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Abstract
This paper demonstrates a learning-based THz multi-layer pixel identification for contact-
less three-dimensional (3-D) positioning and encoders. More specifically, we propose a one-
dimensional convolution-based residual network to deal with practical issues including 1)
depth variation, 2) shadow effect, and 3) content recognition at the back surface of each
layer. Experimental validation on a three-layer sample with contents on all surfaces is also
provided.

International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
2021

(© 2021 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139






Learning-Based THz Multi-Layer Imaging
for High-Capacity Positioning

P. Wang*, T. Koike-Akino*, Rui Ma*, P. V. Orlik*, G. Yamashitaf, W. Tsujita®, and M. Nakajima®
*Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA.
tMitsubishi Electric Corporation Advanced Technology R&D Center, Amagasaki City, 661-8661, Japan.
Hnstitute of Laser Engineering, Osaka University, Osaka 565—0871, Japan.

Abstract—This paper considers THz multi-layer imaging for
three-dimensional (3D) positioning and encoders. A learning-
based approach is introduced to address challenges such as 1)
depth variation, 2) shadowing effect, and 3) content recognition
at the back surface of each layer. Experimental validation on a
three-layer sample with contents on both front and back surfaces
is provided to evaluate the effectiveness of the proposed approach.

I. INTRODUCTION

The use of terahertz (THz) wave for absolute positioning has
recently been demonstrated in [1]-[8] for contactless sensing,
operations under harsh conditions (e.g., fire and smoke), and
robustness to dust and dirt. THz barcode positioning using
one-dimensional (1D) THz linear encoders was considered and
experimentally verified in [1]-[4], while THz QR positioning
using two-dimensional (2D) THz encoders was verified in [5]-
[8]. In this paper, we extend from THz 1D/2D positioning to
THz 3D positioning with layered QR patterns by utilizing THz
penetration capability through non-conducting materials.

Several challenges need to be addressed: First, depth vari-
ations from one pixel to another due to either the irregular
sample surface or the vibration from the mechanical scanning
process. Second, the shadowing effect caused by non-uniform
penetrating illumination from front layers to deep layers; see
Fig. 1 (b). Third, the limited capability to recognize content
in the back surface of each layer.

II. LEARNING-BASED THZ MULTI-LAYER POSITIONING

To address the above challenges, we formulate the multi-
layer content recovery as a classification problem and intro-
duce a residual learning network to address the depth variation
and directly output the score value for each surface.

A. Proposed Network Architecture

The proposed deep neural network architecture for THz
multi-layer position is shown in Fig. 2. It first feeds time-
domain reflected THz waveform x to an input block that
consists of a convolution layer with a kernel size of 7 and
a stride of 2 to reduce the dimension while increasing the
number of channels from 1 to 8, a batch normalization (BN)
layer for regularization, a rectified linear unit (ReLU) layer
for nonlinearity, and a max pooling layer (maxPool):

yo = maxPool { fo(x,80)} , (H

@ )

Fig. 1. (a) THz-TDS multi-layer imaging with a raster scanning and (b) the
shadow of three letters on the Ist layer is clearly shown on the 2nd layer.

where fy denotes the input-output mapping that consists of the
input convolution layer with kernel parameters 6 (weights and
biases) and the nonlinear ReLU layer.

Then, y is fed into Ny consecutive residual blocks [9],

ve=fo(ye-1,00) + Werye—1, £=1,2,...,Nq, (2)

where the first term f, represents the residual mapping path
with parameters 6, and the second term denotes the skip
connection path with weights W,_.

As shown in Fig. 2, all residual blocks have the same
structure but with different numbers of channels: The residual
mapping path consists of a first 1D convolution layer with a
stride of 2 to reduce the input dimension by half, followed by
the batch normalization and ReLU layers, and a second con-
volution layer with the stride of 1; On the other hand, the skip
connection path has only one convolution layer (represented
by W,_1) with a kernel size of 1 and a stride of 2 to match
the dimension of the residual mapping path. The outputs from
the two paths are added together before feeding into another
ReLU activation to generate the output for each residual block.
With Ny residual blocks, the network successively downsizes
the dimension and increases the number of features.

For the output block, we use an average pooling (avePool)
layer to further reduce the dimension, then flatten its output
into a vector, and use a fully-connected layer to generate an
output vector u € RV*! where N = 2L represents the total
(front/back) surfaces of L layers. Fig. 2 shows the case of
N = 6 surfaces of a sample of L = 3 layers.

B. Multi-Label Classification

Instead of classifying each input waveform into one of
2N classes [6], i.e., a multi-class classification, we use the
(weighted) multi-label binary classification with each label
precisely corresponding to a binary label (i.e., {0,1}) for
each surface. This multi-label formulation allows us to directly
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Fig. 2. The THz residual learning neural network with multi-label (multi-
surface) binary output classification. For a 3-layer sample, N = 6 output
scores for all front and back surfaces are computed at the network output.

compute the score for each surface at the output of the neural
network. To this end, the output u is first converted to the
score vector s € [0, 1] using the sigmoid function

1
N et b
For the n-th surface, the binary cross-entropy loss function
is computed using the score s, and the corresponding binary
label ¢, € {0,1}. Then, the total loss function takes the

weighted average of the N individual losses as

N 3)

N
1
L= - nz::l WnCn 10g(5n), 4)

where w,, is the weight on the n-th surface. The binary imaging
result is obtained by comparing s with a threshold of 0.5.

III. EXPERIMENTAL RESULTS

Fig. 3 (a) shows a three-layer sample mounted on the raster
scan stage of a THz-TDS testbed. For each layer, both front
and back surfaces are drawn by pencils in a way that 8x8 = 64
pixels in an area of 40 x 40 mm? was scanned. Each pixel of
the size 5 x 5 mm? corresponds to a unique N x 1 binary
label c. For instance, ¢ = [1,0, 1,0, 1, 0] implies that all front
surfaces are covered by the pencil while the back surfaces are
blank. With a scanning stepsize of 0.5 mm, we can have a set
of 10 x 10 = 100 THz-TDS waveforms. We randomly split
the collected waveforms into training (0.6), validation (0.1),
and test (0.3) datasets. The training dataset is augmented by
shifting the waveform (Fig. 3 (b)) and adding Gaussian noise
to improve the invariance to the depth variation. The learning
trajectory in terms of the total classification accuracy over 6
surfaces is shown in Fig. 3 (c) over epochs. Figs. 3 (d) shows
the computed score vectors for a selected pixel in the test
dataset which are close to the true multi-label binary label.

To show the final imaging result, we select one testing
waveform for one pixel and pull the score vector and final
binary results together according to the pixel coordinate.
Fig. 4 shows the comparison between the traditional time-
gated reflection intensity approach (the left column) and the
learning-based approach (the middle and right columns). The
traditional approach suffers from the shadowing effect from
the front layers to the deep layers and the limited separation
between two closely spaced surfaces. On the contrary, the
score values of the learning-base method resemble the true
content over all 6 surfaces with a reduced shadowing effect.
The deep layers show slightly higher fluctuations of the score
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Fig. 3. (a) The THz-TDS testbed with a raster scanning stage and a three-
layer sample; (b) examples of augmented training waveforms; (c) training
trajectory of classification accuracy over epochs; (d) score values for a selected
pixel in the test dataset.
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Fig. 4. Performance comparison between the learning-based method and a
reflection intensity method.

values than the front layers. By thresholding the score values,
the final binary result is shown in the right column.

IV. CONCLUSION

This paper has shown the learning-based THz 3D content
extraction for high-capacity positioning. The residual learning
network was experimentally verified to achieve robustness
against depth variation, reduce the shadowing effect, and
improve the separation between closely spaced surfaces.

REFERENCES

[1] B. Wang, et al., “Metamaterial absorber for THz polarimetric sensing,”
in SPIE Photonics West, 2018.

[2] K. Sadamoto, et al., “Terahertz polarimetric sensing for linear encoder,”
in IRMMW-THz, Sep. 2018.

[3] G. Yamashita, et al., “Terahertz polarimetric sensing for linear encoder
based on a resonant-tunneling-diode and CFRP polarizing plates,” in
IRMMW-THz, Sep. 2019.

[4] G. Yamashita, et al., “Evaluation of position error of terahertz polarimetric
encoder by ray-tracing method,” in JRMMW-THz, Nov. 2020.

[5] H. Fu, et al., “Terahertz imaging of multi-level pseudo-random re-
flectance,” in IRMMW-THz, Sep. 2018.

[6] P. Wang, et al., “Learning-based shadow mitigation for terahertz multi-
layer imaging,” in IRMMW-THz, Sep. 2019.

[7] P. Wang, et al., “Terahertz QR positioning: Experimental results,” in
IRMMW-THz, Nov. 2020.

[8] P. Wang, et al., “Methods and systems for terahertz-based positioning,”
2020, US Patent 10,795,151.

[9] K. He, et al.,, “Deep residual learning for image recognition,”
CVPR, 2016, pp. 770-778.

in 2016



	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2021-098.pdf
	page 2


