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ABSTRACT
We consider the problem of improving the adversarial robustness of neural networks while
retaining natural accuracy. Motivated by the multi-view information bottleneck formalism, we
seek to learn a representation that captures the shared information between clean samples
and their corresponding adversarial samples while discarding these samples’ view-specific
information. We show that this approach leads to a novel multi-objective loss function, and
we provide mathematical motivation for its components towards improving the robust vs.
natural accuracy tradeoff. We demonstrate enhanced tradeoff compared to current state-of-the-
art methods with extensive evaluation on various benchmark image datasets and architectures.
Ablation studies indicate that learning shared representations is key to improving performance.

1. Introduction

The vulnerability of deep neural networks (DNNs) to adversarial manipulation has been widely investigated and has
received significant attention in recent years. Carefully-crafted small-magnitude perturbations to natural images, known
as adversarial examples [1], can easily cause machine learning models to make erroneous predictions. Adversarial
training (AT) [2] is one of the most effective and widely used approaches to enhance the robustness of DNNs against
adversarial examples. Based on primary AT frameworks such as PGD-AT [3], various efforts have been devoted to
improving adversarial robustness from different perspectives, including adversarial regularization methods, such as
adversarial logit pairing (ALP) [4], Max-Margin Adversarial (MMA) training [5], TRADES [6], and MART [7],
accelerating the training procedure, such as you only propagate once (YOPO) [8], “free” adversarial training [9], and
Fast adversarial training [10], and adaptive perturbation tolerance, such as Instance Adaptive Adversarial Training
(IAAT) [11], and Customized Adversarial Training (CAT) [12].

The performance of machine learning methods is heavily dependent on the choice of data representation, and the
goal of representation learning is to transform a raw input x to a lower-dimensional representation z that preserves the
relevant information for tasks such as classification or regression. Significant progress has been made in deep learning
via supervised [13], semi-supervised [14], and unsupervised representation learning [15]. The information bottleneck
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(IB) principle [16] provides an information-theoretic method for representation learning, where a representation should
contain only the most relevant information from the input for downstream tasks. Representations learned by the IB
principle are less affected by nuisance variations and may be more robust to adversarial perturbations. In particular,
previous works, such as variational IB [17], and parameterized rate distortion stochastic encoder [18], have already
show that IB principle can enhance adversarial robustness, even without access to adversarial examples. In addition,
a large body of literature has applied the IB principle to deep neural networks, such as variational IB [17], nonlinear
IB [19], deep deterministic IB [20] and gated IB [21].

The multi-view information bottleneck [22] extends the IB principle to a multi-view unsupervised setting by
maximizing the shared information between different views, while minimizing the view-specific information. In
contrast, the InfoMax principle [23] aims to learn an unsupervised latent representation that preserves as much input
information as possible, with no incentive to discard any input information from the latent representation. Some recent
works, such as augmented multiscale DIM (AMDIM) [24] and invariant information clustering (IIC) [25] have applied
the InfoMax principle to the multi-view setting by maximizing the mutual information between the representations of
different views of the input.

Motivated by these previous works, we extend themulti-view information bottleneckmethod to a supervised setting
with adversarial training. We can consider adversarial examples as another view of corresponding clean samples. We
seek to learn representations that contain the shared information between clean samples and corresponding adversarial
samples, while eliminating information not shared between them. We capture this in a multi-objective loss function,
with terms corresponding to the goals of (1) maximizing the mutual information between the representations of these
matched pairs and (2) minimizing the mutual information between each representation and its corresponding view
conditioned on the other view, along with (3) clean and (4) adversarial cross-entropy losses. Fig. 1 illustrates the
pipeline of our proposed method.

Our contributions are three-fold:

• Inspired by multi-view representation learning, we propose a regularization scheme that casts the adversarial
example as the secondary view.

• We propose a novel multi-objective loss function to learn representations that capture the shared information
between clean and adversarial samples, and provide theoretical analysis for the constituent regularization terms.

• We demonstrate that our proposed method improves the robust vs. natural accuracy tradeoff over previous
adversarial regularization approaches, under a variety of adversarial attacks on MNIST, CIFAR-10, and CIFAR-
100 datasets.
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Figure 1: Proposed method pipeline. x is a clean sample and x′ is the corresponding adversarial sample. z and z′ are
the latent representations of x and x′, respectively. To force z and z′ to contain the shared information between x and
x′, we simultaneously minimize the symmetrized KL-divergence between p�(z|x) and p�(z′|x′), and maximize the mutual
information between z and z′.

The remainder of this paper is organized as follows: we provide a brief review of the literature on adversarial attacks,
defense approaches, and some relation to existing works in section 2. In section 3, we describe our proposed method
and some theoretical analysis about each component in our objective function. Empirical results on several benchmarks
with different types of attacks as well as ablation studies are provided in section 4.

2. Related Works

2.1. Adversarial Attacks

A history of adversarial example attacks on classical and modern machine learning models is provided by the
survey of [26]. An early work is the evasion attacks of [27], which pioneer gradient-based and iterative methods, with
also a penalty term for generating samples in low density regions. Generally, various approaches seek a perturbation
that maximizes an objective function while constraining the norm of the perturbation (e.g., lp norm) to be less than
some fixed budget. Gradient-based approaches have been widely used to solve this maximization problem. The Fast
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Gradient Sign Method (FGSM) finds an adversarial example in a single step by maximizing the loss function. PGD
is an iterative algorithm that uses projected gradient descent to craft adversarial examples. The Carlini and Wagner
attack (C&W) [28] aims to find a small perturbation by maximizing the difference between model output on clean and
adversarial samples. The recently proposed AutoAttack approach [29] uses an ensemble of four different attacks: PGD
with cross-entropy loss (APGD-CE), PGD with the difference of logits ratio loss (APGD-DLR), the targeted version
of Fast Adaptive Boundary Attack (FAB) [30], and the black-box squares attack [31].

2.2. Adversarial Defenses

Prior work on defense with adversarial training can be roughly divided into three main categories. The first category
is the adversarial regularization approach, which adds a regularization term in the objective function alongside the
original adversarial training loss. The second category uses so-called curriculum-based adversarial training, in which
the difficulty of adversarial training is gradually increased (e.g., by increasing the iteration count of PGD attacks). The
third category uses an adaptive perturbation budget �. Unlike the previous two types, the key idea here is to select �
at the instance level rather than treat all data equally with a fixed �. Our contribution belongs to the first category and
improves adversarial robustness by regularizing shared information.

Adversarial regularization. Adversarial regularization first appears in [32], in addition to cross-entropy loss on
clean samples, the authors also use cross-entropy loss on adversarial samples. Similarly, Max-Margin Adversarial
(MMA) [5] training adopts cross-entropy loss on adversarial input for correctly classified examples and applies cross-
entropy loss on clean input for misclassified examples. Local linearity regularization (LLR) [33] examines local
linearity, the absolute difference between the adversarial loss and its first-order Taylor approximation in a small
neighborhood, and concludes that robust models should have small values of this measure. Similar to LLR, curvature
regularization (CURE) [34] reduces the curvature of the clean sample loss and achieves performance comparable to
adversarial training. Logit pairing [4] introduces a regularization term enclosing both clean logit and adversarial logit.
TRADES [6] combines cross-entropy loss on clean samples with the KL-divergence between predicted probabilities
for clean and adversarial samples. Unlike TRADES, MART [7] combines boosted cross-entropy loss (BCE) on
adversarial samples with the weighted KL-divergence between predicted class probabilities of clean and adversarial
samples to emphasize misclassified examples. Most recently, Deep Robust Representation Disentanglement Network
(DRRDN) [35] was proposed to improve the adversarial robustness by learning the class-specific and class-irrelevant
representations through a disentangler. However, DRRDN contains two separate encoder networks and four additional
regularization terms in its objective function, which is more complex than our proposed method. In contrast with
previous methods, our proposed method takes an information-theoretic approach to improve the adversarial robustness
by learning the shared information between clean and adversarial samples. Our objective function includes the
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symmetrized KL-divergence between the clean and adversarial sample’s posterior feature distribution and the mutual
information between the latent representation of clean and adversarial examples.

Curriculum-based adversarial training. For standard adversarial training, the inner cross-entropy loss maxi-
mization performed by the adversary seeks to find worst-case samples. However, worst-case samples from a strong
attack algorithm are not always suitable for adversarial training and may cause overfitting to the particular attack
used during training. Curriculum Adversarial Training (CAT) [36] alleviates this issue by gradually increasing the
iteration count of PGD attacks over time. Following from this work, Friendly Adversarial Training (FAT) [37] employs
early-stopping for adversarial training and selects adversarial samples near the decision boundary for training. Such
curriculum-based adversarial training methods improve generalization for adversarial robustness while also preserving
clean data accuracy.

Adaptive perturbation budget approaches. Traditional adversarial training treats all samples equally using a
fixed perturbation budget �. However, individual samples might have different intrinsic robustness regarding their
distances to a decision boundary. The first proposed work that accounts for this difference in the characteristics of
individual examples is Instance Adaptive Adversarial Training (IAAT) [11], where the strategy of selecting � is based
on class structure. The authors increase � in regions where class manifolds are far apart and decrease � in regions
where classmanifolds are close together. In addition to considering sample-wise adaptive � during training, Customized
Adversarial Training (CAT) [12] also considers an adaptive label technique by smoothing labels for each sample, which
improves both clean and robust accuracy over previous adversarial training methods.

Other adversarial defenses. In addition to the above categories of adversarial defense approaches, several
other defense methods have been proposed, such as Adversarial distributional training (ADT) [38], where the
inner maximization aims to find an adversarial distribution by maximizing the expected loss. In contrast, the outer
minimization performed by the model seeks to learn a robust classifier by minimizing the expected loss over worst-
case adversarial distributions. Last, some works propose augmented adversarial examples such as Gaussian data
augmentation [39], interpolation between clean and adversarial samples using techniques like Mixup [40], and
adversarial interpolation training [41].

3. Methodology

This section first motivates the benefit of preserving shared information for designing robust models. Then,
we propose an objective function to obtain a representation containing the shared information between clean and
adversarial samples while also utilizing label information. Finally, we show the relationship to previous adversarial
regularization approaches.
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3.1. Preliminaries

Consider a dataset {xi, yi}i=1,…,n with K classes, where xi ∈ ℝd is a clean sample and yi ∈ {1,… , K} is
its associated label. Let f be a classifier with parameters �, and let the output of classifier f�(xi) be the estimated
probabilities of xi belonging to each class. The learning problem in traditional adversarial training objectives is defined
as follows:

min
�

E
[

max
x′∈(x,�)

(f�(x′), y)
]

, (1)

Here  is the cross-entropy loss and the adversarial example x′, belonging to (x, �) = {x′ ∶ ||x′ − x||p ≤ �}, is
obtained by maximizing the cross-entropy loss with respect to a small perturbation.

Due to our proposed method is related to information theory, we first introduce the basic definitions required for
this area, such as entropy and mutual information. The entropy is a measure of uncertainty of a random variable. Let
x be a random variable and we denote the probability function by P(x). The entropyH(x) of a variable x is defined by

H(x) = −∫ P(x) log P(x)dx. (2)

According to Shannon’s information theory [42], I(x; y) is defined over the joint probability distribution of x and y

(i.e., P(x, y)) and their respectively marginal distributions (i.e., P(x) and P(y)). Specifically,

I(x; y) = ∬ P(x, y) log
(

P(x, y)
P(x)P(y)

)

dxdy

= −∫

(

∫ P(x, y)dy
)

log P(x)dx − ∫

(

∫ P(x, y)dx
)

log P(y)dy

+∬ P(x, y) log P(x, y)dxdy

= −∫ P(x) log P(x)dx − ∫ P(y) log P(y)dy +∬ P(x, y) log P(x, y)dxdy

= H(x) +H(y) −H(x, y),

(3)

whereH(⋅) denotes entropy andH(⋅, ⋅) denotes joint entropy. Intuitively, mutual information measures the information
that X and Y share, by measuring how much knowledge one of variable reduces uncertainty about the other.

The most related work of our proposed method is information bottleneck principle. Given two random variablesX
and Y , let T be the hidden compressed representation of X with the Markov constraint T ↔ X ↔ Y . The IB method
aims to seek a probabilistic mapping q(t|x) to maximize the mutual information I(T ; Y ), while under a constraint of
input compression measured by the mutual information I(X; T ). This constrained optimization problem is formulated
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as:

argmax
T∈Δ

I(T ; Y ) s.t. I(X; T ) ≤ r (4)

Where r represents the level of compression, and Δ is the set of random variable T .
In practice, rather than solving the constrained problem. Eq. (4) can be optimized by minimizing so-called IB

Lagrangian objective function written by:

min
q(t|x)

IB[T ] = −I(T ; Y ) + �I(X; T ), (5)

where � is the Lagrange multiplier which is a free parameter that controls the trade-off between the the sufficiency

(the performance on the task, as quantified by I(Y ; T )) and the minimality (the complexity of the representation, as
measured by I(X;Z)). In this sense, the IB principle also provides a natural approximation of a minimal sufficient

statistic [43]. Our proposed method extends the information bottleneck principle to two views, where one is the clean
sample and the other is the adversarial sample, andwewant the latent representation T to contain the shared information
between them. The detailed description and motivation of our proposed method is provided in Sections 3.2 and 3.3.

3.2. Design Motivation

Traditional adversarial training only considers adversarial examples and does not consider the relationship between
x and x′. Inspired by multi-view representation learning, we aim to learn latent representations z and z′ (corresponding
to x and x′, respectively), which only contain the useful information shared by both x and x′. Formally, the generation
of these representations are defined by conditional distributions p(z|x) and p(z′|x′), while satisfying the Markov chain
z → x → x′ → z′. If the representation preserves only the shared information from both x and x′, it would increase
task-relevant information, discarding the view-specific details (the misleading information in adversarial example) and
improving the adversarial robustness.

Let us consider the following information bottleneck (IB) setting on both clean and adversarial samples. The
motivation for IB is to learn a representation that contains the most relevant information for the task.

min
p(z|x),p(z′|x′)

I(x; z) + I(x′; z′) − �I(z′; y) − (1 − �)I(z; y),

where x′ = argmax
x′∈(x,�)

(f�(x′), y)
(6)
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where x′ is generated by maximizing the cross-entropy loss, which is the same as the traditional adversarial training.
However, the loss for outer minimization is different. � tradeoff the robust vs the natural accuracy. Since I(z, y) =
H(y) − H(y|z), and H(y) is constant, we can replace the I(z; y) and I(z′; y) with cross-entropy loss for clean and
adversarial samples. we rewrite the outer minimization loss as follows:

min
p(z|x),p(z′|x′)

I(x; z) + I(x′; z′) − � CE(z′; y) − (1 − �)CE(z; y), (7)

The motivation for the linear combination of adversarial and natural cross-entropy loss is that we want the latent
representation z to contain not only the shared information, but also the task relevant information as well. Previous
work like Adversarial Logit Pairing (ALG) [4] has already employed a mixture of clean and adversarial examples.

To make the latent representation z contains the shared information between x and x′, we subdivide I(x; z) into
three components by using the chain rule of mutual information, which is shown as follows:

I(z; x) = I(x; z|x′) + I(x; x′) − I(x; x′|z), (8)

Here I(x; z|x′) represents the information in z which is unique to x and not shared by x′, which we call view-specific
information. The second term I(x; x′) denotes the shared information between x and x′. The last term I(x; x′|z) is
the shared information that is lost in z. We want to minimize I(x; z|x′) and I(x; x′|z) such that a representation z is
sufficient and minimal for the downstream task, because it contains all the task-relevant information (sufficiency) and
without any irrelevant information (minimality).

(a) (b) (c) (d)

Figure 2: Illustration of sufficiency and minimality for representation z of x to x′ in the Venn diagrams. Notice that
the combined area of both circles capture the total information across x and x′, the mutual information I(x; x′)
corresponds to the intersection of the information in x (H(x)) and information in x′ (H(x′)). (a) Sufficient but not
minimal (I(x; z|x′) > 0, I(x; x′|z) = 0). (b) Minimal but not sufficient (I(x; z|x′) = 0, I(x; x′|z) > 0). (c) Not sufficient and
not minimal (I(x; z|x′) > 0, I(x; x′|z) > 0). (d) Sufficient and minimal (I(x; z|x′) = 0, I(x; x′|z) = 0)

The diagrams in Fig. 2 (d) demonstrate that we can obtain the sufficient and minimal representation z, when it
is exactly equal to the shared information of x and x′. Otherwise, the representation z is either redundant, because
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it contains some task-irrelevant information as in Fig. 2 (a), insufficient, because it does not capture enough useful
information as in Fig.2 (b), or both insufficient and redundant, as in Fig. 2 (c). Similarly, we can also examine whether
a representation z′ is sufficient and minimal with respect to x′ and x.

3.3. Loss Function for Adversarial Robustness

In the previous section, we provide some motivation for our method. We next define the objective function for
learning the representations z and z′ that contain the shared information of x and x′. As can be seen in Eq. 8, we could
learn a representation containing only the shared information of x and x′ by minimizing the view-specific information
(I(x; z|x′)) and shared information not in z (I(x; x′|z)). In particular, minimizing I(x; x′|z) is equivalent tomaximizing
I(z; x′), because I(z; x′) = I(x; x′) − I(x; x′|z) and given x and x′, I(x; x′) is constant. Thus, we can use a relaxed
Lagrangian objective to obtain a representation z that is sufficient and minimal with respect to x and x′ as follows:

1 = I(x; z|x′) − �1 ⋅ I(z; x′), (9)

Symmetrically, we can find a representation z′ that is sufficient and minimal with respect to x′ and x:

2 = I(x′; z′|x) − �2 ⋅ I(z′; x), (10)

Here �1 and �2 represent the Lagrangian multipliers for the the constrained optimization. The objective function
involves two mutual information terms that are hard to calculate directly. To solve this problem, we derive some
alternative bounds for these two mutual information terms through the following Theorems.

Theorem 3.1. Under the Markov chain, z → x → x′ → z′,

I(x; z|x′) ≤ DKL(p(z|x)||p(z′|x′)). (11)

Proof. The proof follows by noting that

I(x; z|x′) = Ep(x,x′,z)
[

log p(z|x)p(x|x
′)

p(x|x′)p(z|x′)

]

= Ep(x,x′,z)
[

log p(z|x)
p(z|x′)

]

= Ep(x,x′,z)
[

log p(z|x)p(z
′
|x′)

p(z′|x′)p(z|x′)

]

= DKL(p(z|x)||p(z′|x′)) −DKL(p(z|x′)||p(z′|x′))

≤ DKL(p(z|x)||p(z′|x′)). (12)
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Here, the conditional distributions p(z|x) and p(z′|x′) can be parameterized by an encoder network. This
bound is tight whenever the representation z is the same as z′. Symmetrically, I(x′; z′|x) is upper bounded by
DKL(p(z′|x′)||p(z|x)).

Theorem 3.2. Under the Markov chain, z → x → x′ → z′,

I(z; x′) ≥ I(z; z′). (13)

Proof. The proof follows by noting that

I(z; x′) = I(z; z′, x′) − I(z; z′|x′)

= I(z; z′, x′)

= I(z; z′) + I(z; x′|z′)

≥ I(z; z′). (14)

Here, I(z; z′|x′) = 0, because z′, as the representation of x′, is part of the Markov chain z → x → x′ → z′.
Note that this lower bound can also be proofed directly through the data processing inequality. The derivation above
illustrates that the bound is tight when z′ is a sufficient statistic of z. Symmetrically, a similar bound can be derived
for I(z′; x) ≥ I(z; z′). Conceptually, this lower bound captures our goal of preserving the information shared between
the representations regardless of the adversarial perturbation.

We combine 1 and 2 so that the representations z and z′ will contain the shared information between x and
x′. Based on the bounds derived from above Theorem, we obtain the following objective function, which is an upper
bound on the average of 1 and 2:

shared =
1
2
(1 + 2)

=
I(x; z|x′) + I(x′; z′|x)

2
−
�1I(z; x′) + �2I(z′; x)

2

≤
DKL(p(z|x)||p(z′|x′)) +DKL(p(z′|x′)||p(z|x))

2
−
�1 + �2
2

⋅ I(z; z′)

≤ DSKL(p(z|x)||p(z′|x′)) − � ⋅ I(z; z′), (15)
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where p(z|x) and p(z′|x′) are modeled as Gaussian distributions parameterized by a neural network encoder (��(x),

diag(�2�(x))) and  (��(x′), diag(�2�(x
′))). DSKL represents the symmetrized KL-divergence obtained by averaging

DKL(p(z′|x′)||p(z|x)) and DKL(p(z|x)||p(z′|x′)).
This symmetrized KL-divergence can be computed directly between two Gaussian posterior distributions.1

However, I(z; z′) requires the use of a mutual information estimator. In this paper, we utilize Hilbert Schmidt
Independence Criterion (HSIC) [44] to measure the independence between z and z′, and use this value to replace
mutual information term. We use HSIC as a surrogate for mutual information because we can directly measure the
dependence between two mini-batch samples in Reproducing Kernel Hilbert Space (RKHS) without requiring any
density estimation or using an additional network for mutual information estimation. In addition, HSIC has been widely
used as an efficient and tractable substitute for mutual information in a variety of cases such as layer-wise training [45]
and robustness on covariate distribution shifts [46]. We also investigated other mutual information estimators: mutual
information neural estimation (MINE) [47] and mutual information gradient estimation (MIGE) [48], but found that
these perform worse than HSIC. The details and performance results for different mutual information estimator can be
found in Appendix A.3.

We combine the above regularization objective sℎared with task label information to obtain our overall objective
function for training the model:

 = � ⋅ CE(f (x′), y) + (1 − �) ⋅ CE(f (x), y) + � ⋅DSKL(p(z|x)||p(z′|x′)) − � ⋅ I(z; z′). (16)

Here � ∈ [0, 1] balances the tradeoff between the cross-entropy loss on clean and adversarial samples. � and
� adjust the importance of symmetrized KL-divergence and mutual information terms. Our proposed method is
described in Algorithm 1. We first generate adversarial examples by maximizing the cross-entropy loss with respect
to small perturbation added to corresponding clean samples and then obtain the latent distribution p(z|x) and p(z′|x)
parameterized by the encoder. Finally, we update the network’s parameters with our proposed objective function until
the convergence

3.4. Relation to Existing Works

In this section, we briefly compare our proposedmethod to existing adversarial regularization approaches, including
standard adversarial training [3], max-margin adversarial training (MMA) [5], TRADES [6] and MART [7]. The loss
function for the above approaches and our proposed method are shown in Table 1.

1various choices for the latent representation (e.g., Laplacian, Gamma, and Cauchy) are possible. However, this choice may be less crucial since
a non-linear decoder may adequately handle arbitrary distributions. We utilize the Gaussian latent distribution in our proposed method since it is
easily reparameterized and widely used in many applications (e.g., VAE and variational IB).
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Algorithm 1 Adversarial training with shared information regularization
1: f�: network model,N : data sample batch size, E: total number of epochs.
2: for epoch ∈ {1,… , E} do
3: Sample batch {(xi, yi)}Ni=1 ⊳ Sample batch from clean data
4: for sample index i ∈ {1,… , N} do
5: x′i = attack(xi, yi) ⊳ Generate adversarial examples
6: Input xi to the encoder to compute the parameters ��(xi) and �2�(xi)
7: Input x′i to the encoder to compute the parameters ��(x′i) and �2�(x′i)
8: Sample representations zi ∼ (��(xi), diag(�2�(xi)), z′i ∼ (��(xi′), diag(�2�(x

′
i))

9: end for
10: Calculate DSKL(p(z|x)||p(z′|x′)) and I(z; z′)
11:  = � ⋅ CE(f�(x′), y) + (1 − �) ⋅ CE(f�(x), y) + � ⋅DSKL(p(z|x)||p(z′|x′)) − � ⋅ I(z; z′)
12: g� ← ∇�
13: � ← Step(�, g�)
14: end for

Table 1
Loss function comparison with existing work.

Defense method Loss function
Standard CE(f (x′), y)
TRADES CE(f (x), y) + � ⋅DKL(p(y|x)||p(y|x′))
MMA CE(f (x′), y) ⋅ 1(ℎ�(x = y) + CE(f (x), y ⋅ 1(ℎ�(x ≠ y)
MART BCE(f (x′), y) + � ⋅DKL(p(y|x)||p(y|x′)) ⋅ (1 − py(x))
Ours � ⋅ CE(f (x′), y) + (1 − �) ⋅ CE(f (x), y) + � ⋅DSKL(p(z|x)||p(z′|x′)) − � ⋅ I(z; z′)

Our proposed method differs from existing adversarial regularization approaches in the following respects. (1)
TRADES and MART both put the regularization (e.g., KL-divergence term) on the output of the SoftMax layer.
However, in our objective function, z can represent any intermediate layer, including the output of the last layer.
(2) Whereas TRADES employs cross-entropy loss on clean samples, MART utilizes boosting cross-entropy loss on
adversarial samples. Our approach uses a linear combination of cross-entropy loss on clean and adversarial samples,
which is different from MMA, which uses hard decisions to discriminate cross-entropy loss on clean and adversarial
samples. (3) Unlike TRADES and MART, which only use a single KL-divergence regularization term to minimize
view-specific information. Our objective includes two regularization components: the symmetric KL-divergence
and the mutual information between clean and adversarial latent representations. The additional mutual information
term helps us avoid a trivial solution with zero KL-divergence in which all inputs are mapped to a single point in
representation space. Furthermore, these two components encourage the latent representations z and z′ to capture only
the shared information between the clean example and its corresponding adversarial example.
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Table 2
Parameter configuration for different adversarial attacks.

Dataset PGD(l∞) C&W(l2) AutoAttacks(l∞)

MNIST
� = 0.3 c = 1 � = 0.031,nclass = 10
� = 0.01 k = 0 APGD-CE
K = 20, 40 Steps = 20 APGD-DLR

lr = 0.003 FAB
Square (nqueries = 5000)

CIFAR-10/100
� = 0.031 c = 1 � = 0.031,nclass = 10, 100
� = 0.003 k = 0 APGD-CE
K = 20, 40 Steps = 20 APGD-DLR

lr = 0.01 FAB
Square (nqueries = 5000)

4. Experiments

In this section, we first provide the adversarial attacks and implementation details for the baseline methods and our
methods, and then compare our proposed method with TRADES and MART in terms of natural-robust tradeoff curve
and analyze the hyper-parameters of our method. Then, we evaluate our method’s robustness on benchmark datasets
with different types of attacks in both white-box and black-box settings. Finally, we provide an ablation study for our
proposed method.

4.1. Implementation Details

In this paper, we evaluate robustness with different attacks including PGD20, PGD40, C&W(l2), and AutoAttack
(AA). All of the attackmethods used the open-source Torchattacks package [49].We report the parameter configuration
for different adversarial attacks in Table 2. In particular, we report the maximum perturbation �, step size �, and number
of stepsK for PGD attacks. For C&Wattack, we provide the box-constraint parameter c, confidence k, number of steps,
and learning rate lr of the Adam optimizer. AutoAttacks consist of four different attacks. For APGD-CE, APGD-DLR,
and FAB attacks, we evaluate l∞ norm, and the step is set to 100, and for Square Attack, we use 5000 queries. Robust
accuracy for AutoAttack is calculated as follows: a successful attack is counted if it is misclassified for any of the
adversarial attack methods.

In addition, we also report all tuning parameters for the baseline methods including TRADES, MART and MMA,
and our method in Table 3. In detail, we report the parameter settings on 4-layers CNN for MNIST, ResNet18 and
WideResNet-34-10 for CIFAR-10 and CIFAR-100.

In order to calculate the symmetric KL divergence term in our objective function, we add an additional stochastic
layer before the last layer to parameterize the representation mean and standard deviation for latent Gaussian
distribution within various architectures. Specifically, for 4-layer CNN, the size of the additional stochastic layer is
2 × 128; for ResNet18, the size of the additional stochastic layer is 2 × 256; for WideResNet-34-10, the size of the
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Table 3
Parameter summary for MNIST, CIFAR-10, and CIFAR-100 in the training process for baseline methods.

Dataset param. TRADES MART MMA Ours

MNIST
architecture 4-layer CNN 4-layer CNN 4-layer CNN 4-layer CNN
batch size 128 128 128 128
attacks PGD40(� = 0.3) PGD40(� = 0.3) PGD40(� = 0.3) PGD40(� = 0.3)
optimizer SGD SGD Adam SGD
weight decay 5 × 10−4 5 × 10−4 5 × 10−4 5 × 10−4
learning rate 0.01 0.01 1 × 10−4 0.01

lr scheduler 75th and 90th.
divided by 10 at 55th,

and 40th.
divided by 10 at 20th

- 75th and 90th.
divided by 10 at 55th,

max margin - - 0.45 -
epochs 100 50 50 100

CIFAR-10/100
architecture ResNet18/WideResNet-34-10 ResNet18/WideResNet-34-10 ResNet18 ResNet18/WideResNet-34-10
batch size 128 128 128 128
attacks PGD20(� = 0.031) PGD20(� = 0.031) PGD20(� = 0.031) PGD20(� = 0.031)
optimizer SGD SGD SGD SGD
weight decay 2 × 10−4 3.5 × 10−4 2 × 10−4 5 × 10−4
learning rate 0.1 0.1 0.3 0.1

lr scheduler and 90th.
divided by 10 at 75th

and 90th.
divided by 10 at 75th

and 0.003 after 90th.
0.09 at 75th

90th and 100th.
divided by 10 at 75th,

max margin - - 12/255 -
epochs 120 120 120 120

additional stochastic layer is 2 × 320. We utilize HSIC to approximate the mutual information term in our proposed
objective function, the kernel size selected as follows. For each sample in the mini-batch, we evaluate its k(k = 10)

nearest distances and take the mean. We choose kernel width � as the average mean value for all samples. The initial
value of � is set to 10−3. Starting from epoch 10, the value of � is exponentially increased up to the final value during
the following 90 epochs and then kept fixed until the end of the training.

4.2. Performance Comparison with TRADES and MART

To compare with TRADES and MART, we train ResNet-18 [50] on CIFAR-10 [51] dataset with 120 epochs.
We keep our hyper-parameters � and � fixed during training, while � is slowly increasing to its final value with an
exponential schedule, since starting with larger � results in the encoder collapsing into a fixed representation. For
TRADES and MART, we use the same parameters described in their original papers. All input images are normalized
into [0,1] and augmented using random crops after 4-pixel padding and random flips. The maximum perturbation used
is � = 0.031(l∞). We use PGD10 with step size 0.007 as the training attack, and PGD20 with step size 0.003 as the
test attack.

We compare TRADES and MART in terms of the natural-robust accuracy curve with different � ∈ [0.1, 30],
which controls the strength of the regularization (please refer to Table 1). For our method, we put the representation
z as the output of the layer before the last layer and set � = 0.5, � = 0.001 and test different �. Figure 3 describes
robust accuracy changes over natural accuracy. Each point on the curve represents a single choice of parameter �
and shows the average natural and robust accuracy on the CIFAR-10 test set for the last epoch with three runs. The
horizontal and vertical error bars represent the natural and robust accuracy standard deviation, respectively. The right
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side corresponds to small �, and the left side corresponds to large �. As � increases, the natural accuracy for all
the methods decreases because the regularization term makes the outputs of clean and adversarial samples closer,
which hurts natural accuracy. Furthermore, the robust accuracy first increases and then falls because an appropriate
� can improve both natural and robust accuracy. In contrast, a relatively large or small � will either ignore the label
information or put a strong regularization penalty, degrading the robust accuracy. Fig. 3 demonstrates that our proposed
method achieves better robust accuracy with similar natural accuracy as compared to TRADES and MART.
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Figure 3: Robust-natural accuracy comparison with different � for different methods.

4.3. Robustness Evaluation and Analysis

In this section, we evaluate robustness onMNIST [52], CIFAR-10 [51] andCIFAR-100 [51] datasets against various
white-box and black-box attacks. The hyperparameters � and � are selected based on the validation set, and further
experiments for different � and � can be found in Appendix A.2.

For the MNIST dataset, all defense models are trained with 100 epochs with four convolutional layers, followed
by three fully-connected layers. The training attack we use is PGD40 with step size 0.01 and perturbation limit � = 0.3
(l∞). We set � = 0.5, � = 4, � = 0.001. For CIFAR-10, the defense models are ResNet-18 and WideResNet-34-10
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Table 4
White-box robustness (%) on MNIST with 4-layer CNN and CIFAR-10 with ResNet18.

Method MNIST CIFAR-10

Natural PGD20 PGD40 C&W(l2) AA Natural PGD20 PGD40 C&W(l2) AA

Standard 99.16 ± 0.02 96.25 ± 0.04 95.54±0.05 94.32 ± 0.08 90.59 ± 0.12 82.59 ± 0.17 49.55 ± 0.19 47.58 ± 0.10 60.54 ± 0.21 42.11 ± 0.20
TRADES 99.14 ± 0.03 97.85 ± 0.06 96.44 ± 0.03 97.28 ± 0.02 92.90 ± 0.08 81.83 ± 0.18 53.38 ± 0.15 52.04 ± 0.13 69.03 ± 0.20 49.54 ± 0.25
MMA 99.12 ± 0.01 97.35 ± 0.04 95.89 ± 0.03 96.15 ± 0.05 91.02 ± 0.13 82.28 ± 0.15 51.66 ± 0.14 49.15 ± 0.17 63.45 ± 0.23 42.44 ± 0.19
MART 99.28 ± 0.03 98.10 ± 0.05 96.75 ± 0.06 97.32 ± 0.08 92.60 ± 0.09 81.57 ± 0.25 55.14 ± 0.21 53.07 ± 0.18 73.72 ± 0.14 50.60 ± 0.21

Ours 99.10 ± 0.05 98.60 ± 0.03 96.64 ± 0.06 98.23 ± 0.06 95.76 ± 0.15 81.87 ± 0.27 55.51 ± 0.17 54.30 ± 0.21 77.43 ± 0.26 57.40 ± 0.28

Table 5
White-box robustness (%) on CIFAR-10 and CIFAR-100 with WideResNet-34-10.

Method CIFAR-10 CIFAR-100

Natural PGD20 PGD40 C&W(l2) AA Natural PGD20 PGD40 C&W(l2) AA

Standard 86.21 ± 0.10 52.31 ± 0.13 50.58 ± 0.15 63.23 ± 0.20 47.04 ± 0.19 60.11 ± 0.15 24.92 ± 0.20 23.93 ± 0.18 34.67 ± 0.21 21.58 ± 0.18
TRADES 85.73 ± 0.12 55.15 ± 0.11 53.55 ± 0.14 69.43 ± 0.21 51.20 ± 0.17 56.97 ± 0.12 26.87 ± 0.18 25.93 ± 0.16 35.97 ± 0.14 24.50 ± 0.23
MART 85.99 ± 0.11 56.66 ± 0.18 54.35 ± 0.17 75.27 ± 0.22 53.20 ± 0.15 57.72 ± 0.17 30.27 ± 0.12 29.29 ± 0.11 41.38 ± 0.27 27.10 ± 0.21

Ours 86.25 ± 0.13 57.47 ± 0.23 55.11 ± 0.15 79.84 ± 0.28 57.70 ± 0.13 60.66 ± 0.21 34.15 ± 0.22 32.82 ± 0.17 55.18 ± 0.25 32.25 ± 0.18

(depth 34 and width 10) [53] trained with PGD10 attack with step size 0.007 and perturbation limit � = 0.031 (l∞). We
set � = 0.5, � = 4, � = 0.001. For CIFAR-100, we use the same data pre-processing, training optimizer and learning
rate schedule as the CIFAR-10 experiment, the defense model is WideResNet-34-10 with PGD20 attacks for training,
and set � = 0.5, � = 6, � = 0.001.

White-box Robustness. We evaluate white-box robustness of different methods by four types of attacks: PGD20,
PGD40, C&W(l2), and AutoAttack (AA), with � = 0.3 for MNIST and � = 0.031 for CIFAR10 and CIFAR100.
The white-box robustness for MNIST with 4-layer CNN and CIFAR-10 with ResNet18 are reported in Table 4, where
“Natural” denotes the accuracy on the clean images. Each value in the table is the mean accuracy for the last epoch and
standard deviation over three runs. Our proposedmethod achieves comparable or better robust accuracy on bothMNIST
and CIFAR-10 dataset. We further compare the white-box robustness of our method against TRADES and MART by
training eachmethodwith a largerWideResNet model on CIFAR-10 and CIFAR-100 datasets.We report the robustness
with different attacks on Table 5. Our proposed method achieves better robust accuracy while maintaining the same
natural accuracy, showing a benefit, especially on the CIFAR-100 dataset with some strong attacks (e.g., C&W(l2)
and AA). An additional experiment comparing performance with early-stopping is shown in Appendix A.1

Black-box Robustness. Adversarial samples for black-box attacks are created from natural images by attacking
a pre-trained surrogate model on the original training set. We evaluate the black-box robustness on a pre-trained
ResNet-50 surrogate model on the CIFAR-10 dataset with 100 epochs. The attacking methods we use are: PGD10,
PGD20, PGD40, C&W(l2) and black-box Square attack [54] with � = 0.031. The results in Table 6 show the mean
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Table 6
Black-box robustness (%) on CIFAR-10.

Method CIFAR-10

Natural PGD10 PGD20 PGD40 C&W(l2) Square attack

Standard 82.59 80.27 80.01 79.77 80.85 76.85
TRADES 81.83 81.37 81.27 81.29 81.75 81.60
MMA 81.87 81.16 80.58 80.37 82.24 79.37
MART 81.57 81.38 81.34 81.27 81.59 82.05

Ours 82.28 81.42 81.37 81.31 81.85 83.53

accuracy for three runs. Our method achieves comparable or greater robustness than other methods across different
types of attacks. Compared with the white-box attacks, all defense models with black-box attacks achieve much better
robust accuracy, even close to the natural accuracy. This suggests that adversarial training is a practical choice against
black-box attacks where the target model is secret for potential attacks.

4.4. Results on the attack toward the representation

In this section, we will evaluate our proposed method against a different class of adversarial attack [55] where the
attacker tries to minimize the feature-space distance, at a particular layer of the target neural network, between clean
and adversarial images. The adversarial sample I� is defined as follows:

I� = argmin
I

||�k(I) − �k(Ig)||22

subject to ||I − Is||∞ ≤ �∕255
(17)

Here, Is and Ig denote the source and guide images, �K is the mapping from an image to the model’s representation at
the ktℎ layer. The goal of the adversarial representation attack is to find a new image I� such that the distance between
the corresponding representation of I� and Ig at the ktℎ layer is as small as possible. At the same time, I� should remain
close to the source image Is. In general, the exact computation of Eq. (17) is a hard problem, and thus following [55],
we fixed � and optimize Eq. (17) by using the l-BFGS-b algorithm with the inequality expressed as a box constraint
around Is. We report some adversarial examples generated by this adversarial representation attack in Figure 4. As
can be seen, when � increases distortion becomes more perceptible and we observe that the larger � is, the higher the
attack strength will be. In addition, we also note that the shallower layer is more robust than the deep layer for the same
input perturbation level. Figure 4 (b) and Figure 4 (c) demonstrate that deep layers (eg., “FC-1” and “cov2d-5”) are
more likely to be attacked than lower layers (eg., “cov2d-3”).
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(a) Adversarial examples for the same latent output with different �, fool the classifier successfully when � = 10, 15.
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(b) Adversarial examples for the different latent output with same � = 10, fool the classifier successfully when put attacks on "FC-1" layer.
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(c) Adversarial examples for the different latent output with same � = 10, fool the classifier successfully when put attacks on "FC-1" and "cov2d-5"
layer.

Figure 4: Adversarial examples generated by adversarial manipulation attack with different layers (eg., cov2d-3 (convolution
layer 3), cov2d-5 (convolution layer 5) and FC-1 (last fully connected layer before output layer), of VGG-16 on CIFAR-10
dataset. The first column represents the guide images, the second column represents the source images. The last three
columns represent the adversarial examples.

We evaluate the performance of our approach with the adversarial representation attack (ARA) on the last layer
before the output layer. In the training process, we set � = 10 and step to 20. Other training parameters are set the
same as that of training for PGD attacks. In the training process, for each mini-batch, we select the first half as guide
images and the last half as the source images. The step parameter is the number of learning iterations for the l-BFGS-b
algorithm. We report the robustness accuracy with different � and step on the CIFAR-10 test set with ResNet18 in
Table 7. As can be seen, our proposed method consistently performs better than other methods for the attack on the
representation layer, because our proposed method encourages the latent representation only to contain the shared
information between the clean and adversarial examples and discard the superfluous information.
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Table 7
Performance of different methods with adversarial manipulation attack on CIFAR-10 datasets.

Method CIFAR-10 (ResNet18) Robust accuracy (%)

� = 5
step = 10,

� = 10
step = 10,

� = 15
step = 10,

� = 5
step = 20,

� = 10
step = 20,

� = 15
step = 20,

Standard 73.54 65.83 53.65 73.54 64.17 49.48
TRADES 73.20 66.86 56.78 71.58 65.73 51.46
MART 75.24 68.20 58.35 74.96 66.00 57.13

Ours 77.83 70.41 61.66 77.76 69.61 59.20

Table 8
Computational cost of different methods

Method Training Testing GPU memory Params
Baseline 2.47s 2.35s 2.20G 1.12M
TRADES 3.27s 2.51s 2.25G 1.12M
MART 2.56s 2.46s 2.99G 1.12M
Ours 3.81s 2.54s 3.48G 1.14M

4.5. Computational Complexity and Data-efficiency Analysis

In this section, we compare our method with others in terms of computational complexity and data-efficiency.
Specifically, we first compare the extra computational and memory costs incurred by our proposed approach and other
methods on the CIFAR-10 dataset with a ResNet18 model. Our experiments are running on one NVIDIA RTX 2080Ti
GPU. We report the training time, test time for one iteration, GPU memory cost, and the number of architecture
parameters in Table 8. The baseline method is the conventional adversarial training without any regularization terms.
As can be seen, our method needs more time for training and higher GPU memory cost due to modifying the latent
representation and employing extra resources for mutual information estimation. However, in terms of the testing time
and the number of architecture parameters, our method is comparable with other approaches, which suggests that our
method is a cost-effective way to defend against adversarial attacks.

We also analyze our proposed method’s data efficiency compared with other methods. Specifically, we only use
40%, 60%, and 80% of the training set and evaluate the performance on the entire test set. The performance on the
entire CIFAR-10 test set is shown in Table 9. We observe that standard adversarial training is more sensitive than other
methods when gradually increasing the size of the training set. MART is less data-efficient than TRADES and ours
because it requires more data during the training to correctly detect misclassified samples. Our method is more data-
efficient than TRADES and achieves comparable accuracy using only 60% of the training set compared to TRADES
using 80% of the training set.
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Table 9
Performance with adversarial manipulation attack by only training subset CIFAR-10 dataset.

Method Percentage of Training Set

40% 60% 80%

Standard 59.48 66.01 69.11
TRADES 64.40 67.27 69.65
MART 62.56 69.13 70.99

Ours 66.76 69.31 71.22

Table 10
Ablation study for our method with PGD20 attack on CIFAR-10 (%).

CE(f (x), y) CE(f (x′), y) DSKL I(z; z′) PGD20 Natural
! ! ! 50.73 78.43

! ! ! 53.47 76.06
! ! ! 49.60 81.48
! ! 45.57 82.48
! ! ! 54.77 81.34
! ! ! ! 55.51 81.87

4.6. Ablation Study

This section quantifies the impact of different components of our proposed objective function on the CIFAR-10
dataset with ResNet18 architecture trained with 120 epochs. In Table 10, each value represents the average accuracy
at the last epoch for three runs. We see that removing any part of our objective degrades either natural or robust
accuracy. Specifically, removing CE(f (x), y) degrades the natural accuracy and removing CE(f (x′), y) degrades the
robust accuracy. When adding the I(z; z′) term to CE(f (x), y) and CE(f (x′), y) improves the natural accuracy while
degrading the robust accuracy. The reason is that maximizing I(z; z′) only encourages the representation to learn the
sufficient information of inputs. However, it may contain some view-specific information, resulting in the degradation
of robust accuracy. On the other hand, incorporating DSKL terms with CE(f (x), y) and CE(f (x′), y) improves the
robust accuracy but decreases the natural accuracy, which suggests that minimizing only the DSKL term may lose
some information needed for sufficiency. In addition, when only employing the linear combination of CE(f (x), y) and
CE(f (x′), y), and set � = 0.5, we obtain the better natural accuracy but worse robust accuracy. This suggest that our
proposed regularization terms improve the robust accuracy and maintain the natural accuracy. We see that using all
terms together leads to the best performance.

5. Conclusion and Future Works

In this paper, we propose a novel, simple, and effective adversarial defense method against both white-box
and black-box attacks by learning the shared information between clean samples and corresponding adversarial
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examples. Unlike the previous defense methods that only consider adversarial examples, our method exploits the
shared information between the clean samples and adversarial examples in the latent feature space, which preserves the
task-relevant information and discards the misleading information of adversarial examples. Specifically, we consider
the adversarial examples as the secondary view of clean samples and we maximize the mutual information between
the representation of clean samples and adversarial examples and minimize the view-specific information as well. In
addition, to avoid estimating the mutual information in high dimensions, we also utilize the upper bound of view-
specific information as the surrogate term in our objective function. Extensive experiments on the image benchmark
datasets demonstrate that our proposed method is more data-efficient and consistently performs better than previous
state-of-art adversarial regularization methods, especially under strong attacks.

This work could be extended in the following research directions. First, it is straightforward to extend shared
information to more than two views. For instance, each view could be an adversarial example with different attack
strengths. Next, we will seek a deeper theoretical understanding of why the shared information improves the adversarial
robustness. The proposed shared information terms could also be combined with a robust self-supervised training
approach to further improve the tradeoff between robust and natural accuracy. Another opportunity for future research
is to employ our shared information approach to learn the domain-shared and domain-specific information for domain
adaptation and domain generation tasks.

A. Additional Experiments

In this section, we first compare other methods with early stopping and then put additional experiments to study
the effect of parameter � and � in our objective function and investigate their impact. Then, we utilize different
mutual information approximation methods to estimate I(z, z′). Finally, we compare the performance of putting shared
information regularization terms on the output of the softmax layer and the layer before the last layer.

A.1. Compare with other method with the early stopping

In the main paper, we compare other methods in terms of the last epoch performance. To make a fair comparison,
we also compare with other methods in terms of robust and natural accuracy with early stopping, shown in Table 11.
For TRADES and MMA, we stop training at 76th epoch. For MART, we stop training at 91th epoch. Our method is
stopped at 101th epoch. Our method can achieve comparable natural accuracy and perform better with robust accuracy,
especially for a strong attack like AA.
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Table 11
White-box robustness (%) on CIFAR-10 for different methods with early stopping.

Method CIFAR-10

Natural PGD20 PGD40 C&W(l2) AA

Standard 82.12 49.77 48.25 61.23 43.71
TRADES 81.59 53.21 52.95 68.53 50.18
MMA 81.78 52.21 48.85 62.89 43.61
MART 82.23 55.32 54.15 75.19 52.31

Ours 82.38 55.54 54.23 76.58 56.21

Table 12
Comparisons of the performance of different hyper-parameter settings.

Hyper-parameters Metrics (%)

� � � Natural PGD20

0 4 0.001 75.38 51.36
0.1 4 0.001 78.38 53.17
0.3 4 0.001 80.94 55.37
0.5 4 0.001 81.37 55.58
0.7 4 0.001 78.37 55.35
0.9 4 0.001 77.10 55.25
1.0 4 0.001 76.16 54.84

0.5 4 0.003 79.60 55.46
0.5 4 0.005 79.38 55.42
0.5 4 0.007 79.51 55.57
0.5 4 0.01 80.24 55.37

A.2. The Effect of Parameter � and �

We have already examined the effect of � in our objective function in the experiments part of the main paper. In
this part, we fixed � and further investigated performance for different values of the hyper-parameters � (in front of the
robust cross-entropy loss) and � (controlling the mutual information term) on the CIFAR-10 dataset with ResNet18.

We first fixed � = 0.001, and test different � from 0 to 1. Then, we fix � and test different �. The final results are
reported in Table 12. As can be seen, a larger � helps the robust accuracy and a larger � is beneficial for the natural
accuracy, the best natural and robust accuracy is achieved by � = 0.5, � = 4, � = 0.001.

A.3. The Effect of Different Mutual Information Estimators

Mutual Information Neural Estimation (MINE). Let X and Z are two random variable,  = {T�}�∈Θ be the
set of functions parameterized by a neural network. The definition of MINE [47] is:

I(X;Z) = sup
�∈Θ

EP (X,Z)[T�] − log(EPX⊗PX [eT� ]), (18)
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Table 13
Performance Comparison with difference mutual information estimator.

Method � Natural(%) PGD20(%)
Ours (MINE) 0.01 81.54 52.18
Ours (MIGE) 0.01 80.15 53.73
Ours (HSIC) 0.001 81.37 55.58

When estimating the mutual information between the layer’s output before the last layer in ResNet18 on the CIFAR-10
dataset, the architecture of the mutual information estimator neural network is an MLP with fully connected layers of
the form 256 − 512 − 512 − 1, with ReLU activation.

Hilbert-Schmidt Independence Criterion (HSIC). HSIC [56] is a statistical dependency measure, which
calculates the Hilbert-Schmidt norm of cross-covariance matrix between two sets of variables in a Reproducing Kernel
Hilbert Space (RKHS). HSIC(X,Z) is defined as:

HSIC(X;Z) = EX,Z∼P (X,Z),X′,Z′∼P (X,Z)[KX(X,X′)KZ (Z,Z′)]

+ EX∼P (X),X′∼P (X′),Z∼P (Z),Z′∼P (Z)[KX(X,X′)KZ (Z,Z′)]

− 2EX,Z∼P (X,Z),X′∼P (X),Z′∼P (Z)[KX(X,X′)KZ (Z,Z′)],

(19)

where KX(X,X′) = exp( ||X−X′||22
2�2X

) and �X > 0 is the kernel size. Followed by [45], we choose kernel width as the
average of mean values for all samples. Similar to mutual information, HSIC measures the distance between the joint
distribution and the product of marginal distributions.

Mutual Information Gradient Estimation (MIGE). The MIGE method [48] directly estimates the gradient of
mutual information based on the score estimation for the implicit distribution. The gradient of mutual information
between X and Z is defined as:

∇I(X;Z) = ∇H(X) + ∇H(Z) − ∇H(Z,X)

= −∇EP (X)[logP (X)] − ∇EP (Z)[logP (Z)] + ∇EP (Z,X)[logP (Z,X)].
(20)

where the score function ∇logP (X) is estimated by Spectral Stein Gradient Estimator (SSGE) [57].
The performance reported in Table 13 shows that approximating mutual information with HSIC achieves better

performance than MINE and MIGE on the CIFAR-10 dataset with ResNet18. HSIC works better because MINE
utilizes a neural network to estimate MI, and the performance heavily depends on that network architecture. We cannot
guarantee that such a value is close to the true MI. MIGE estimates the gradient of MI based on the approximation of
the score function. However, HSIC is the kernel dependence measurement without any approximation and has similar
properties as MI.
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Table 14
Performance Comparison with different latent representation location.

Method Location Network � Natural(%) PGD20(%)
Ours p(y|x) ResNet18 0.1 81.35 55.56
Ours p(y|x) ResNet18 0.01 81.71 55.42
Ours p(y|x) ResNet18 0.001 81.89 55.09
Ours p(z|x) ResNet18 0.001 81.37 55.58
Ours p(y|x) WideResNet-34-10 0.001 85.47 56.78
Ours p(z|x) WideResNet-34-10 0.001 86.12 57.52

A.4. The Effect of Latent Representation Location

Finally, we also compare the performance with different latent representation location. p(y|x) represents putting
shared information regularization on the output of softmax layer. p(z|x) represents putting shared information
regularization on the output of layer before the last layer. Table 14 illustrates that the performance of putting
regularization on softmax output is similar as that of putting on the layer before last layer on CIFAR-10 with ResNet18.
While for WideResNet-34-10, putting regularization on the layer before last layer achieves better natural and robust
accuracy than that of the softmax layer.
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