
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Blockchain for Embedded System Accountability
Chiu, Michael; Goldsmith, Abraham; Kalabic, Uros

TR2021-041 May 04, 2021

Abstract
We present, in the form of a proof of concept, a permissioned blockchain framework that
attains accountability within a system containing embedded devices. Accountability is a de-
sirable property of distributed systems that enables the detection, identification, and removal
of faulty or malicious behavior. It is a complementary approach to Byzantine fault toler-
ance, which is concerned with ensuring continued functioning of the system in the presence
of Byzantine faults. Our proof of concept consists of a Raspberry Pi acting as a human
interface; the blockchain is implemented in Hyperledger Fabric and the Raspberry Pi runs a
lightweight blockchain client to minimize computational burden. The application shows that
we are able to use smart contracts to detect and identify faulty or malicious hardware, and
the permissioning framework to remove it.

IEEE International Conference on Blockchain and Cryptocurrency (ICBC)

c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Blockchain for Embedded System Accountability
Michael Chiu

Department of Computer Science
University of Toronto

Toronto, ON M5S 2E4
chiu@cs.toronto.edu

Abraham Goldsmith
Mitsubishi Electric Research Labs

Cambridge, MA 02139
goldsmith@merl.com

Uroš Kalabić
Mitsubishi Electric Research Labs

Cambridge, MA 02139
kalabic@merl.com

Abstract—We present, in the form of a proof of concept, a
permissioned blockhain framework that attains accountability
within a system containing embedded devices. Accountability is
a desirable property of distributed systems that enables the detec-
tion, identification, and removal of faulty or malicious behavior. It
is a complementary approach to Byzantine fault tolerance, which
is concerned with ensuring continued functioning of the system
in the presence of Byzantine faults. Our proof of concept consists
of a Raspberry Pi acting as a human interface; the blockchain is
implemented in Hyperledger Fabric and the Raspberry Pi runs a
lightweight blockchain client to minimize computational burden.
The application shows that we are able to use smart contracts
to detect and identify faulty or malicious hardware, and the
permissioning framework to remove it.

Index Terms—Blockchain, accountability, distributed systems,
fault detection

I. INTRODUCTION

In distributed systems, apart from security, the primary
problem is ensuring trust [1]. However, the distributed na-
ture of networked systems makes trust difficult to guarantee
because the system must not only demonstrate robustness
to both malicious actors and faults, but also transparency.
Broadly, there are two approaches to increasing the robustness
of a system: implementing Byzantine fault tolerant (BFT)
algorithms and introducing accountability. BFT algorithms
robustify a distributed system by making it tolerant of up to
roughly one third of participants exhibiting Byzantine-faulty
behavior [2]. However, robustness does not mean that a system
is able to identify and remove faulty participants, or that it
increases transparency.

An improvement on robustness is accountability. Account-
ability is a property of networked systems enabling the de-
tection, identification, and isolation of malicious participants.
In contrast to a BFT-based approach, accountability also
increases transparency within a system. This is because an
accountable system is able to detect and identify malicious par-
ticipants; accountability relies on the auditability of a system
[3]. Auditability is a sub-property of accountable systems that
is related to an increase in the transparency of a system, which
increases its trust. The key to auditability is the enablement of

This work was supported by Mitsubishi Electric Research Laboratories.

secure, tamper resistant, tamper evident, and transparent audit
logs.

Accountability has long been recognized as a desirable
property of trustworthy systems [4] and is being increasingly
recognized as a desirable property of distributed systems [5],
[6], where it has been shown to increase the robustness of a
system [7]. Indeed, it has been demonstrated that identifying
and isolating faulty messages can improve throughput for state
machine replication in faulty scenarios by up to 70% [8].

A number of accountable systems have been proposed in the
literature but have proven difficult to put into practice. One
of the earliest was PeerReview [9]. Another is FullReview
[10], a protocol based on game-theoretic protocols that also
aims to enable accountability in a system. However, significant
limitations remain: both protocols require modification of the
target software and must be included in each target application.
Any scheme that attempts to implement accountability into a
system must be able to secure audit logs and the importance of
this has long been recognized [11], [12]. Early approaches to
securing audit logs were mainly cryptographic, such as that of
[13]. More recent approaches to secure logging are blockchain
based [14], [15]. The blockchain data structure itself satisfies
many of the properties, such as being append-only, required
for securing an audit log.

In this work, we present an application of permissioned
blockchains in conjunction with kernel-level instrumentation
technologies to the problem of enabling accountability within
a distributed system containing embedded devices. We present
an application of this idea in the form of a proof of con-
cept (PoC), implemented using the permissioned blockchain
framework of Hyperledger Fabric [16] and a Raspberry Pi.
The Raspberry Pi serves as a human-computer interface via
a button press; Fabric is implemented due to its modular
architecture, which enables proper separation of concerns. We
also note that Fabric has been put into use by many enterprises,
and industrial and government projects, e.g., [17].

The rest of the paper is structured as follows. Section II
presents the case for permissioned blockchains as simple and
robust solutions to enabling accountability within a distributed
system. Section III presents the PoC implementing an ac-
countable blockchain-based system in Fabric. Section IV is
the conclusion.978-0-7381-1420-0/21/$31.00 c©2021 IEEE

II. BLOCKCHAIN FOR ACCOUNTABLE DISTRIBUTED
SYSTEMS

As a primary principle behind the design of dependable
network systems [18], accountability consists of the following
three properties [19]:

1) Fault prevention: discouragement of malicious behavior
by increasing its cost;

2) Fault tolerance: detection and isolation of faults and
prevention of their spread to other parts of the system;

3) Fault removal: removal of misbehaving actors from the
system to limit their impact on the rest of the system.

It is clear from the definitions that system accountability
relies greatly on system auditability. Auditability, in turn, relies
on the security of audit logs which must maintain the following
to be suitable for use in audits [20]:

• Tamper resistance: Guarantee that only the creator can
add valid entries and that entries cannot be altered;

• Verifiability: Ability to check that log entries have not
been deleted or altered;

• Data access control and searchability: Search accessibility
to only a subset of audit logs.

Blockchain technology satisfies all three and, indeed, the
applicability of blockchain to securing audit logs has gained
widespread recognition [14] and led to a large number of
applications of blockchain to various domain-specific secure
logging problems. In the following, we show that, in addition
to auditability, a permissioned blockchain network of nodes
satisfies the three properties of an accountable distributed
system, thereby increasing the robustness and trustworthiness
of the system.

A. Fault Prevention

Malicious actors within a distributed system can hamper the
system by causing nodes to behave in unexpected ways. For
example, a malicious actor can cause equivocation, which is
when the actor takes control of a node and reports different
truths to different participants within the system. The general
problem of designing reliable distributed systems in the pres-
ence of unexpected behavior from the participants (whether
due to failure or maliciousness) is known as the Byzantine
generals problem [21] and has led to a class of algorithms
known as practical Byzantine fault tolerant (PBFT) algorithms
that provide tolerance of malfunctioning participants [2], [22].

An auditable system that is able to provide a trusted
single source of truth of the operations of participating nodes
greatly discourages and can, depending on the implementation,
prevent equivocation entirely. For example, in [23], the pro-
posed append-only log abstraction prevents equivocation and
improves on PBFT consensus algorithms.

Blockchain technology, when permissioned, is able to real-
ize a system capable of fault prevention. Smart contracts in
permissioned blockchains are trusted and, in conjunction with
kernel instrumentation,1 can ensure that activity associated

1A family of technologies used by modern kernels to record and profile
kernel events, e.g., Linux Audit system, Probes, Tracepoints, eBPF

with a node can be trusted; the blockchain data structure can
act as a shared data layer amongst participating nodes that
decentralizes and removes the need for trusted log storage
and ensures the immutability of the data. Thus, a permissioned
blockchain can make transparent the actions of all participants,
which would greatly increase the cost of malicious behavior.

B. Fault Tolerance

The blockchain data structure, as an irrefutable source of
truth within a network, enables the detection of faults and ma-
licious behavior. Faults can arise due to malfunctioning code,
perhaps due to faulty data or an internal node error, and may
cause a node to fail; they may also be caused by maliciousness.
Either way, faults can be isolated at the network level using
smart contracts. In permissioned blockchain networks, such as
Fabric, smart contracts are the interface between a node and
the blockchain network. Inputs to the network from a node can
be checked by a smart contract for validity. A smart contract,
upon detecting data outside a valid set of parameters, is able to
log the attempted call with the parameters for audit purposes
and not execute the faulty program.

Fault tolerance also requires two properties: determinism
and strong identity [9], both of which are satisfied by any
permissioned blockchain system by default. Determinism stip-
ulates that any node given the same input should return the
same output. Strong identity stipulates that participants must
be uniquely identifiable.

C. Fault Removal

Blockchain-based auditability provides a single source of
truth for the actions taken by the participants and the activity
within a node, which can be used to identify faulty behavior.
Once identified, removal of participants can be accomplished
simply by revoking the membership of malfunctioning nodes
in the permissioned network.

III. PROOF OF CONCEPT

We implement a PoC as an example of a blockchain-
enabled accountable system. In the system, a human operator
communicates with the blockchain through a client device
implemented on a Raspberry Pi. The PoC shows how we
can provide accountability by publishing interactions with the
device to the blockchain using network-trusted smart contracts
to record the data. The specific types of interactions we
implement are login attempts and buttons presses on the
Raspberry Pi, representing a common need in certain types
of regulatory frameworks.

We are concerned with permissioned members of the net-
work acting maliciously. We assume that the network, in part
due to its permissionedness, is sufficiently protected from
malicious actors outside of the network. The main concern
is equivocation, which is only possible to achieve by editing
the OS since smart contracts in permissionless blockchain
networks are shared between all participants and therefore
trusted by the network. Another relevant security threat is the
compromise of a physical interface device, which in our case

Organizational
Blockchain

Node AOrderer A

Node B Node DNode C

Fig. 1. PoC system level diagram; arrows represent flow of information

is the Raspberry Pi. The PoC is susceptible to this threat, but
studying the problem is outside the scope of this short paper.

The implementation was done in Fabric, which is a
Go-based open-source library for creating permissioned
blockchain networks and was chosen because it is scalable and
modular and because of the active open-source community of
contributors that work on the Fabric project.

A. Blockchain Architecture

Fig. 1 shows a system-level diagram of the nodes imple-
mented in the PoC. In the PoC, a parent organization (red
node in the figure) observes the blockchain and its interaction
with the blockchain is read-only. The parent organization also
acts as a blockchain ordering service (red orderer); in the
PoC, this is implemented through conventional application
of Fabric libraries. The parent organization observes children
organizations (boxes containing purple nodes). These can
represent a company subject to regulations or local subsidiaries
of a larger corporation subject to monitoring. Their interactions
with the blockchain are capable of both reading and writing. In
the figure, we show that the yellow Node C communicates with
the blockchain through Node B. The communication between
these two nodes is made possible with the implementation
of a lightweight client that does not implement a full node.
The reason for this architecture is to allow embedded devices,
which are not typically capable of running a full node, to
communicate with the blockchain. In the PoC, the embedded
device is the Raspberry Pi on which we have implemented a
lightweight client.

B. Implementation in Hyperledger Fabric

Fabric is a Docker-based framework where nodes in the net-
work are represented using Docker containers and the Fabric
library compiles into a number of binaries that contain the
blockchain network functionality. The two most important bi-
naries related to the execution of a Fabric blockchain network
are the orderer and the peer binaries. The orderer binary
is an executable containing the ordering service and is a Go-
based daemon; the peer binary containing the functionality
for running a blockchain node in Fabric is a command line
application used to interact with the Fabric blockchain network
through a node or, as referred to in Fabric documentation, peer.

Blockchain functionality is implemented by providing func-
tions from the chaincode interface in Fabric. Chaincodes are
compiled into Go binaries which are then run on peers. The
separation of peer and chaincode executables has at least two
advantages: a peer can run multiple chaincodes and chaincode
failure should not crash the node.

As shown in Fig. 1, the PoC consists of four types of nodes:
ordering node (red diamond), observing node (red circle),
operating node (purple circles), and lightweight client (yellow
circle). We describe each in the following.

a) Orderer nodes: These nodes order transactions in the
network. In the PoC, we implement the orderer through the
conventional application of Fabric libraries.

b) Observer nodes: These are run by observers in order
to carry out real-time auditing. They are full nodes, meaning
that they synchronize a complete copy of the blockchain and
are able to participate in the consensus process by proposing
transactions.

c) Operator nodes: These participate actively in the
consensus process by constructing transactions containing data
from OS auditing mechanisms. Operator nodes can be servers
running a dedicated node aggregating OS auditing data from
multiple OSes, or they can run on top of an individual OS.

d) Lightweight clients: Most modern computers are em-
bedded devices with have limited computational resources that
make them unable to run a full node and therefore store a
full copy of the blockchain. Lightweight blockchain clients
enable embedded devices to be administered by the blockchain
network protocol itself and, in the PoC, we implement a
lightweight client on the Raspberry Pi. We do this by running a
peer binary on the embedded device; due to the architecture of
Fabric, the peer binary itself acts as a lightweight client since
it is a trusted binary used to interact with the permissioned
blockchain network.

C. Raspberry Pi and Permissioning

The Raspberry Pi acts as a permissioned, embedded device
providing a human control interface device to the network. We
log the action of a human operator, who may or may not be
authorized, and who interacts with an embedded terminal that
is trusted by the network. We note that, since the Raspberry Pi
runs on the ARM instruction set, the available Fabric binaries
and Docker images do not work. To enable compatibility, we
built from source with ARM64 as the target backend.

Blockchain
Network

node

RPi

Human
Operator

Credentials
Service

a)

d)
b)

c)

Fig. 2. Schematic of permissioning involving human operators in the PoC
where a) the human operator inputs some commands into the Raspberry
Pi along with some credentials; b) the credentials are sent to an LDAP
credentialing service; c) the results are returned to the lightweight client;
if the credentials are valid, the lightweight client proceeds with packaging
a transaction containing the operator’s command and some audit data; if
invalid, the lightweight client constructs a transaction indicating a failed
credential attempt and the requested command for audit purposes; finally d)
the transaction is sent to a full node for inclusion into the blockchain

Fig. 2 illustrates this functionality as implemented in the
PoC. In the figure, nodes that are permissioned by the network
during setup of the network are contained in the green box.
The human operator is unpermissioned and not part of the
network. In the PoC, the human operator provides authentica-
tions through a terminal, after which an LDAP credentialing
service determines whether he is permitted to log a button
press onto the blockchain. The exercise of pressing a button on
a Raspberry Pi shows how physical processes can be audited
with blockchain, satisfying fault tolerance. The permissioning
of the Raspberry Pi demonstrates fault removal.

D. Discussion

The PoC shows that a permissioned blockchain is able to
provide a simple and robust solution to enabling accountability
within a permissioned blockchain system. It illustrates that
physical processes can be made accountable, digitally, through
blockchain enabled auditability and smart contracts as trusted
network services. Fig. 3 provides the result of the invocation of
a chaincode checking the history, i.e., audit trail, of the button
presses on the Raspberry Pi recorded on the blockchain. The
blue and green boxes show successful attempts of the button

Fig. 3. Audit trail of button presses on the Raspberry Pi recorded on the
blockchain

presses. A recorded failed attempt at altering the state, due to
incorrect credentials, is shown by the red box. Our prototype
demonstrates that a permissioned blockchain network prevents
equivocating the occurrence of a physical button press.

IV. CONCLUSION

In this paper, we considered the application of blockchain to
ensuring accountability in distributed systems. We discussed
how permissioned blockchains are well suited to this problem
because the blockchain, as an immutable, append-only data
structure that is replicated among all participants, provides a
single source of truth that makes the detection and identifica-
tion of malicious behavior straightforward, and because per-
missionedness makes removal of participants straightforward.

We presented an application in the form of a proof of
concept implemented in Hyperledger Fabric and showed some
of the additional benefits of using a permissioned blockchain
framework. Our PoC included an embedded hardware compo-
nent demonstrating an example of how a physical processes
may be made digitally accountable.

ACKNOWLEDGMENTS

The authors acknowledge Masafumi Yamada, Daiki
Nakashima, and Emi Sugiyama of Mitsubishi Electric Cor-
poration for technical discussions.

REFERENCES

[1] S. Pearson and A. Benameur, “Privacy, security and trust issues arising
from cloud computing,” in Proc. IEEE Int. Conf. Cloud Comput. Tech-
nol. and Sci., Indianapolis, IN, 2010, pp. 693–702.

[2] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proc. Symp. Operating Syst. Des. and Implementation, New Orleans,
1999, pp. 173–186.

[3] R. K. L. Ko, B. S. Lee, and S. Pearson, “Towards achieving accountabil-
ity, auditability and trust in cloud computing,” in Proc. Int. Conf. Ad-
vances Comput. Commun., Kochi, India, 2011, pp. 432–444.

[4] Department of Defense, “Trusted Computer System Evaluation Criteria,”
Standard DoD 5200.28-STD, 1985.

[5] A. Haeberlen, “A case for the accountable cloud,” ACM SIGOPS OSR,
vol. 44, no. 2, pp. 52–57, 2010.

[6] B. E. Ujcich, A. Miller, A. Bates, and W. H. Sanders, “Towards
an accountable software-defined networking architecture,” in IEEE
Conf. Netw Softwarization, Bologna, Italy, 2017.

[7] A. Haeberlen, P. Kouznetsov, and P. Druschel, “The case for Byzantine
fault detection.” in Proc. Workshop Hot Topics Syst. Dependability,
Seattle, WA, 2006.

[8] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini, “Practical hard-
ening of crash-tolerant systems,” in Proc. USENIX Annu. Tech. Conf.,
Boston, 2012, pp. 453–466.

[9] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical
Accountability for Distributed Systems,” ACM SIGOPS OSR, vol. 41,
no. 6, pp. 175–188, 2007.

[10] A. Diarra, S. B. Mokhtar, P.-L. Aublin, and V. Quéma, “Fullreview:
Practical accountability in presence of selfish nodes,” in Proc. IEEE
Int. Symp. Rel. Distrib. Syst., Nara, Japan, 2014, pp. 271–280.

[11] B. Schneier and J. Kelsey, “Secure audit logs to support computer
forensics,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 2, p. 159–176, 1999.

[12] M. Swanson and B. Guttman, “Generally accepted principles and
practices for securing information technology systems,” NIST, Special
Publication 800-14, 1996.

[13] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on
untrusted machines,” in Proc. USENIX Secur. Symp., San Antonio, TX,
1998, pp. 53–62.

[14] L. Shekhtman and E. Waisbard, “Engravechain: Tamper-proof dis-
tributed log system,” in Proc. Workshop Blockchain-Enabled Netw. Sen-
sor, New York, 2019, pp. 8–14.

[15] B. Putz, F. Menges, and G. Pernul, “A secure and auditable logging
infrastructure based on a permissioned blockchain,” Comput. Secur.,
vol. 87, no. 101602, 2019.

[16] E. Androulaki et al., “Hyperledger Fabric: A distributed operating
system for permissioned blockchains,” in Proc. EuroSys Conf., no. 30,
2018.

[17] Federal Reserve Bank of Boston, “Beyond theory: Getting practical with
blockchain; Boston Fed learns by doing with blockchain technology,”
White Paper, 2019.

[18] A. R. Yumerefendi and J. S. Chase, “The role of accountability in
dependable distributed systems,” in Proc. Workshop Hot Topics Syst. De-
pendability, Yokohama, Japan, 2005.

[19] J.-C. Laprie, Dependability: Basic concepts and terminology. Vienna:
Springer, 1992.

[20] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building
an encrypted and searchable audit log,” in Proc. Netw. Distr. Syst. Se-
cur. Symp., San Diego, CA, 2004.

[21] L. Lamport, “The weak Byzantine generals problem,” J. ACM, vol. 30,
no. 3, pp. 668–676, 1983.

[22] M. Barborak, A. Dahbura, and M. Malek, “The consensus problem in
fault-tolerant computing,” ACM Comput. Surv., vol. 25, no. 2, pp. 171–
220, 1993.

[23] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,” ACM
SIGOPS OSR, vol. 41, no. 6, pp. 189–204, 2007.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2021-041.pdf
	page 2
	page 3
	page 4
	page 5

