 2.7 4.9 2.5 6.4 6.6 6.1

PSA 2 ✓ 7.5 10.9 -4.3 -6.9 -4.6 6.0 6.3 2.1
WA 2 ✓ 7.3 11.0 2.5 3.7 2.3 5.3 5.4 5.4
CEIBM 2 ✓ 5.4 9.0 -0.3 2.6 0.8 3.4 3.8 3.5
CEIBM, W. 2 ✓ 7.9 11.4 2.9 5.1 3.2 6.5 7.0 6.3

PSA 128 × 7.7 11.2 3.3 5.0 3.3 6.1 6.4 6.1
WA 128 × 7.4 11.2 3.3 4.8 3.0 5.9 6.1 6.0
CEIBM 128 × 6.5 10.1 1.7 6.1 2.5 5.1 5.7 5.4
CEIBM, W. 128 × 7.9 11.5 3.3 6.8 3.8 6.8 7.3 6.8

PSA 128 ✓ 7.5 10.9 2.9 4.9 3.1 5.8 6.0 5.9
WA 128 ✓ 7.0 11.2 3.3 4.8 2.9 5.9 6.0 5.9
CEIBM 128 ✓ 6.0 9.7 1.3 5.8 2.0 4.5 5.2 4.9
CEIBM, W. 128 ✓ 7.8 11.3 3.3 6.1 3.7 6.7 7.1 6.6
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Fig. 2: SI-SDR [dB] averaged across all (parent and leaf) sources for various
curvature values and embedding dimensions.

with related image segmentation approaches [17], we explore using
a cross entropy (CE) loss with the ideal binary mask (IBM) as a train-
ing target [4], denoted by CEIBM in Table 1, and a magnitude-ratio-
weighted CE loss inspired by the deep clustering weighting function
from [37], denoted by CEIBM, W., where the weight for each T-F bin
is set to the ratio of the magnitude of the mixture at that bin to the
sum over all bins.

In Table 1, CEIBM consistently performs poorly, likely because
low-energy and high energy T-F bins are weighted equally. However,
CEIBM, W. consistently outperforms PSA and WA, which we hypoth-
esize is because the CE objective is particularly well-matched to the
softmax mask nonlinearity we use in this work. We also note that,
consistent with previous hyperbolic work [17, 25, 26, 29, 39], per-
formance of hyperbolic models is relatively stronger than Euclidean
ones at low (L = 2) embedding dimension, as they allow for effi-
ciently packing hierarchical structure, but that advantage fades away
as embedding dimension increases. This result is further confirmed
in Fig. 2, where we explore multiple embedding dimensions and cur-
vature parameters. Unless otherwise stated, the hyperbolic configu-
ration used in all subsequent experiments uses the CEIBM, W. loss,
curvature parameter c = 0.1, and embedding dimension L = 2.
Hyperbolic Certainty and Audio Semantics: In Fig. 3, we show
that embeddings associated with T-F bins containing many active
sources (i.e., 4+) tend to be positioned close to the center of the
Poincaré Ball, where the certainty is low. In contrast, embeddings
with a single active source tend to be located closer to the edge of
the Poincaré Ball, where the certainty is high. Intuitively, the higher
the number of sound classes (i.e., interferences) active, the more un-
certain as for what specific single source the bin embedding may
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only embeddings with high certainty (i.e., high distance from the origin) are
considered, while bins below the threshold are silenced.

belong to. We consider a source active for a given T-F bin if it satis-
fies the following conditions: (1) it is non-silent, i.e., it is not more
than 20.0 dB below the maximum T-F bin energy in a given sound
file, and (2) the ratio of the ground-truth T-F bin magnitude for that
source divided by the sum of ground-truth magnitudes for all sources
(i.e., the ideal ratio mask) is greater than 0.1.
Hyperbolic Distance - Interference and Artifacts: We also ex-
plore a simple approach for using hyperbolic certainty estimates to
modify and interact with mask values. Specifically, we embed all T-
F bins for a given mixture in the Poincaré ball, and any bins that are
close to the origin (i.e., low certainty) have their mask values set to
zero. Figure 4 shows the impact of varying this certainty threshold
on the SI-SDR, SIR, SAR [36, 40] metrics. Each data point denotes
an evaluation pass on the entire test set given a certainty threshold
(x-axis). We see that if we silence uncertain T-F bins in the mask
predictions, the resulting signals will contain less interference at the
expense of an increase in artifacts. Using hyperbolic certainty to
control the trade-off between artifact introduction and interference
reduction could be an exciting area to further explore in future work.
Comparison with Bayesian certainty: To further validate our hy-
perbolic certainty measurements, we lead an experiment comparing
hyperbolic and Bayesian certainty. The latter approach is generally
achieved by means of Monte-Carlo dropout [41, 42] where multi-
ple stochastic forward passes using a trained network with different
dropout realizations are performed to obtain the posterior distribu-
tion for a single input example. The network prediction and its as-
sociated certainty map can then be inferred from the mean and vari-
ance computed over all stochastic passes. In order to deal with the
fact that our network makes predictions over multiple sound classes,
we follow the approach presented in [30] and formulate the Bayesian
certainty ζt,f at T-F bin (t, f) as the negative predictive entropy

ζt,f =

Kleaf∑
k=1

( 1

N

∑
n

p(κ=k|ẑ(n)
t,f )

)
log

( 1

N

∑
n

p(κ=k|ẑ(n)
t,f )

)
, (6)

where Kleaf denote the number of leaf classes (i.e., without the parent
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Fig. 5: Comparison between Bayesian and hyperbolic certainty. The
Bayesian certainty is computed by running 1000 passes with Monte-Carlo
dropout during inference and computing the bin-wise negative entropy across
all passes on the five leaf nodes (i.e., excluding the parent nodes). The hy-
perbolic certainty is obtained by computing the hyperbolic distance from the
Poincaré ball origin dc(0, zht,f ) for each T-F bin embedding zht,f .

classes), N the total number of stochastic passes, and p(κ = k|ẑ(n)
t,f )

the probability, expressed as the softmax output, that T-F bin (t, f)

belongs to source class k, and ẑ
(n)
t,f is the embedding obtained with

the dropped out network parameters for stochastic pass n. Following
[30], we set the dropout rate to 0.5 at the output of each BLSTM
layer of our network. A low entropy (i.e., high certainty) means that
the predictability is high, while a high entropy (low certainty) means
that mask values fluctuate significantly across passes.

Fig. 5 provides a visual contrast of the certainty map computed
using 1000 Monte-Carlo dropout iterations and the one obtained us-
ing the hyperbolic distance from the Poincaré ball origin for each
T-F embedding in a single forward pass. The colorscale limits on
both maps are set using the 30th and 95th percentiles to ensure a fair
qualitative comparison, even though the scales are different. We ob-
serve a clear resemblance between both maps. The correlation coef-
ficient between the two certainty maps is ρ = 0.75. This observation
tells us that the hyperbolic certainty map, which comes for free (i.e.,
N = 1), can be as interpretable as its Bayesian counterpart, which
requires multiple forward passes at inference time.

Code and demo are publicly available 1.

5. CONCLUSION

We have investigated the use of the Poincaré Ball model to perform
audio source separation in the hyperbolic space. Our hyperbolic
model operates and computes T-F embeddings in the Euclidean
space and projects them onto the hyperbolic space. Masks are ob-
tained by hyperbolic multinomial logistic regression considering the
distance from hyperbolic embeddings to hyperbolic hyperplanes.
Through our experimental setup, we have demonstrated that hyper-
bolic audio embeddings can convey useful information in regards to
uncertainty and underlying hierarchical sound structures. We asso-
ciated these notions to known audio concepts such as artifacts and
interferences. In the future, we aim at exploring how the hyperbolic
space, and especially the notion of hierarchy, could benefit addi-
tional audio-related tasks, such as audio tagging and sound-event
detection. In the context of audio source separation, we believe
that further connections to deep clustering, and more complex and
deeper sound taxonomies are worth exploring.

1https://github.com/merlresearch/hyper-unmix/

https://github.com/merlresearch/hyper-unmix/
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