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Abstract
This paper presents a graph neural network based fault location method for distribution
systems, in which both link attributes and node attributes are considered. The proposed
method integrates multiple measurements at different buses with branch parameters at dif-
ferent branches as inputs of the GNN, and transforms fault locations on branches into output
features of corresponding connected nodes for the faulted branch. Besides the system topology
that can be naturally considered by the GNN, the branch parameters and related regulation
and energization statuses are explicitly taken into account as link attributes. Numerical
examples are provided to demonstrate the usage of the proposed method.
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Abstract—This paper proposes a graph neural network 
(GNN) based approach to locate fault spots within the power 
distribution systems. The GNN model is extended from graph 
convolutional networks (GCNs), and includes several graph 
processing layers and followed by several full connected layers. 
The graph processing layers incorporated with node and link 
attributes are used to map system topology, bus measurements 
and branch parameters into hidden node embeddings, and full 
connected layers are used to relevant fault locations to node 
embeddings. The node attributes of the graph include measured 
phase voltage and current measurements, and branch 
impedance, admittance and regulation parameters are 
integrated into link attributes of the graph. The fault locations 
are represented as output features of nodes for the graph, in 
which only terminal buses of faulted branch have non-zero 
values corresponding to faulted phases. The developed 
approach is applicable to both short-circuit faults and ground 
faults. Numerical examples are given to demonstrate the 
effectiveness of the proposed method. The test results showed 
that the faulted section can be estimated with high percentage of 
accuracy, and more importantly there is no need for re-training 
in case of topology changes.  
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I. INTRODUCTION 
Power distribution systems are constantly under the threat 

of ground and short circuit faults that would cause power 
outages. In order to enhance the operation quality and 
reliability of distribution systems, system operators have to 
deal with outages in a timely manner. Thus, it is of paramount 
importance to accurately locate and quickly clear faults 
immediately after the occurrence, so that quick restoration can 
be achieved. 

Existing fault location techniques in the literature can be 
divided into several categories, namely, impedance-based 
methods[1]-[3], traveling wave-based methods[4]-[5], and 
machine learning-based methods[6]-[10]. Impedance-based 
fault location methods [1]-[3] use voltage and current 
measurements to estimate fault impedance and fault location. 
However, the accuracy of impedance-based methods can be 
affected by factors including fault type, unbalanced loads, 
heterogeneity of overhead lines, and measurement errors. 
Traveling wave-based methods[4]-[5] use observation of 
original and reflected waves generated by a fault. In general, 
however, traveling wave-based methods require high 
sampling rates and communication overhead of measurement 

devices. Machine learning models[6]-[10] are leveraged for 
fault location in distribution systems, such as artificial neural 
network, support vector and others. Recent advances in the 
field of machine learning, especially deep learning, have 
gained extensive attentions from both academia and industry, 
such as convolutional neural networks and graph 
convolutional networks. However, most of machine learning 
based approaches solely base on measurements to learn the 
relationships between fault location and measurements, and 
ignore the impacts of system topology and branch parameters 
and regulations on the fault behaviors.  

In this paper, a graph neural network (GNN) based 
framework for fault location in distribution systems is 
proposed, in which both link attributes and node attributes are 
taken into account. The proposed method integrates multiple 
measurements at different buses while considering the 
impacts of system topology and branch parameters as well. 
The measurements at buses and impedance/admittance and 
regulation parameters on branches are modeled as node and 
link attributes in the GNN model, respectively.  

Conventional graph convolutional networks (GCNs) can 
be used to achieve fault detection and location task by using 
its strong capability in aggregating local neighborhood 
information for individual graph nodes. Those GCNs can 
effectively leverage low-rank proximities and node features of 
the graph, however attributes that graph links may carry are 
commonly ignored, as almost all of these models simplify 
graph links into binary or scalar values describing node 
connectedness to identify neighborships and their influence if 
weighted in the local neighborhoods. For example, [10] 
proposed a GCN based approach to locate faults at buses using 
voltage and currents at buses, and the weighted adjacency 
matrix is constructed based on the physical distance between 
the nodes. However, in real-world scenarios, a link between a 
pair of nodes carries a lot more information than a simple 
indicator of neighborship. It represents a concrete relationship 
between two entities, usually with concrete attributes. For 
example, a line branch connected with two buses may have 
different impedance and admittances  Therefore, revisiting 
these link attributes, which are generally ignored in current 
GCNs, allows us to recover the exact relationships between 
nodes.  

This paper has mapped the fault detection and location 
problem into a non-linear regression problem and solved 
through an extended GCN model with both node and link 
attributes, that is a GCN-LASE model (i.e. a GCN with Link 
Attributes and Sampling Estimation) [11]. This extended 
GCN model takes both node and link attributes as inputs, in 



 

 

which links are reverted to concrete relationships between 
entities with discretional attributes. The proposed method has 
been tested on a sample distribution system. The results 
showed high percentage of the method accuracy. The results 
also showed that there is no need for re-training in case of 
topology changes which commonly required by machine 
learning based fault location methods. 

II. FORMULATION OF DISTRIBUTION FAULT LOCATION 
TASK 

In this paper, the distribution system is modeled as a graph, 
the buses and branches of the distribution system is regarded 
as the nodes and links of the graph. The measurements at the 
buses are regarded as node features, and the parameters of the 
branches as link features. The fault locations are modeled as 
output features of nodes. Therefore, the fault location task can 
be formulated as a multiple non-linear regression problem. 
More specifically, given a matrix of sample node features 
𝑿(") , and a matrix of sample branch features 𝒀(") , the 
matrix/vector of sample fault location 𝒁(") , is obtained by 
𝒁(") = 𝒇(𝑿("), 𝒀(")) , where 𝒇  is a specific faulty location 
regression model, 𝑠 is the index for the sample fault event. 
The fault location vector 𝒁(") defines the indications of faulty 
spot for all buses, in which only the terminal buses for fault 
branches are set with non-zero values on faulted phases in 
which the non-zero values are related to the distance between 
the fault spot and corresponding bus. A fault is correctly 
located if  *𝒁+(") − 𝒁(")* ≤ 𝜀 , where 𝒁(")  indicates the true 
fault location, and 𝒁+(")  is the estimated fault location 
corresponding to 𝑿(")  and 𝒀(") , and 𝜀  is given error 
tolerance.  

Assumed that the voltage and current phasor 
measurements are available at measured buses, such as buses 
connected to loads and distributed generations. That is, for a 
given measured bus in a grounded distribution system, we 
have access to its three-phase voltage and current phasors 
( *𝑉$%*, ∠𝑉$% , *𝐼$%*, ∠𝐼$% , 𝑥 ∈ {𝑎, 𝑏, 𝑐}	) ∈ ℝ&' ,where |∙|, ∠ ∙ 
stands for an absolute value and a phase angle of a complex 
number, 𝑉$% and 𝐼$% denotes phase voltage and phase injection 
current at phase x of bus p. Values corresponding to 
unmeasured phases are set to zero. A data sample of 
measurements from the distribution system can then be 
represented as 𝑿 ∈ ℝ(×&', where 𝑛 is the number of buses. 
For a given measured bus in a ungrounded distribution 
system, we have access to its three-phase-to-phase voltage 
and current phasors, and zero-sequence voltage phasor, 
( *𝑉$

%**, ∠𝑉$
%*, 𝑥𝑦 ∈ {𝑎𝑏, 𝑏𝑐, 𝑐𝑎}; *𝑉$+*, ∠𝑉$+; *𝐼$%*, ∠𝐼$% , 𝑥 ∈

{𝑎, 𝑏, 𝑐}) ∈ ℝ&, ,where, 𝑉$
%*  denotes phase-to-phase voltage 

between phase x and y of bus p. A data sample of 
measurements from the ungrounded distribution system can 
then be represented as 𝑿 ∈ ℝ(×&,, where 𝑛 is the number of 
buses to be considered.  

The distribution system has branches with various types, 
such as distribution line, transformer, breaker or switch, 
voltage regulator. In order to use a uniform data set 
representing various types of branches, we use the real and 
imaginary parts of equivalent nodal admittance matrix 𝒀-./ to 
represent branch features of graph neural network. For a 
branch, 𝒀-./  relates its branch currents flowing into two 
terminals to bus voltages at two terminal buses for the branch. 
The parameters for a given branch between bus p and bus s 
are related to (𝑌$$

%*, 𝑌$"
%*, 𝑌"$

%*, 𝑌""
%*, 𝑥𝑦 ∈

{𝑎𝑎, 𝑎𝑏, 𝑎𝑐, 𝑏𝑎, 𝑏𝑏, 𝑏𝑐, 𝑐𝑎, 𝑐𝑏, 𝑐𝑐} ∈ ℝ0' and the branch 

parameters of the system can be represented as 𝒀 ∈ ℝ1×0', 
where 𝑚  is the number of branches to be considered. If 
dividing into 4 sub-matrices, only diagonals of sub-matrices 
used, the number of branch parameters are reduced to 24 for 
each branch, 𝑚× 24  for the system, and 𝒀 ∈ ℝ1×',.  

The branches can be categorized into impedance-based 
branches, and zero-impedance branches. The impedance-
based branches include distribution lines, and transformers. 
The equivalent nodal conductance and susceptance matrices 
is determined according to a series impedance matrix and a 
shunt admittance matrix for a distribution line branch, and 
transformer tap ratios, series impedances and winding 
connection for a transformer branch.  

The zero-impedance branches include voltage regulators, 
feeder breakers, and switches, as shown in Fig. 1. For a zero-
impedance branch between bus m and bus p, it is merged into 
a downstream distribution line between bus p and bus s as a 
new branch between bus m and bus s to be modeled [12]. 
Meanwhile, the measurements at bus p are ignored. 

 
(A). Regulator branch 

 
(B). Switch branch 

Fig. 1. Modeling of zero-impedance branch 
The equivalent nodal admittance matrix for the branch 

combined a regulator with a downstream distribution line is 
determined according to a set of regulation ratios of the 
regulator and a series impedance matrix and a shunt 
admittance matrix of the distribution line as shown in (1a) if 
voltage amplifying is given by phase voltages, and (1b) if 
amplifying is given by phase-to-phase voltages: 

𝒀-./ = E
−𝑨2!"𝒀$$𝑨3"! −𝑨2!"𝒀$"

𝒀"$𝑨3"! 𝒀""
G        (1a) 

𝒀𝒆𝒒𝒗 = H
−𝑨2!"𝒀$$𝑪3

78𝑨3"!
𝑳𝑳 𝑪387 −𝑨2!"𝒀$"

𝒀"$𝑪378𝑨3"!
𝑳𝑳 𝑪387 𝒀""

J  (1b) 

where 𝑨2!"  is a current amplifying factor matrix for the 
regulator defined as 𝑰1$=𝑨2!"𝑰$1 , and 𝑨3"!  is a voltage 
amplifying factor matrix for the regulator defined as  
𝑽$=𝑨3"!𝑽1.  𝑨3"!

𝑳𝑳  is a voltage amplifying matrices of the 
voltage regulator given in terms of phase-to-phase voltages. 
𝑰1$ and 𝑰$1 are the phase currents entering through bus m 
and bus p, and  𝑽1 and 𝑽$ are the phase voltages of bus m 
and bus p, respectively. Those amplifying factor matrices are 
determined by the winding connection and tap positions for 
the voltage regulator.𝒀$$  and 𝒀""  are the self-admittance 
matrices at bus p and bus s for the line, and 𝒀$" and 𝒀"$ are 
the mutual admittance matrices between bus p and bus s, 
respectively. 𝑪387  is a voltage conversion factor matrix that 
converted phase-to-ground voltages into phase-to-phase 

voltages, 𝑪!"# = #
1 −1 0
0 1 −1
−1 0 1

' . 𝑪378  is a voltage conversion 

factor matrix that converted phase-to-phase voltages into 

phase-to-ground voltages, 𝑪!#" = #
1/3 0 −1/3
−1/3 1/3 0
0 −1/3 1/3

' . For a 

switch/breaker between bus m and bus p connected with a line 
branch between bus p and bus s, the nodal admittance matrix 



 

 

for the equivalent branch between bus m and bus s is 
calculated as: 

𝒀-./ = E
𝑺1$𝒀$$ 𝑺1$𝒀$"
𝑺1$𝒀"$ N𝑰 − 𝑺1$O𝒀"$ + 𝒀""

G         (2) 

where 𝑺1$ is a phase energized status matrix for the switch 
branch between bus m and bus p and represented by a 
diagonal matrix in which each element 𝑆1$%  stands for the 
energized status for phase 𝑥, 𝑥 ∈ {𝑎, 𝑏, 𝑐}, and 𝑆1$%  equals to 
1 if energized, otherwise equals to zero. 

The node features, and branch features are normalized 
before using for facilitating migrations to other systems with 
different topologies.  

Fig. 2 illustrates representing fault locations using node 
output features for buses in the distribution system, in which 
each bus has one independent feature for each phase. Each 
bus has a row vector with dimensions of 1 × 3 to define the 
fault location related information, in which each phase of the 
bus has a corresponding element to describe whether there is 
a fault in this phase, and how far from this bus. Only terminal 
buses of a branch having a fault have non-zero output features 
residing at faulted phases of the buses. Any bus p has 3 output 
features one phase each, N𝑜$% , 𝑥 ∈ {𝑎, 𝑏, 𝑐}O ∈ ℝ: , and the 
output features of the system can be represented as 𝒁 ∈ ℝ(×:, 
where 𝑛 is the number of buses to be considered. In Fig. 2, a 
fault occurs on the branch between bus p and bus s. The 
terminal buses of faulted branch, i.e., bus p and bus s, have 
non-zero elements in their output feature vectors. For all other 
buses, for examples, bus m and bus t, the values of output 
features are set as zero. For the terminal buses of faulted 
branch, only the elements corresponding to faulted phases are 
set with non-zero values in their output feature vectors. The 
magnitudes of output features for fault phases on the terminal 
buses of faulted branch are determined based on the relative 
distances from the fault spot to the terminal buses. For 
example, in Fig.2, a phase A to ground fault occurred at the 
line between bus p and s. 𝑑$ and 𝑑" are the distances from the 
fault location to bus p and bus s, respectively. Therefore, the 
output features for bus p are set as V

;#
;#<;"

0 0X,and the 

output features for bus s are V
;"

;#<;"
0 0X. Only the output 

features corresponding to fault phase A have non-zero values. 

 
Fig. 2. Modeling of fault locations as node output features 

For a known fault event, given the fault branch, fault 
location and fault phases, we can determine output features 
for all buses accordingly. Therefore, a full set of output 
features, and node features and branch features for the event 
can be obtained and served as a training sample for learning 
a relationship between output features and node and branch 
features.  

For an unknown fault event, if we can estimate the output 
features with given node and branch features. Then we can 
determine the fault branch, fault location and fault phases 
accordingly. The fault branch is determined as a branch that 
has a maximum sum of non-zero output features of terminal 
buses. The fault phases are the phases of one of terminal 
buses of the faulted branch that have non-zero output features 
greater than a pre-determined threshold. The fault location is 
determined by using a ratio of distance from fault spot to the 

upstream bus over length of the branch. Taken a fault branch 
between bus p and bus s as an example, 𝑠$=  is the set of 
faulted phases, and bus p is the upstream bus. The ratio of 
distance between fault spot to upstream bus p over length of 
the branch,  𝛼$ is determined as: 

𝛼$ =
∑ ?&@AB"$<AB#$C$∈#"&

'D""&D
                                 (3) 

wherein ‖ ∙ 	‖ is the cardinality of a set, 𝑜[$%  and 𝑜["%  are the 
estimated output features corresponding to faulted phase 𝑥 of 
bus p and bus s, respectively. 

For a given distribution system, normal and faulty cases 
are simulated for each branch in the system to generate the 
training and test datasets used for training and evaluating the 
fault location models. The types of faults include single phase 
to ground fault, double phase to ground fault, phase to phase 
fault, and three phase to ground fault, and phase-to-phase-to-
phase fault. The different fault locations for each branch, 
different fault resistances for each fault, and different load 
levels for the system are simulated. The voltage and current 
phasors are measured during the fault.  

III. GRAPH NEURAL NETWORK WITH LINK ATTRIBUTES 
In this paper, the graph neural network (GNN) configured 

as shown in Fig. 3 is used to map the relationship between the 
fault locations with bus measurements and branch parameters 
of the distribution system. The GNN includes several graph 
processing layers followed by several fully-connected dense 
layers. The graph processing layers with combined node and 
link attributes are used to map system topology, bus 
measurements and branch parameters into hidden node 
embeddings, and full-connected dense layers are used to 
relevant fault locations to hidden node embeddings. The 
inputs 𝑿 and 𝒀 is passed through 𝑳𝒈 graph processing layers 
and 𝑳𝒅  fully-connected dense layers followed by nonlinear 
activation functions (i.e. sigmoid functions). The weights and 
biases for graph processing layers and full-connected layers 
are optimized by minimizing a loss function defined as the 
Squared Error loss of output features. The Adam optimizer is 
used to train the model.  

 
Fig. 3. The configuration for a graph neural network 

The GNN model used here is an extended Graph 
Convolutional Network (GCN) model. The extended GCN 
[11] model used takes both node and link attributes as inputs. 
Specifically, each node has a set of attributes to describe its 
features using a row vector, and each branch also has a set of 
its own attributes to describe its features as a row vector. For 
adequately capturing the interactions between link and node 
attributes, the neighbor features of nodes can be defined as a 
tensor product of link attributes and corresponding node 
attributes.  

Suppose an undirected weighted graph 𝐺 = (𝑽, 𝑬)  is 
used to describe a distribution system, where 𝑽 is the set of 



 

 

nodes, 𝑬 is the set of links. A neighbor can be described as an 
ordered pair, containing a neighbor node and the link 
connecting it to the central node, i.e. (node, link). In order to 
capture the interactions within a neighbor and adequately 
incorporate link attributes into node hidden representations, 
the associated neighbor feature is defined using their tensor 
product, instead of simply adding or concatenating node and 
link attributes together. Tensor product of two vectors 𝒂 and 
𝒃 is calculated as 𝒂𝒃G  with shape 𝑑H × 𝑑I , and 𝑑H  and 𝑑I 
are the lengths of 𝒂 and 𝒃. The calculated tensor contains all 
bilinear combinations of the two attributes, and serves as a 
fully conjoined feature. Formally, for the central node 𝑢 
connected to node 𝑣  by a link 𝑒J,/ , the corresponding 
neighbor feature is defined as: 

𝑓 eN𝑣, 𝑒J,/Of ≔ 𝑓(𝑣) ⊗ 𝑓N𝑒J,/O                           (4) 
where 𝑢 and 𝑣 are nodes in 𝐺,  𝑒J,/ is a link from node 𝑢  to 
node 𝑣. ⊗ stands for the operation of tensor product. 𝑓(∙) is 
the feature of a node, a link or a pair, N𝑣, 𝑒J,/O is a neighbor 
of node 𝑢, i,e, a pair of node 𝑣 and link 𝑒J,/.  

Instead of directly using the tensor as inputs that leads to 
unacceptably high dimensionalities and heavy redundancies, 
graph kernels for so-defined neighbor features are used. For 
two neighbors, N𝑣, 𝑒∙,/O and N𝑤, 𝑒∙,MO,. the neighbor kernel is 
defined as the inner product of the neighbor tensors, i.e. 
𝒦 eN𝑣, 𝑒∙,/O, N𝑤, 𝑒∙,MOf ≔ 〈𝑓 eN𝑣, 𝑒∙,/Of , 𝑓 eN𝑤, 𝑒∙,MOf〉 
= 〈𝑓(𝑣), 𝑓(𝑤)〉 ∙ 〈𝑓N𝑒∙,/O, 𝑓N𝑒∙,MO〉                             (5) 

〈∙,∙〉 stands for the operation of inner product. Based on the 
neighbor kernel, a kernel of two 𝑙-hop neighborhoods with 
central node 𝑢 and 𝑢N can be defined as 
𝒦O

(P)(𝑢, 𝑢N) = 

*
〈𝑓(𝑢), 𝑓(𝑢$)〉 𝑙 = 0

〈𝑓(𝑢), 𝑓(𝑢$)〉 ∙ 𝜆 ∙ 5 5 𝒦%
('())(𝑣, 𝑣$)

+!∈%(-!)+∈%(-)

∙ 〈𝑓8𝑒-,+:, 𝑓8𝑒-!,+!:〉 𝑙 > 0 

                           (6) 
by regarding the lower-hop kernel, 𝒦O

(P@&)(𝑣, 𝑣N), as the inner 
product of the (𝑙 − 1)-th hidden representations of 𝑣 and 𝑣N. 
𝜆 ∈ {0,1} is a decay factor.	𝑁(𝑢) is the set of neighbor nodes 
of 𝑢 . By recursively applying the neighborhood kernel, a 
neural architecture for graphs with both node and link 
attributes, GCN-LASE (i.e. GCN with Link Attributes and 
Sampling Estimation) can be defined as a graph processing 
layer as Fig. 4.  

 
Fig. 4. The architecture for a GCN-LASE graph layer 

Fig. 4 is a schematic illustrating an architecture of the 
graph processing layer included in the graph neural network. 
For layer 𝑙  with corresponding sample 𝑠 , the forward 
propagation calculations for the graph processing layer 
include three components, namely a gate, an amplifier, and 
an aggregator. The gate  𝜆J,/

(",P) evaluates 𝑣’s influence in 𝑢’s 
neighborhood. The amplifier 𝑔(",P)(𝑣|𝑢) amplifies the node 
attributes using link information element-wisely. The 
aggregator ℎ(",P)(𝑢)  sums up neighbor embeddings and 

combines them with the central node embedding.  
By uniting the depth and breadth convolution of nodes, 

and referring to the neighborhood aggregation concept in 
Graph-SAGE [13], a LASE-SAGE [11] architecture for the 
given graph processing layer l (𝑙 = 1,… , 𝐿Q), using sample 𝑠 
can be defined as: 

𝜆J,/
(",P) = 𝜎 e𝑾R'()*

(P) ℎ(",P)(𝑢) +𝑾R+,'-
(P) 𝑓(")N𝑒J,/O +

𝑾R'*,.&/(0
(P) ℎ(",P)(𝑣) + 𝑏R

(P)f                    (7) 

ℎ(",+)(𝑢) = 𝑓(A;-
(") (𝑢)                              (8) 

𝑔(",P)(𝑣|𝑢) = ℎ(",P@&)(𝑣) ⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 x𝑾S+,'-
(P) 𝑓PT(U

(") N𝑒J,/Oy 
(9) 

𝑔(",P)N𝑁(𝑢)O = ∑ 𝜆J,/
(",P)𝑔(",P)(𝑣|𝑢)/∈O(J)                 (10) 

ℎ(",P)(𝑢) = 𝜎 e𝑾S'()*
(P) ℎ(",P@&)(𝑢) ⊕

																																											𝑾S'*,.&/(0
(P) 𝑔(",P)N𝑁(𝑢)O + 𝑏S

(P)f  (11) 
where, ⊙ is the operation of element-wise product, and ⊕ is 
the operation of concatenating input vectors.  𝜎(∙)  is a 
nonlinear activation function. The action function is a 
sigmoid function.  ℎ(",P)(𝑢) is the hidden representation of 
node 𝑢 in layer 𝑙. 𝑾R'()*

(P) , 𝑾R+,'-
(P) , 𝑾R'*,.&/(0

(P)  and 𝑾S'()*
(P) , 

𝑾S+,'-
(P) , 𝑾S'*,.&/(0

(P)  are the weight parameters in the graph 
neural network. 𝑏R

(P) and 𝑏S
(P) are the biases in the network. 

For each layer l, the above calculation is executed (𝐿Q −
l + 1) times with different depth/hop for neighborhood. One 
hop represents a tracing from one link in the graph to the next. 

The prediction layers are used to generate output features 
based on hidden node embeddings, and for the first layer, it 
takes the hidden node embeddings at last graph layer as input. 
The output of last prediction layer represents the faut location 
estimation results. The calculations for prediction layer 𝑘 
(𝑘 = 1,… , 𝐿;) include:   

𝑜J
(",+) = ℎ?",8.C(𝑢)                                   (12) 

𝑜J
(",U) = 𝜎 e𝑾7'()*

(U) 𝑜J
(",U@&) + 𝑏7

(U)f                (13) 
where 𝑾7'()*

(U)  and  𝑏7
(U) are the weights and bias parameters 

of prediction layers. 
Taken a graph neural network with two graph processing 

layers and one prediction layers as example, the dimensions 
of weights and biases for the first graph layer 𝑾R'()*

(&) /
𝑾S'()*

(&) ,𝑾R+,'-
(&) /𝑾S+,'-

(&) ,𝑾R'*,.&/(0
(&) /𝑾S'*,.&/(0

(&)  are ( 𝑛AJW
(&) , 

𝑚(A;-), (𝑛AJW
(&) , 𝑚PT(U), (𝑛AJW

(&) , 𝑚(A;-),and  the dimension of 
𝑏R
(&)/𝑏S

(&) is 𝑛AJW
(&) , wherein 𝑛AJW

(&)  is the pre-determined number 
of node embeddings for first graph processing layer, 𝑚(A;- 
and 𝑚PT(U  are the numbers of node attributes and branch 
attributes respectively. The dimensions of weights and biases 
for the second graph layer 𝑾R'()*

(') /𝑾S'()*
(') ,𝑾R+,'-

(') /
𝑾S+,'-

(') ,𝑾R'*,.&/(0
(') /𝑾S'*,.&/(0

(')  are ( 𝑛AJW
(') , 2𝑛AJW

(&) ) , ( 𝑛AJW
(') , 

𝑚PT(U) , (𝑛AJW
(') , 2𝑛AJW

(&) ) ,and  the dimension of 𝑏R
(')/𝑏S

(')  is 
𝑛AJW
(') , and 𝑛AJW

(')  is the pre-determined number of node 
embeddings for second graph processing layer. The 
dimensions of weights and biases for the prediction layer 
𝑾7'()*

(&)  are (𝑚AJW , 2𝑛AJW
(') ), and the dimension of 𝑏7

(&) is 𝑚AJW, 
and 𝑚AJW is the number of output features for fault location. 
The weights and biases are determined by minimizing a loss 
function to measure the differences between calculated 
outputs of last prediction layer and target outputs for a set of 



 

 

training fault location scenarios. Wherein a squared error loss 
function is used when the fault location regression model is 
used: 

Loss = ∑ ∑ ∑ e𝑜J,1
(",8)) − 𝑜[J,1

(",8))f
'1(12

1X&J
Y
"X&        (14) 

where  𝑆 is the total number of sample fault events, 𝑜[J,1
(",8)) is 

the true value for 𝑚-th output features of node 𝑢 for sample 
fault event 𝑠, 𝑜J,1

(",8))  is the prediction value for 𝑚-th output 
features of node 𝑢 for sample fault event 𝑠.   

Similar to conventional GCN, GCN-LASE also faces 
challenge for scalability, that is calculating the convolutions 
demands a recursively expanded neighborhood. For nodes 
with high degrees, it will quickly cover a large portion of the 
graph. To control batch scales, the Monte Carlo method is 
leveraged to estimate the summed neighborhood information 
by sampling a fixed number of neighbors. The summed 
neighborhood information is formulated as: 

𝑔(",$)"𝑁(𝑢)' 

= ∑ 𝜆&,'
(",$)𝑔(",$)(𝑣|𝑢)'∈)(&) 𝔼*(",$)(∙|&) .

-&,'
(",$).(",$)('|&)
*(",$)(∙|&) /   	(15) 

where 𝑝(P)(∙ |𝑢) denotes the sampling probabilities in 𝑁(𝑢). 
We then approximate 𝑔(P)N𝑁(𝑢)O  through estimating the 
expectation. As the sampling process is always unbiased, we 
look for the optimal probabilities that minimize the 
estimation variance.  According to the derivations of 
importance sampling, the sampling probabilities can be 
determined to minimize sampling variation as: 

𝑝(",P)(𝑣|𝑢) =
Z1,4
(#,+)DQ(#,+)(/|J)D7

∑ Z1,4
(#,+)

4∈8(1) DQ(#,+)(/|J)D7
                       (16) 

where ‖ ∙ ‖ is the L2-norm of the vector. 
Evaluating the sampling probabilities batch-wisely can be 

rather inefficient. Considered that the network parameters do 
not dramatically vary from batch to batch, a tradeoff can be 
made between variance and efficiency by controlling the 
interval of calculating the optimal distribution. That is, the 
sampling probabilities for all training nodes are calculated 
every 𝑒  batches. Although the calculation may be time-
consuming, the batch-averaged time cost will be reduced to 
1/𝑒. 

To make training time manageable, the set of nodes to be 
trained is divided into number of batches, and each batch has 
a fixed number of nodes. To reduce computation burden, a 
fixed number of neighbor samples is considered for each 
node by randomly chosen from all neighbors of the node 
under study.  

Algorithm 1: Node sampling for graph processing layers 

Input: Graph 𝐺(𝑉, 𝐸) 
           Number of graph processing layer 𝐿. 
           Minibatch for node,  𝐵 
           Neighborhood sampling function, 𝑁($,/)(𝑢) 
Output: Set of nodes for generating representation 𝐵($,/) 
1: for 𝑙 = 1,… , 𝐿. do 
2:     𝐵($,0) ← 𝐵 
3:     for 𝑘 = 1,… , 𝐿. − 𝑙 do 
4:          for 𝑢 ∈ 𝐵($,/12) do 
5:               𝐵($,/) ← 𝐵($,/12) ∪𝑁($,/)(𝑢) 
6:          end for 
7:      end for 
8: end for 

Algorithm 1 gives a procedure for sampling all nodes 
needed for each hop of each graph processing layer. 
Minibatch for node,  𝐵  contains nodes that we want to 
generate representations for. 𝑁(P,U)  denotes a deterministic 
function which specifies a random sample of a node’s 

neighborhood with given number, and we index this function 
by 𝑙  and 𝑘  to denote the fact that the random samples are 
independent across iterations over 𝑙  and 𝑘 . Each set 𝐵(P,U) 
contains the nodes that are needed to compute the 
representations of nodes at layer 𝑙 with search depth , 𝑘. 

Algorithm 2 gives a procedure for minibatch forward 
propagation for each depth of each graph processing layer. At 
each search depth, nodes aggregate information from their 
local neighbors with weighted by link attributes, and as this 
process iterates, nodes incrementally gain more and more 
information from further reaches of the graph. 

Algorithm 2: Forward propogation for graph processing layers 
Input: Graph 𝐺(𝑉, 𝐸) 
           Number of graph processing layer 𝐿. 
           Minibatch for node,  𝐵 
           Neighborhood sampling function, 𝑁($,/)(𝑢) 
												Set	of	nodes	for	generating	representation	𝐵($,/)  
Output: Representations for nodes ℎ(",$)(𝑢),  𝑢 ∈ 𝐵 
1:  set ℎ(",0)(𝑢) using (8) 
2:  for 𝑠 = 1,… , 𝑆 
3:       for 𝑙 = 1,… , 𝐿. do 
4:            for 𝑘 = 1,… , 𝐿. − 𝑙 do 
5:                 for 𝑢 ∈ 𝐵($,/12) do 
6:                     generate a given number of neighbors of 𝑢, 𝑁(𝑢) 
7:                     calcuate 𝜆&,'

(",$) using (7), 𝑣 ∈ 𝑁(𝑢) 
8:                     calculate 𝑔(",$)(𝑣|𝑢) using (9),	𝑣 ∈ 𝑁(𝑢) 
9:                     calculate 𝑝(",$)(𝑣|𝑢) using (16), 𝑣 ∈ 𝑁(𝑢) 
10                    calculate 𝑔(",$)"𝑁(𝑢)' using (15) 
11:                    calculate ℎ(",$)(𝑢) using (11) 
12:                 end for 
13:            end for 
14:       end for 
15: end for 

IV. NUMERICAL EXAMPLES 
The proposed method has been tested on a sample 

distribution system as shown in Fig. 5. The sample system is 
an ungrounded system at 6.6 kV, and fed by one equivalent 
source from a substation. It has 12 buses, 1 transformers, 10 
distribution lines, and 8 loads. The length of each line is given 
in the figure. The transformer windings use Delta/Delta 
connections, and the loads are Delta-connected constant PQ 
loads. An earthed voltage transformer (EVT) is connected to 
the secondary side of the transformer at substation. The 
system has been measured at buses 2-12, and then the system 
is modeled as a graph with 11 nodes and 10 links at most. The 
system has two switches, including a normally closed switch 
SW-1, and a normally open switch SW-2. 

 
Fig. 5. A sample distribution system 

The sample fault events are generated by choosing 5 fault 
spots on each distribution line and assigning each spot with 
different type of ground and short circuit types. The spots are 
uniformly located along the line, in which 4 of them are used 



 

 

for training, and 1 of them s used for testing. The GNN is 
trained using the normal topology, i.e., SW-1 is closed and 
SW-2 is open.   

Due to space limitation, only test results on one type of 
ground faults and one type of short circuit faults are given in 
this section. Table I lists the test results for phase A to ground 
faults and phase B to phase C short circuit faults. There are 4 
different scenarios. Scenario I is a base scenario under normal 
topology and the GNN uses both node and line attributes. 
Scenario II also use the normal topology but the GNN uses 
node attributes only (link attributes are set as identity). 
Scenarios III and IV corresponds to the scenarios that the 
system has changed its topology. Switches SW-1 and SW-2 
are closed in scenario III, and open in scenario IV. Moreover, 
the scenarios III and IV use the same GNN that trained for 
scenario I.  

TABLE I.  TEST RESULTS FOR ESTIMATED FAULT LOCATIONS ON 
PHASE A TO GROUND, AND PHASE B TO PHASE C FAULTS 

Faulted 
Line 

Faulted 
Phases 

Test Scenario 
I II III IV 

2-3 
A 2-3 ((4-5)) 2-3 2-3 

BC 2-3 (((((7-9))))) (3-4) (3-4) 

3-4 
A 3-4 (4-6) 3-4 3-4 

BC 3-4 3-4 3-4 3-4 

4-5 
A 4-5 4-5 (3-4) (((8-10))) 

BC 4-5 4-5 (5-7) (5-7) 

4-6 
A (3-4) ((((9-11)))) 4-6 (4-5) 

BC 4-6 ((((9-11)))) (((10-12))) (6-8) 

5-7 
A 5-7 5-7 5-7 (4-5) 

BC 5-7 (7-9) 5-7 (7-9) 

6-8 
A (4-6) ((3-4)) 6-8 (8-10) 

BC 6-8 ((4-5)) (8-10) ((4-5)) 

7-9 
A (5-7) (9-11) 7-9 7-9 

BC 7-9 7-9 (9-11) (5-7) 

8-10 
A 8-10 ((4-6)) 8-10 (6-8) 

BC 8-10 ((((5-7)))) (6-8) 8-10 

9-11 
A (7-9) ((((((8-10)))))) (((4-5)))  

BC 9-11 (7-9) 9-11  

10-12 A   (8-10)  

BC   10-12  

Estimation Accuracy 
(within 0-1 hops) 

100% 50% 90% 88% 

Table I gives the actual fault line and estimated fault line 
for each test case. If estimated fault lines are different than 
actual ones, the estimates will be given with pairs of 
parentheses, and the number of parentheses denotes the 
number of hops between the estimated and actual lines. For 
example, the estimates with single pair of parentheses 
indicates the estimated line is within 1-hop distance from 
actual line, that is the estimated line is directly connected to 
the actual faulted line. The related elements for branches not 
energized left in blank in the table.  

As shown in Table I, using the proposed GNN model, the 
fault lines can be accurately estimated within 1 hop distance 
from the actual ones for 100%, 90% and 88% of test cases of 
scenarios I, III and IV, respectively. However, only 50% of 
test cases for scenario II are estimated with 1-hop accuracy. 

Results listed in Table I showed that the proposed 
approach can be used to predict fault locations for both 
ground faults and short circuit faults. As indicated by scenario 
I, it can estimate the faulted section with 1-hop distance 
accuracy. Compared results for scenarios I and II, we can see 
the estimation accuracy is significantly improved by adding 
link attributes to the GNN besides node attributes. Moreover, 
as demonstrated by scenarios III and IV, the approach does 

not need re-training but still maintaining reasonable 
estimation accuracy for most cases when the topology of 
system is changed.  

V. CONCLUSIONS 
This paper has proposed a GNN based approach to locate 

fault spots within the distribution systems. The extended 
GCN model is used and configured with graph processing 
layers and full connected layers. The proposed method uses 
graph processing layers with node and link attributes to map 
system topology, bus measurements and branch parameters 
into hidden node embeddings, and full connected layers to 
relevant fault locations to node embeddings. The node 
attributes of the graph include measured phase voltage and 
current measurements. The link attributes of the graph 
integrate branch impedance, admittance and regulation 
parameters together. The fault locations are represented as 
output features of nodes. The test results showed that the 
developed approach can be used to predict fault locations for 
both ground faults and short circuit faults. It can accurately 
estimate the faulted section within 1-hop distance. More 
importantly, the approach does not need re-training while 
maintaining reasonable estimation accuracy for most of cases 
when the topology of system is changed.  

Future work may be focused on effective link attribute 
selection, more efficient training algorithm, and graph 
network configuration optimization. 
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