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Abstract
A typical approach for unsupervised anomaly detection of machine sounds learns an autoen-
coder model for reconstructing the spectrograms of normal sounds. During inference, fidelity
of the reconstruction can be used to identify anomalous sounds different from normal sounds
encountered during training. Recent improvements to the baseline autoencoder approach
mask certain regions of the spectrogram at the input to the autoencoder, and then use the
reconstruction error over masked regions as the anomaly score. We propose an alternative
approach based on the attentive neural process, a recently proposed meta-learning technique
for estimating distributions over signals. A benefit of our approach is that masked regions
of the spectrogram do not need to be pre-specified at training time, and can determined
based on signal properties or prior knowledge. Furthermore, we present an iterative approach
that finds difficult-to-reconstruct spectrogram regions, and uses the reconstruction error over
only those regions as the anomaly score. We demonstrate the effectiveness of our approach
on experiments with the six machines of the DCASE 2020 Task 2 dataset, including in the
case of zero-shot domain adaptation, where our approach outperforms baseline approaches in
predicting anomalies for unseen machine instances.
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ABSTRACT

A typical approach for unsupervised anomaly detection of machine
sounds learns an autoencoder model for reconstructing the spectro-
grams of normal sounds. During inference, fidelity of the recon-
struction can be used to identify anomalous sounds different from
normal sounds encountered during training. Recent improvements
to the baseline autoencoder approach mask certain regions of the
spectrogram at the input to the autoencoder, and then use the recon-
struction error over masked regions as the anomaly score. We pro-
pose an alternative approach based on the attentive neural process, a
recently proposed meta-learning technique for estimating distribu-
tions over signals. A benefit of our approach is that masked regions
of the spectrogram do not need to be pre-specified at training time,
and can determined based on signal properties or prior knowledge.
Furthermore, we present an iterative approach that finds difficult-to-
reconstruct spectrogram regions, and uses the reconstruction error
over only those regions as the anomaly score. We demonstrate the
effectiveness of our approach on experiments with the six machines
of the DCASE 2020 Task 2 dataset, including in the case of zero-
shot domain adaptation, where our approach outperforms baseline
approaches in predicting anomalies for unseen machine instances.

Index Terms— Anomaly detection, sound event detection, at-
tentive neural process, autoencoder.

1. INTRODUCTION

Diagnosis and monitoring of machine operating performance is im-
portant for a wide variety of applications, and can often be per-
formed by a skilled technician listening to the sounds produced by
the machine. In order to automate this process, an algorithm that
can process the sound signals produced by a machine and detect
anomalies is desirable [1–3]. Unfortunately, collecting anomalous
sounds for training supervised algorithms can be difficult, as it may
require damaging an expensive piece of machinery, or impossible,
as we may not know a priori the exact types of anomalous operat-
ing conditions that may occur. Thus, anomalies must be detected
in an unsupervised manner, where learning algorithms are trained
using only recordings obtained from observing the machine during
normal operating conditions.

One class of methods for unsupervised sound anomaly detec-
tion augments the training data such that a surrogate supervised
learning task becomes the training objective. Examples include out-
lier exposure [4,5], where sounds that are known to be very different
from those of the observed machine are used as anomalous training
examples; surrogate label prediction [6], where factors like different
instances of the same machine, or the date when the recording was
taken are used as labels; or self-supervised learning [7, 8], where a
supervised classifier is trained to predict augmentations (e.g., time-
stretching) applied to the input audio, and any sound predicted as

being augmented at inference time is labeled an anomaly.

An alternative class of approaches, which we focus on in this
paper, is based on the autoencoder (AE) [9], where a neural net-
work learns to first compress and then reconstruct the normal train-
ing data, and any sounds that cannot be accurately reconstructed
by the AE are considered anomalous. While various audio-specific
network architectures have been used for sound anomaly detec-
tion [4, 9–11], two recent successful extensions of the autoencoder
approach are particularly relevant to this paper. One is the inter-
polating deep neural network (IDNN) [12], where the model is
trained to predict a given time frame of a spectrogram-like represen-
tation from only surrounding frames, leading to improvements over
the basic autoencoder, especially for non-stationary sounds. The
other is group masked autoencoder for density estimation (Group
MADE) [13], which uses an autoregressive neural density estima-
tor, where the audio anomaly score is computed using a likelihood
of the true data with respect to Gaussian or mixture of Gaussian
parameters estimated by the autoencoder. Both IDNN and Group
MADE benefit from masking certain parts of the input and focus-
ing the anomaly score on the reconstruction of only those masked
regions. However, both IDNN and Group MADE require pre-
specified masked regions at training time, and cannot adapt to prop-
erties of the input signal at inference time.

To increase the flexibility of masking-based AE approaches, we
explore the neural process class of meta-learning models [14] for
audio anomaly detection. The neural process estimates a stochas-
tic process (i.e., model predictions also include estimates of uncer-
tainty) for a set of target points from a context set of observed data
points. By treating the context points as an un-ordered set, as op-
posed to pre-specifying an ordering as in autoregressive density es-
timators [13], and by encoding the coordinates (e.g., the bin indices
of a spectrogram) along with the features (e.g, spectrogram mag-
nitudes) at each point, the neural process can predict any masked
target regions from arbitrary regions of provided context. While the
vanilla neural process aggregates context information using a sim-
ple summation, recent extensions aggregate using attention [15] or
convolution [16], providing more powerful models.

In this paper, we investigate the effectiveness of the attentive
neural process (ANP) [15] for audio anomaly detection. Specif-
ically, using log mel spectrograms as input, we explore various
strategies for selecting subsets of time-frequency (TF) bins as con-
text sets (i.e., network inputs) and target sets (i.e., predicted TF bins
used for anomaly detection). Both the context and target sets can
be chosen at inference time based on interpolation configurations
known to work well such as that of IDNN, or using an iterative ap-
proach where multiple forward passes compute the reconstruction
error over those TF regions that are most difficult to reconstruct. We
demonstrate the effectiveness and flexibility of the proposed method
on the six machines in the DCASE 2020 Task 2 dataset [17].
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Figure 1: Example of partitioning a spectrogram into context and
target sets for anomalous sound detection.

2. PROPOSED APPROACH

We aim to learn the parameters θ of an anomaly score function
Aθ : RL×F 7→ R such that, given a sound signal produced
by a machine and represented as a (log) magnitude spectrogram
Y ∈ RL×F , where L is the number of time frames and F the
number of frequency bands, the score Aθ(Y ) is small for a normal
sound and large for an anomalous one. An overview of our pro-
posed approach is shown in Fig. 1, where we mask certain regions
of the input spectrogram and use the quality of the reconstruction
over those masked regions as the anomaly score.

2.1. Attentive neural process (ANP)

The ANP is an encoder/decoder model that can accommodate a
flexible set of observed inputs (context set) and predicted outputs
(target set) by encoding the coordinates of each element in the con-
text set along with the observed value. It then learns to estimate
conditionally independent Gaussian parameters for each element of
the target set by attending to the context points of nearby coordi-
nates as shown in Fig. 2. When the context set is small, far from
the target points of interest, or different from the observed training
data, we can expect the target set estimates to have high measures
of uncertainty (i.e., variance), while low uncertainty estimates are
expected for target points that align with the observed context.

In this work, we consider representations of audio signals such
as mel spectrograms, where xi = [`i, fi]

> ∈ R2 denotes the TF
coordinates of bin i, and yi = Y`i,fi ∈ R the magnitude at bin
i. We partition the spectrogram into context set C = (xC ,yC) =
{(xcj ,ycj )}Cj=1, and target set T = (xT ,yT ) = {(xtj ,ytj )}Tj=1,
where an example partition is shown in Fig. 1. The ANP then
learns a model for the conditional distribution of the target values
ytj given coordinates xtj and context set C, assuming conditionally
independent Gaussian distributions at each point in the target set:

pθ(yT |xT ,xC ,yC) =
T∏
j=1

pθ(ytj |xtj ,xC ,yC) (1)

=

T∏
j=1

N (ytj ;µtj , σ
2
tj ). (2)

As illustrated in Fig. 2, we obtain the Gaussian parameters at each
target point by first passing the concatenated coordinates and values
of each context point through a self-attention encoder to obtain an
encoding rcj :

rcj = Encθ([x
>
cj ,y

>
cj ]
>). (3)

We then compute the vector rtj summarizing the information in
the context set most relevant to each bin tj in the target set using
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Figure 2: Block diagram of attentive neural process model.

cross-attention as

rtj = Attentionθ(xtj ,xC, rC), (4)

where Attentionθ(Q,K, V ) denotes multihead attention [18]. Fi-
nally, we obtain the Gaussian parameters µtj and σtj for each target
point by passing the concatenation of the summarized context vec-
tor rtj with position vector xtj through a decoder network:

µtj , σtj = Decθ([x
>
tj , r

>
tj ]
>). (5)

The decoder has two output units [19], the first with a linear acti-
vation function for estimating µtj , and the second with a regular-
ized softplus activation to avoid the standard deviation collapsing
to zero, i.e., σtj = 0.1 + 0.9 · softplus(z). All parameters are
trained by maximizing the log-likelihood over all spectrograms in
the training dataset D:

θ̂ = argmax
θ

ED[log pθ(yT |xT ,xC ,yC)]. (6)

At inference time, the anomaly score for a given spectrogram is

Aθ̂(Y ) = − log pθ̂(yT |xT ,xC,yC)

∝
T∑
t=1

log(σtj ) +
(ytj − µtj )2

2σ2
tj

. (7)

If we ignore the variance by setting σtj ≡1, then the anomaly score
in (7) becomes the mean squared error (MSE) commonly used in
AE-based anomaly detection.

2.2. Masking for context and target sets

A key factor in using the ANP to detect anomalies is partitioning the
input spectrogram into context and target sets, both during training
and inference. While the image examples in [14,15] typically use a
small number of randomly selected pixels as the context set and the
entire image (including the context set) as the target set, we found
this approach to be ineffective for anomalous sound detection. In-
stead, we focus on approaches that partition spectrograms based on
entire time frames and/or frequency bands as shown in Fig. 1. In
particular, we have found the following masks to perform well in
our experiments.
Random RowCol (ANP-RRC): For training the ANP, we first ran-
domly select one or two spectrogram columns (time frames) and
up to two rows (frequency bands) as the target set, and use the re-
maining spectrogram bins as the context set, as illustrated in Fig. 1.
At inference time, to obtain a relatively stable anomaly score, we
average over three random context/target partitions.
Middle Frame (ANP-IDNN): While we train all ANPs using the
ANP-RRC approach described above, the set-based formulation al-
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lows flexibility in selecting different context and target sets at infer-
ence time. One approach, inspired by the success of interpolating
a spectrogram frame from surrounding frames as in the IDNN [12],
is to use the middle frame (frame L+1

2
for an L-frame spectrogram)

as the target set, and the surrounding frames as the context set.
Likelihood bootstrapping (ANP-Boot): Instead of a fixed parti-
tion into context and target sets as with IDNN, we can run multiple
forward passes with different context/target partitions with the goal
of computing the anomaly score over only those frames and fre-
quencies which are most difficult to reconstruct and therefore most
likely to be anomalous. We use the following procedure:
1. Use nC% of the spectrogram bins (uniformly downsampled) as

the context set, and the rest as the target set. Based on prelimi-
nary experiments on development data, we use nC = 62.5%.

2. Identify the two rows (frequency bands) and the one column
(time frame) with the lowest reconstruction likelihood.

3. Use the identified low-likelihood rows and columns as the target
set, and the rest of the spectrogram as the context set.

3. EXPERIMENTAL RESULTS

3.1. Dataset

We evaluate our approach on the DCASE 2020 Task 2 dataset [17],
which is composed of six machine types from the MIMII datset [20]
(fan, pump, slider, valve), and the ToyADMOS dataset [21] (Toy-
Car, ToyConveyor). Anomalous sound samples are recorded by in-
tentionally damaging the machines. For each machine type, there
are multiple (six or seven) machine IDs corresponding to different
instances of the same type of machine. Each audio sample is ap-
proximately 10 seconds long, with a sample rate of 16 kHz, and
contains a small amount of real factory background noise.

The dataset for each machine type is categorized as follows: (1)
DEV-train, (2) DEV-test, (3) EVAL-train, and (4) EVAL-test, where
DEV and EVAL contain disjoint sets of machine IDs, train sets con-
tain only normal examples (1000 per ID), and test sets contain a
mixture of normal and anomalous samples (200-400 per ID). In the
official DCASE 2020 Task 2 setup [17], systems are initially de-
veloped using DEV-train followed by re-training or fine-tuning on
EVAL-train. We use a slightly modified setup, where we compare
performance when machine IDs match between training and test-
ing (e.g., DEV-train and DEV-test, EVAL-train and EVAL-test), with
the case where IDs in the testing phase differ from those used in
training, and fine-tuning on the new machines is not practical (e.g.,
DEV-train and EVAL-test). This situation can arise when it is re-
quired to detect anomalies in newly manufactured machines, or in
high-volume manufacturing situations where fine-tuning for every
instance of a machine may be impractical. As evaluation metrics,
we use the area under the receiver operating characteristic curve
(AUC) between the normal and anomalous sounds in the test set.
The AUC indicates the probability that a randomly selected anoma-
lous example will have a higher anomaly score than a randomly
selected normal example. Additionally, we report the partial AUC
(pAUC), which is the AUC computed under low false-alarm rate
conditions, where p = 10%. We compute AUC and pAUC values
separately for each machine ID and then average over machine IDs
to obtain a representative score for each machine type.

3.2. Experimental Setup

We closely follow the setup in [17]. Our goal, however, is not to
focus on the ensemble techniques necessary to obtain the best per-

formance on this dataset, but rather evaluate the advantages and lim-
itations of the ANP compared to existing AE and IDNN approaches.
Specifically, we use log mel spectrograms as network input and out-
put, computed with spectrogram frame length of 1024 samples, hop
of 512, and 128 Mel bands. For all approaches, we use sliding
windows of five frames with one frame hop as network input, and
then average all windows to obtain the final anomaly score for each
sample. As baselines, we consider the AE from [17], consisting of
an encoder with four fully-connected layers of size 128, each with
batch normalization and ReLU activations, a bottleneck layer with
8 units, and a decoder of similar configuration as the encoder, ex-
cept with a linear output layer of appropriate size to reconstruct the
input. We also modify the AE into the IDNN configuration, where
we remove the middle frame from the input, and then train the net-
work to reconstruct only that middle frame, which was shown to be
the best configuration in [12]. Both the AE and IDNN use MSE as
the training loss function and inference anomaly score.

For the ANP, we use the architecture for 2D inputs from [15],
while setting all hidden layer dimensions to 128 to match the AE
and IDNN baselines. Specifically, we set the dimension of the en-
codings r in (3) and (4) to 128. For the self-attention encoder, we
first run each context point through three fully-connected layers of
size 128 and then through two standard self-attention/transformer
encoder layers [18]. We do not use dropout to limit the number of
random confounding inputs to the model. The only source of ran-
domness during training is in the selection of context and target sets.
For the cross-attention block in Fig. 2, we run the query and key co-
ordinate positions through two fully-connected layers of size 128
to obtain learned positional encodings prior to the cross-attention
block, which also includes layer normalizations and a feedforward
layer as is standard in transformer architectures. For both the cross-
attention and self-attention blocks, we use multi-head attention with
eight heads. The decoder contains three fully-connected layers with
ReLU nonlinearities, except for the final output layer, which has
the output units described in Section 2.1 for estimating µ and σ.
For all systems, we used the ADAM optimizer with learning rate
equal to 0.001, and adaptive gradient clipping [22]. Additionally,
for the ANP we used the learning rate schedule from [18] with 4000
warmup steps. We train the ANP for each machine using the ANP-
RRC approach from Section 2.2, and then compare different mask-
ing approaches at inference time.

3.3. Results

Table 1 compares the AUC and pAUC scores for all six machines
on both the DEV and EVAL sets. We see that certain ANP configura-
tions provide improved performance over the AE and IDNN base-
lines for most machines of the MIMII dataset, while not perform-
ing as well for the two machines from the ToyADMOS dataset un-
der matched training conditions (either DEV-DEV or EVAL-EVAL).
Also, similarly to what was observed in previous studies [12,13], we
note that the largest gains are obtained for non-stationary machines
such as valve and slider.
Comparison of ANP masking approaches: The different ANP
masking approaches from Section 2.2 (ANP-IDNN, ANP-RRC,
ANP-Boot) all performed best depending on the machine type as
shown in the top (DEV-DEV) portion of Table 1. Surprisingly, ANP-
RRC performed best only for pump, even though this was the strat-
egy used for training the ANP. However, since the more structured
inference strategies (ANP-IDNN and ANP-Boot) perform better,
we only show EVAL set results for those approaches.
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Table 1: AUC and pAUC for the six machines of the DCASE 2020 Task 2 dataset.
ToyADMOS MIMII

ToyCar ToyConveyor fan pump slider valve

System Train Test AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

AE DEV DEV 80.9 69.9 73.4 61.1 66.2 53.2 72.9 60.3 85.5 67.8 66.3 51.2
IDNN DEV DEV 80.3 71.4 75.1 61.4 67.7 53.1 73.7 61.3 86.6 67.1 84.5 64.0
ANP-IDNN-MSE DEV DEV 70.6 66.9 70.9 56.9 71.3 55.2 72.4 60.5 91.5 75.6 93.7 76.7
ANP-IDNN-Lik DEV DEV 70.7 65.9 70.2 56.8 69.3 54.6 69.4 60.9 93.9 81.4 91.5 71.7
ANP-RRC-MSE DEV DEV 72.5 67.3 67.0 54.5 69.2 54.4 72.8 61.8 90.7 74.2 86.9 70.7
ANP-RRC-Lik DEV DEV 72.5 66.6 66.8 55.0 67.1 54.2 69.0 59.7 92.9 79.8 88.0 72.7
ANP-Boot-Lik DEV DEV 72.9 68.1 67.1 54.2 64.8 53.0 65.5 59.0 94.9 83.1 85.2 72.0

AE EVAL EVAL 80.7 67.3 88.9 71.7 86.4 68.4 84.4 64.9 82.5 59.6 57.3 50.6
IDNN EVAL EVAL 82.3 71.1 90.2 73.3 88.2 70.9 83.5 65.0 83.2 59.9 77.2 57.9
ANP-IDNN-MSE EVAL EVAL 79.7 75.6 83.1 60.6 89.9 72.4 86.3 64.9 91.2 66.8 78.7 58.6
ANP-IDNN-Lik EVAL EVAL 80.5 75.4 83.9 62.1 89.3 69.8 87.5 66.9 93.7 73.0 72.1 55.0
ANP-Boot-Lik EVAL EVAL 77.9 70.5 68.4 53.6 85.4 65.6 82.8 63.8 94.2 74.5 72.0 56.8

AE DEV EVAL 59.3 53.9 45.3 50.3 49.3 50.8 65.4 58.5 71.3 55.8 37.1 49.1
IDNN DEV EVAL 63.5 57.2 50.7 50.5 51.5 50.7 64.1 59.6 72.1 55.8 41.2 49.8
ANP-IDNN-MSE DEV EVAL 70.9 66.1 59.6 51.0 54.6 52.2 63.0 58.0 77.9 60.1 41.5 48.8
ANP-IDNN-Lik DEV EVAL 70.7 65.8 60.1 50.9 54.4 52.3 60.1 56.5 82.4 63.3 35.3 48.7
ANP-Boot-Lik DEV EVAL 70.1 65.5 60.1 50.7 48.0 51.2 56.9 54.8 85.4 68.4 43.5 49.1

Table 2: Average mean squared error and standard deviation over all normal examples for different algorithms.
ToyADMOS MIMII

System Train Test ToyCar ToyConveyor fan pump slider valve

AE DEV DEV 10.1 ± 0.4 10.3 ± 0.5 9.3 ± 1.2 10.3 ± 1.6 10.1 ± 1.8 9.7 ± 1.3
IDNN DEV DEV 10.3 ± 0.4 10.5 ± 0.5 9.7 ± 1.2 10.8 ± 1.7 10.4 ± 1.8 10.3 ± 1.4
ANP-IDNN DEV DEV 9.5±0.3 9.5±0.4 8.9±0.6 9.5±1.0 9.4±1.0 9.3±0.7

AE DEV EVAL 14.2 ± 1.9 17.6 ± 1.1 10.3 ± 1.3 11.0 ± 2.0 10.6 ± 1.7 10.5±1.5
IDNN DEV EVAL 14.7 ± 1.7 16.7 ± 1.1 10.9 ± 1.4 11.5 ± 2.1 11.0 ± 1.7 12.8 ± 2.2
ANP-IDNN DEV EVAL 11.6±0.6 11.9±0.7 9.4±0.6 9.4±0.6 9.8±1.1 11.3 ± 1.5

Impact of uncertainty estimation: We compare using the nega-
tive log likelihood from (7) as the anomaly score (denoted “-Lik”
in Table 1) with a version where we ignore the variance estimates
from the ANP and use MSE at inference time (denoted “-MSE” in
Table 1). While using negative log-likelihood as the anomaly score
is beneficial for the slider, many of the other machines exhibit simi-
lar or superior performance using MSE for the ANP anomaly score.
This indicates that we may need to use more general distributions
than a Gaussian, or investigate other methods that incorporate the
uncertainty estimates more effectively.
Robustness to new machine IDs: In Table 1, we also consider the
zero-shot domain adaptation situation, where systems trained on the
DEV set are evaluated on unseen machine IDs from the EVAL set.
In this case, the ANP approaches generalize much better than the
AE or IDNN methods for ToyCar, ToyConveyor, and slider, slightly
better for fan and valve, and slightly worse for pump.

To help analyze the increased robustness provided by the ANP,
we compare the average reconstruction error for all normal spectro-
grams in Table 2. The ANP has lower reconstruction error for all
machine types except valve in both domain matched (DEV-DEV)
and mismatched (DEV-EVAL) conditions. Additionally, the rela-
tive difference in reconstruction error between matched and mis-
matched cases is generally much lower for the proposed ANP ap-
proach. We suspect the improved reconstruction performance can
be attributed to the meta-learning aspect of the ANP. That is, un-
like AE and IDNN which focus on minimizing reconstruction er-
ror for a given set of signals, the ANP methodology seeks to learn

an underlying generative stochastic process, of which the training
set is a realization. Therefore, for a given set of context points on
unseen data, it can exploit statistical properties of the underlying
distribution (rather than specific ‘seen’ instances as in AE/IDNN).
A side effect of the ANP’s strong reconstruction abilities suggests
one of the main difficulties in unsupervised anomaly detection: ro-
bust reconstruction is important for the zero-shot domain adaptation
scenario, but too much adaptability may be detrimental, as demon-
strated by the relatively poor performance of the ANP approaches
for the ToyADMOS DEV set in Table 1, where spectrograms pro-
duced by anomalous sounds are reconstructed well enough that they
cannot be distinguished from normal sounds.

4. CONCLUSION
This work proposed a framework for anomalous sound detection
based on the attentive neural process. Our approach extends pre-
vious approaches based on reconstructing or interpolating spectro-
grams of normal sounds by including encodings of TF bin loca-
tions in the network architecture, and treating the regions that we
reconstruct as sets, allowing for a wide variety of different con-
text/target configurations at inference time. Future extensions in-
clude exploring different variations of the neural process such as
the convolutional [16] and sequential [23] variants, and estimating
mixture model parameters for each TF bin as in [13, 24]. Finally,
the inference-time flexibility and meta-learning aspects of the neu-
ral process should be useful in situations where a small number of
anomalous sounds are observed as in [25, 26].



2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

5. REFERENCES

[1] A. Ito, A. Aiba, M. Ito, and S. Makino, “Detection of ab-
normal sound using multi-stage GMM for surveillance micro-
phone,” in Proc. IAS, vol. 1, Aug. 2009, pp. 733–736.

[2] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and
A. Sarti, “Scream and gunshot detection and localization for
audio-surveillance systems,” in Proc. AVSS, Sep. 2007, pp.
21–26.

[3] Y. Kawaguchi and T. Endo, “How can we detect anomalies
from subsampled audio signals?” in Proc. MLSP, Sep. 2017,
pp. 1–6.

[4] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada,
“Unsupervised detection of anomalous sound based on deep
learning and the neyman–pearson lemma,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 27, no. 1, pp. 212–224,
2018.

[5] P. Primus, V. Haunschmid, P. Praher, and G. Widmer,
“Anomalous sound detection as a simple binary classification
problem with careful selection of proxy outlier examples,” in
Proc. DCASE, Nov. 2020, pp. 170–174.

[6] J. A. Lopez, H. Lu, P. Lopez-Meyer, L. Nachman, G. Stem-
mer, and J. Huang, “A speaker recognition approach to
anomaly detection,” in Proc. DCASE, Nov. 2020, pp. 96–99.

[7] T. Inoue, P. Vinayavekhin, S. Morikuni, S. Wang, T. H. Trong,
D. Wood, M. Tatsubori, and R. Tachibana, “Detection of
anomalous sounds for machine condition monitoring using
classification confidence,” in Proc. DCASE, Nov. 2020, pp.
66–70.

[8] R. Giri, S. V. Tenneti, F. Cheng, K. Helwani, U. Isik, and
A. Krishnaswamy, “Self-supervised classification for detect-
ing anomalous sounds,” in Proc. DCASE, Nov. 2020, pp. 46–
50.

[9] E. Marchi, F. Vesperini, F. Eyben, S. Squartini, and
B. Schuller, “A novel approach for automatic acoustic nov-
elty detection using a denoising autoencoder with bidirec-
tional LSTM neural networks,” in Proc. ICASSP, Apr. 2015.

[10] E. Cakır and T. Virtanen, “Convolutional recurrent neural net-
works for rare sound event detection,” in Proc. DCASE, Nov.
2017.

[11] T. Hayashi, T. Komatsu, R. Kondo, T. Toda, and K. Takeda,
“Anomalous sound event detection based on wavenet,” in
Proc. EUSIPCO, Sep. 2018, pp. 2494–2498.

[12] K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. Endo, and
Y. Kawaguchi, “Anomalous sound detection based on interpo-
lation deep neural network,” in Proc. ICASSP, May 2020, pp.
271–275.

[13] R. Giri, F. Cheng, K. Helwani, S. V. Tenneti, U. Isik, and
A. Krishnaswamy, “Group masked autoencoder based density
estimator for audio anomaly detection,” in Proc. DCASE, Nov.
2020, pp. 51–55.

[14] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho,
D. Saxton, M. Shanahan, Y. W. Teh, D. Rezende, and S. A.
Eslami, “Conditional neural processes,” in Proc. ICML, Jul.
2018, pp. 1704–1713.

[15] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami,
D. Rosenbaum, O. Vinyals, and Y. W. Teh, “Attentive neural
processes,” in Proc. ICLR, May 2019.

[16] J. Gordon, W. P. Bruinsma, A. Y. Foong, J. Requeima,
Y. Dubois, and R. E. Turner, “Convolutional conditional neu-
ral processes,” in Proc. ICLR, Apr. 2020.

[17] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura,
Y. Nikaido, R. Tanabe, H. Purohit, K. Suefusa, T. Endo,
M. Yasuda, and N. Harada, “Description and discussion
on DCASE2020 challenge task2: Unsupervised anomalous
sound detection for machine condition monitoring,” in Proc.
DCASE, Nov. 2020, pp. 81–85.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Proc. NIPS, Dec. 2017, pp. 6000–6010.

[19] T. A. Le, H. Kim, M. Garnelo, D. Rosenbaum, J. Schwarz,
and Y. W. Teh, “Empirical evaluation of neural process ob-
jectives,” in NeurIPS Workshop on Bayesian Deep Learning,
Dec. 2018.

[20] H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido, K. Sue-
fusa, and Y. Kawaguchi, “MIMII Dataset: Sound dataset for
malfunctioning industrial machine investigation and inspec-
tion,” in Proc. DCASE, Oct. 2019, pp. 209–213.

[21] Y. Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto,
“ToyADMOS: A dataset of miniature-machine operating
sounds for anomalous sound detection,” in Proc. WASPAA,
Oct. 2019, pp. 313–317.

[22] P. Seetharaman, G. Wichern, B. Pardo, and J. Le Roux, “Au-
toClip: Adaptive gradient clipping for source separation net-
works,” in Proc. MLSP, Oct. 2020.

[23] J. Yoon, G. Singh, and S. Ahn, “Robustifying sequential neu-
ral processes,” in Proc. ICML, Jul. 2020, pp. 10 861–10 870.

[24] W. J. Lee, K. Helwani, S. Tenneti, and A. Krishnaswamy,
“Robust audio anomaly detection,” in RobustML Workshop at
ICLR, May 2021.

[25] Y. Koizumi, S. Murata, N. Harada, S. Saito, and H. Uematsu,
“SNIPER: Few-shot learning for anomaly detection to min-
imize false-negative rate with ensured true-positive rate,” in
Proc. ICASSP, May 2019, pp. 915–919.

[26] Y. Koizumi, M. Yasuda, S. Murata, S. Saito, H. Uematsu,
and N. Harada, “Spidernet: Attention network for one-shot
anomaly detection in sounds,” in Proc. ICASSP, May 2020,
pp. 281–285.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2021-129.pdf
	page 2
	page 3
	page 4
	page 5


