
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Remaining Useful Life Estimation for LFP Cells in Second
Life Applications

Sanz-Gorrachategui, Ivan; Pastor-Flores, Pablo; Pajovic, Milutin; Wang, Ye; Orlik, Philip V.;
Bernal-Ruiz, Carlos; Bono-Nuez, Antonio; Artal-Sevil, Jesús Sergio

TR2021-023 April 04, 2021

Abstract
The increasing deployment of battery storage applications in both grid storage and electric
vehicle fields is generating a vast used battery market. These batteries are typically recycled
but could be reused in Second Life applications. One of the challenges is to obtain an accurate
Remaining Useful Life (RUL) estimation algorithm, which determines whether a battery is
suitable for reuse and estimates the number of second life cycles the battery will last. In
this paper, the RUL estimation problem is considered. We propose several Health Indicators
(HI), some of which have not been explored before, along with simple yet effective estima-
tion and classification algorithms. These algorithms include classification techniques such
as Regularized Logistic Regression (RLR), and regression techniques such as Multivariable
Linear Regression (MLR) and Multi-Layer Perceptron (MLP). As a more advanced solution,
a multiple expert system combining said techniques is proposed. The performance of the
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Abstract— The increasing deployment of battery storage 

applications in both grid storage and electric vehicle fields is 

generating a vast used battery market. These batteries are 

typically recycled but could be reused in Second Life applications. 

One of the challenges is to obtain an accurate Remaining Useful 

Life (RUL) estimation algorithm, which determines whether a 

battery is suitable for reuse and estimates the number of second 

life cycles the battery will last. In this paper, the RUL estimation 

problem is considered. We propose several Health Indicators (HI), 

some of which have not been explored before, along with simple 

yet effective estimation and classification algorithms. These 

algorithms include classification techniques such as Regularized 

Logistic Regression (RLR), and regression techniques such as 

Multivariable Linear Regression (MLR) and Multi-Layer 

Perceptron (MLP). As a more advanced solution, a multiple expert 

system combining said techniques is proposed. The performance 

of the algorithms and features is evaluated on a recent Lithium 

Iron Phosphate (LFP) dataset from Toyota Research Institute. We 

obtain satisfactory results in the estimation of RUL cycles with 

errors down to 49 RMSE cycles for cells that live up to 1200 cycles, 

and 0.24% MRE for the prediction of the evolution of capacity. 

 
Index Terms— Remaining Useful Life, Second Life Battery 

Applications, Lithium-ion batteries, LFP, Capacity Prediction 

I. INTRODUCTION 

NERGY Storage Systems (ESS) based on lithium-ion cell 

technologies are becoming the standard for many different 

storage applications due to the high energy density, high 

efficiency, and declining manufacturing costs [1], [2]. 

Additionally, they also provide longer service lives than other 

traditional alternatives, such as Lead-Acid chemistries, and are 

less contaminant than Nickel related chemistries such as NiCd 

[3], [4]. Lithium-ion technologies, such as LFP, NMC, LTO, or 

NCA, are some of the most popular lithium-based variants and 

are the main options used in Electric Vehicle (EV) applications 

[5]–[8]. The increasing number of these ESSs due to the 

expansion of EV is beginning to generate an enormous second-

hand battery market, and reusing these batteries is a promising 

application [9]. 
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Second Life of Lithium-Ion batteries has been studied from 

an economical, technical, and environmental approach [10]. A 

common conclusion is that a suitable second life application for 

these batteries are low-demanding applications in terms of 

power requirements and depth of discharge (DoD), such as 

energy storage in on-grid systems [10]–[12]. However, some 

key challenges need to be addressed before this becomes a 

reality, such as estimating the Remaining Useful Life (RUL) of 

these used batteries. The aging of lithium-ion batteries has been 

extensively studied and has proven to be a challenging problem 

[13]–[18]. RUL estimation studies have traditionally been 

focused on in-situ applications i.e. estimating the RUL of 

batteries that are already embedded in an application and 

monitored, where the main goal is to predict the failure 

threshold [19]–[24]. In the problem of RUL estimation for 

second life applications, knowledge of the past use of the 

battery is usually required [25]. 

Regarding the techniques used for the RUL estimation 

problem, there are two traditional approaches to the problem: 

model-based analysis and data-driven analysis. While model-

based analysis is suitable for battery behavioral models, cell 

aging is a much more complex process, with many more agents 

involved. Thus, a data-driven approach is suitable for this task. 

However, until very recently, publicly available datasets were 

small [19], [26]. The dataset introduced in  [27] was published 

recently (March ’19) by researchers of the Toyota Research 

Institute (TRI) and the MIT, and is the largest currently 

available. This dataset contains information on 124 cells, which 

are cycled until their End of Life (EoL), as defined as their 

capacity falling below 80% of their initial capacity. This 

provides more than 90000 full discharge cycles, with several 

measured features. In the original paper, the authors use this 

dataset for RUL prediction purposes, introducing some novel 

health indicators (HI). Their focus is the early RUL estimation 

on a monitored cell before it shows capacity-fade. 

This paper takes the previous study as a starting point. We 

use the same dataset, but instead, focus on RUL and capacity 

estimation for second-life applications. We assume that a cell at 

an unknown moment of its life needs to be evaluated, and 
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through some test cycles, we extract features from processing 

the measured voltage and charge waveforms. For this purpose, 

we use some HI that have already been introduced in the 

literature, together with some less explored indicators. With this 

set of measurements, we train some simple but effective 

machine learning algorithms to classify the cells in “long RUL” 

or “short RUL” classes and predict the exact number of RUL 

cycles and the future capacity after a set amount of cycles.  

This paper is organized as follows. In section II, we discuss 

different approaches to the RUL estimation problem, and we 

describe the HI that we use. In section III, we propose a simple 

classification algorithm that can cluster short RUL or high RUL 

batteries with high accuracy. Section IV describes some 

regression algorithms to estimate the number of remaining 

cycles of the cells and predict the future capacity in a set amount 

of cycles. We summarize our conclusions in Section V. 

II. MACHINE LEARNING APPROACH 

In the literature, the RUL estimation problem has been 

addressed with different approaches. Data-driven or machine 

learning approaches are rising in popularity in recent years; 

however, the lack of convenient and large datasets has 

hampered progress in this area. The different approaches to 

address the estimation of RUL of a cell have been traditionally 

classified into these two categories [19], [28]: 

• Direct estimation of Remaining Useful Life. When 

considering direct estimation, we assume that the 

capacity is available as a feature for our algorithms. This 

means that when the cell is not in an online application, 

we can perform test cycles to obtain the capacity, or when 

the cell is in an online application that cycles it 

completely, we can directly measure its capacity without 

disconnecting it. 

• Indirect estimation of Remaining Useful Life. This 

type of estimation does not rely on capacity as a feature 

to determine aging and remaining useful life. It is aimed 

at industrial applications, where the battery is not cycled 

completely, and where it is not possible to disconnect 

cells to measure features.  

When studying if a cell is suitable for a second life 

application, all the features can be measured through laboratory 

cycles, thus can be used in a direct estimation algorithm. On the 

other hand, some features (such as capacity) might not be 

directly measurable in an industrial application. The focus of 

this paper is the direct estimation of RUL and future capacity, 

although in the last section we will provide some insight for 

indirect estimation problems.  

We use the dataset from [27] since it is the largest publicly 

available. It contains information from 124 commercial 

Lithium Iron Phosphate (LFP)/graphite cells, which were 

cycled until their EoL. The specific model of the cells is 

APR18650M1A from A123 Systems, and they have a 1.1Ah 

nominal capacity. The cells have variated high-current charge 

patterns, but they have all been discharged with the same 

discharge current (4C) along with all their life. During all 

cycles, the ambient temperature was controlled to be 30ºC. The 

cell lives range from 170 cycles to 2237 cycles in extreme cases.  

In their data collection, waveforms for voltage, temperature, 

charge, and time were measured for each cycle of each cell. The 

dataset also provides the observed capacity and an estimate of 

the internal resistance of the cell once for each cycle. 

The study in [27] uses this dataset and aims to estimate RUL 

after the 100th cycle of a cell that has been monitored from the 

beginning of its life, thus using information from its first 100 

cycles. In said study, the authors conclude that the variance of 

the difference of the charge (Q) in the discharge waveform 

between cycles 100 and 10, var(ΔQ100-10) is a key feature for 

determining the RUL of the cell. 

However, our study is motivated by a different concern, 

where we have a cell that has been used in a high current, deep 

cycle application (such as EV), and we would like to determine 

whether the cell is suitable for another application, by 

estimating its RUL and its future capacity. Thus, we do not have 

full information on its past usage, but we can perform some test 

cycles to the cell to collect data and calculate some useful 

features. Let us say we perform δ cycles to an already used cell, 

which is in its ith cycle of life. We can process the feature 

var(ΔQ(i+δ)-i), however, this turns out to be very noisy unless δ 

is large enough. Making δ bigger helps to solve this issue, but 

it means wasting life cycles of the cell for testing purposes. For 

this reason, we consider some other features, presented in the 

following sub-section. 

 Selected features 

Unlike the original study [27], we are going to consider that 

each cycle in the dataset is an example, instead of each cell. 

This approach is convenient considering our second life 

hypothesis: as we do not know what condition a second-hand 

battery will be in when we receive it, the algorithms need to be 

trained with cycles of batteries in different moments of their 

life. Furthermore, this way we increase the dataset from 124 cell 

examples to more than 90000, which is the total amount of 

cycles of all the cells. Each example will have its own set of 

features and will have as output the number of RUL cycles the 

cell had at that specific cycle. Some of these features, such as 

the measured capacity and internal resistance, are already 

provided by the dataset for each cycle of each cell. Other 

features are computed from processing the waveforms of each 

cycle. 

As introduced before, the hypothesis is that we are 

conducting δ test cycles to an already used cell. This means that 

for most of the features, we will have available δ measurements, 

while for some others we will have available δ-1, as is described 

below. 

• Capacity, C [Ah]: Amount of charge extracted in each 

full-discharge cycle. Fig. 1a shows an example of the 

evolution of this feature for one of the cells in the dataset. 

Degradation can be seen over the life of the cell, with an 

accelerated decay near the EoL. 

• Internal Resistance, IR [Ω]: Internal resistance value. 

One measurement per cycle is provided in the original 

dataset, obtained by averaging ten current pulses at 80% 
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of State of Charge (SoC). An example of its evolution is 

shown in Fig. 1b, where it can be observed how the 

internal resistance increases abruptly when the cell is 

near its EoL. Some specific cells with an abnormally high 

IR value (30% higher than the average) have been taken 

out as outliers. 

• TIEDVD [min]: Time-lapse between two voltage 

thresholds (Vmax, Vmin) while discharging a constant and 

known current. Seen in the literature in industrial 

applications for indirect estimation purposes ([19], [22]) 

when it is not possible to completely discharge the cell to 

measure its capacity (e.g. an Uninterruptible Power 

Supply). This can be used here as another feature 

obtained from the voltage-time waveforms of each cycle. 

We have tried different threshold voltages for estimation 

purposes, and have found that the couple (3.3V, 3.15V) 

shows good estimation capabilities for this dataset. It can 

be appreciated in Fig. 1c how it decreases very linearly 

with the remaining useful life. 

• Capacity Fade ΔCδ [C]: Variation in capacity between 

two cycles separated δ cycles apart. Similarly, as what 

happened with var(ΔQ(i+δ)-i), a greater value for δ 

improves the prediction capabilities, at expense of aging 

more the cell for test purposes. We have found that δ=10 

is a good tradeoff in accuracy. Later on, this aspect will 

be further developed. An example of its evolution is 

shown in Fig. 1d. As happens with Capacity and Internal 

Resistance, in the last hundreds of cycles, its behavior 

changes drastically. 

Besides these features, which have been used previously in 

the literature, we introduce two new health indicators we found 

for this dataset which provide useful information. 

• Capacitance peak, Cpk [AhV-1]: As the cell ages, a 

small disturbance appears in the low voltage part of the 

discharge waveform. It grows until a certain moment in 

its life and then becomes smoother when the cell is near 

its EoL. This generates a peak in the cell equivalent 

capacitance [27], [29]–[32], as seen in Fig. 2. This 

capacitance peak can be used as another feature. Fig. 1e 

shows how this peak evolves along with cell life, 

increasing in the first hundreds of cycles, and then 

decreasing in the last 150 cycles approximately. 

However, there are some issues with this feature: When 

the peak is near its maximum, it is a very noisy feature. 

On the other hand, when the peak is near its minimum 

(the first 80 cycles of life), the peak cannot be detected 

correctly. 

• Voltage at Capacitance Peak, Vpk [V]: We also use the 

voltage at which the capacitance peak is observed, as an 

additional feature, as it varies with cell life. The evolution 

of this feature is shown in Fig. 1f. Similarly to the case of 

the Capacitance peak, it can be seen how in the first 80 

cycles of life it cannot be captured correctly 

Similar capacitance peaks obtained with lower discharge 

currents have been studied before for LFP batteries, and have 

been used as health indicators [27], [32]. However, these 

approaches aimed to determine degradation mechanisms, and 

have not been extensively applied to high current waveforms.  

Given these processed features, our algorithm aims to 

estimate: 

• Remaining Useful Life, RUL [cycles]: Number of 

remaining cycles from the current cycle until EoL. Cells 

with more than 1300 RUL cycles or with less than 300 

RUL cycles have been taken out as outliers since the vast 

majority of the dataset seems to range between 500 and 

1200 life cycles. We end up using 113 cells, which add 

up to more than 80000 test cycles in the selected dataset. 

 
Fig. 1. Feature evolution for one cell vs its life cycles (#100). a, Capacity 

evolution. b, Internal Resistance evolution. c, TIEDVD evolution. d, ΔC10 

Evolution. e, Capacitance Peak evolution. f, Voltage at Capacitance peak 

evolution
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Fig. 2. Capacitance peak advent. a, Voltage vs. Charge curve and its variation as the cell ages. b, Charge derivative to Voltage (Capacitance), and its variation as 

the cell ages. c, Zoom in the lower voltage part, where the secondary Capacitance peak appears

 
Fig. 3. F1 score for classification of cells into “short RUL” and “long RUL”, 

with different threshold values 

III. RUL CLASSIFICATION 

As discussed in the previous section, there is a clear trend in 

some specific features when the cells are close to their EoL. The 

features Capacity, Internal Resistance, and Capacity Fade 

change drastically when the cell is in its last 100 to 200 cycles. 

In this interval, the ‘aging knee’ of the Capacity curve takes 

place [10], and according to [33], batteries below this life 

horizon should not be considered for a second life application. 

This change of behavior also suggests the possibility of training 

an algorithm to determine whether a cell is in this EoL region. 

Thus, we have defined the classes “Short RUL cell” and 

“Long RUL cell” to classify those cells below or above this 

threshold (in remaining cycles). To establish the best threshold 

between the classes, an initial classification algorithm (logistic 

regression) has been tested. We have obtained the F1 score for 

different threshold values with this algorithm, and the best 

value has been established in 150 RUL cycles (Fig. 3). 

 Classification algorithm 

The algorithm that has been proposed for the classification 

task is regularized logistic regression. The model that this 

algorithm tries to fit is given by the expression in (1). 

𝑦̂(𝒙, 𝒘) =
1

1 + 𝑒−𝒘𝑇𝒙
(1) 

Where the predicted output 𝑦̂ is the probability for the cell to 

belong to “Short RUL cell” and “Long RUL cell” classes 

respectively, 𝒙 is an n-dimensional feature array, and 𝒘 is an n-

dimensional weight array. The output class is obtained by 

thresholding 𝑦̂ with 0.5, with 0 meaning “short RUL” and 1 

meaning “long RUL”.  

The algorithm fits w by minimizing the cost function J in (2). 

𝐽(𝒘) =
1

𝑚
∑(𝐸(𝒙𝑖 , 𝒘, 𝑦𝑖))

𝑚

𝑖=1

+ 𝜆 ∑ 𝒘𝑗
2

𝑛

𝑗=1

(2) 

In this equation, the first term represents the traditional cost 

function for conventional logistic regression, and the second 

term represents the Ridge regularization function that makes the 

algorithm less prone to overfitting. The parameter λ weights the 

regularization term and is set in the training. The parameter m 

represents the number of examples in the training dataset and 

the error function 𝐸(𝒙𝑖 , 𝒘, 𝑦𝑖) represents the traditional cost 

function used for conventional logistic regression, given by (3):  

𝐸(𝒙𝑖 , 𝒘, 𝑦𝑖) = −𝑦𝑖  log(𝑦̂(𝒙𝑖 , 𝒘)) − (1 − 𝑦𝑖) log(1 − 𝑦̂(𝒙𝑖 , 𝒘)) (3) 

 Determining the optimal number of test cycles δ 

The number of test cycles δ has been introduced before as a 

means of obtaining more measurements for the features of the 

cell under test. Specifically, a larger δ allows us to gather more 

information about the RUL of the cell according to (4). A 

specific number of cycles δ gives us δ measurements for each 

feature except ΔC, and δ-1 measurements for ΔC. 

𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 6δ − 1 (4) 

This comes at expense of reducing the RUL for test purposes. 

Thus, there is a tradeoff between δ and the success rate 

achieved. To determine the best δ, logistic regression has been 

used as the initial algorithm for the classification task, due to its 

simplicity. We have tested different sets of variables, including 

and excluding some of them and applying certain 

transformations. The best combination of features we found is 

gathered in Table I, which makes a total of 4δ measurements. 

Here, Cpk and Vpk have been combined into a single feature. 
 

TABLE I 

FEATURES USED IN THE ALGORITHMS 

Feature Samples used as inputs Nº of samples 

C Cδ 1 

ΔC [ΔC2, … ΔCδ] δ-1 

Vpk, Cpk [Vpk1/log10(Cpk1), … Vpkδ /log10(Cpkδ)] δ 

IR [IR1, … IRδ] δ 

TIEDVD [TIEDVD1, … TIEDVDδ] δ 
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Fig. 4. Results for the regularized logistic regression algorithm. a, Success rate 

for each δ value. b, Confusion matrix for the case of δ=10 

The logistic regression algorithm has been evaluated for 

different δ values, with 60% of the dataset for training, 20% for 

cross-validation, and 20% for testing. The sub-sets were created 

randomly from the examples in the dataset. Fig. 4a shows the 

success rate of the classification task for the test subset with the 

logistic regression algorithm, as a function of δ. It can be seen 

that values of δ above 10 do not improve the accuracy of the 

method, while additional measurements further reduce the RUL 

of the cell. Thus, we will only consider the case of δ = 10 in the 

rest of the analysis. Fig. 4b shows the confusion matrix for this 

case. 

The overall accuracy in the classification obtained with this 

method is around 97.27%, with 93.7% accuracy for detecting 

“Short RUL cells”, and 98.1% accuracy for “Long RUL cells”. 

We emphasize that we achieve this high accuracy for cells in an 

unknown moment of their life, i.e., we do not know how many 

cycles they have been used before the measurement tests. 

IV. RUL REGRESSION 

After observing the classification capabilities of the features, 

we would like to know how well they are capable of performing 

actual RUL estimation, i.e., predicting the specific number of 

remaining cycles for a given cell. For this purpose, as an initial 

approach, multivariable linear regression is considered. 

 Direct RUL Estimation approach 

The first RUL regression method that we consider is the 

Multivariable Linear Regression (MLR) algorithm. We use 

60% of the dataset for training, while 20% is used for cross-

validation and 20% for testing. The predicted output of this 

algorithm for a given measurement input array is given by the 

expression (6). 

𝑦̂(𝒙, 𝒘) = 𝒘𝑇𝒙 (6) 

Where 𝑦̂ is the predicted RUL, 𝒙 is a 4δ +1 dimensional 

measurement array, and 𝒘 is a 4δ +1 dimensional weight array 

(due to the bias term). The algorithm fits 𝒘 by minimizing the 

cost function J in (7). 

𝐽(𝒘) =
1

2𝑚
∑(𝒘𝑇𝒙𝑖 − 𝑦𝑖  )2

𝑚

𝑖=1

+ 𝜆 ∑ 𝒘𝑗
2

𝑛

𝑗=1

(7) 

Where the first term is the traditional least-squares function 

and the second term is the Ridge regularization function, 

introduced to avoid overfitting as in the case of the 

classification problem. Again, the parameter m is the number of 

training examples and λ, the regularization weight. 

To select from the 40 features those that are more relevant 

for regression purposes, the sequential forward selection (SFS) 

and sequential backward selection (SBS) algorithms have been 

used [34]–[36]. The SFS method starts with an empty set of 

measurements and evaluates each of them independently, 

selecting the one that performs the best. Then, saves it and adds 

each of the other measurements, selecting the one that performs 

the best. The algorithm keeps on selecting measurements until 

all of them have been added. Then selects the iteration with less 

error as the best performing mix of features. The SBS method 

does something similar, but starting with a full dataset and 

evaluating the error when each measurement is removed. Those 

that have less impact on the error are less important, and keep 

on being eliminated. Each simulation of the algorithms gave 

different results due to the random generation of the training, 

validation, and test subsets. However, two common aspects 

have been observed: 

• The performance of both algorithms in their optimum 

points is always similar. 

• The best performance versus the number of measurements 

tradeoff is obtained when including just one measurement 

for each type of feature. The performance can be slightly 

increased when adding more measurements. Specifically, 

IR seems to be the least important feature in that regard, 

and most of its measurements can be omitted. 

The best performance in these algorithms is obtained when 

including the first 36 measurements for the SFS algorithm. The 

variables finally discarded are IR1, IR2, IR4, and IR8, all of them, 

among the 10 measurements of Internal Resistance. They seem 

to provide redundant information, which is already given by 

other IR measurements. 

As an alternative to MLR, some more sophisticated 

algorithms have been considered. One of these algorithms is the 

Multilayer Perceptron (or Feed-Forward Neural Network). The 

inputs to this algorithm are the same as for the case of 

Multivariable Linear Regression. This algorithm has been 

trained using the Levenberg-Marquardt optimization algorithm 

with µ0 = 10-3 and the Mean Squared Error (MSE) as the 

optimization goal, for a maximum of 1000 epochs with early 

stopping as a validation technique. A single hidden layer has 
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been used, and the number of neurons in the said layer has been 

swept. The optimal was found at 32 neurons. 

The algorithms have been trained with the whole dataset 

(maintaining 60% for training, 20% for validation, and 20% for 

test). However, after observing the accuracy in the 

classification problem, we conclude that the “Short RUL” and 

“Long RUL” classes have a clear different behavior. Thus, we 

propose “expert” algorithms, which have been trained and 

tested with two different subsets: one for short RUL cells (those 

below 150 RUL cycles) and the other for long RUL cells (those 

above 150 RUL cycles). These expert algorithms have been 

combined in the Multiple Expert System (MES) (Fig. 5), where, 

the “RUL Classifier” block (the logistic regression algorithm 

described in the previous section) chooses which expert to use 

after classifying the input vector in one of the classes. Once the 

expert has been chosen, the input is fed to such expert (either 

“Short RUL expert” or “Long RUL expert”, thus obtaining the 

final output.  

The test results for the algorithms are collected in Table II. 

The error metrics are provided in terms of Root Mean Square 

Error (RMSE) (8) and Mean Relative Error (MRE) (9). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑦𝑖̂ − 𝑦𝑖  )2

𝑚

𝑖=1

(8) 

 

𝑀𝑅𝐸 =  
1

𝑚
∑

(𝑦̂𝑖 − 𝑦𝑖  )

𝑦𝑖

𝑚

𝑖=1

 ∙ 100(%) (9) 

 

Where m is the number of examples in the test dataset, 𝑦̂𝑖 is 

the predicted RUL for the i-th example, and 𝑦𝑖  is the actual RUL 

values for the i-th example.  

In the table, the algorithms labeled as “global” are those 

trained with the whole dataset (maintaining 60% for training, 

20% for cross-validation, and 20% for test). Although some of 

these error rates may seem unimpressive, especially in the case 

of MRE near 50%, cells with very low RUL (only a few cycles) 

have a large impact on this averaged error. A small error of only 

a few cycles for cells with low RUL (e.g., one of two cycles) 

leads to a large MRE. To clarify this, Fig. 6 provides 

information on the RMSE and MRE obtained for each value of 

Observed RUL. Note that in the case of the MRE (Fig. 6b), the 

error is within 10-20% for practically the whole range of 

observed RUL. It can be seen that MRE is not a good 

representation of the method on the first 100 cycles. The third 

column in the table gives MRE conditioned on larger values of 

RUL, which yields much better MRE results. 

The results for the MES are given in the table, where it may 

be appreciated how it enhances the performance of the global 

algorithm, obtaining an average MRE of 15.2% in the 

estimation of RUL for cells in an unknown moment of their life, 

and below 10% conditioned to long RUL cells. Fig. 7 shows an 

example of RUL estimation for all of the test cycles for one 

specific cell in the dataset (#100). It can be appreciated how the 

RUL prediction curve follows accurately the RUL line. This is 

especially noticeable for low RUL values, where the Short 

Expert comes into play (below 150 RUL cycles), where despite 

the higher MRE the absolute prediction is much more accurate. 

As a means of comparison, the last row of the table collects 

the RUL estimation error from the Elastic Net algorithm 

developed in [27] with the same dataset, which used the linear 

regression framework. The results in terms of RMSE are closer 

to the MLR algorithm. It must be noted that the approach 

followed in that reference is not the same that has been followed 

here since they used information from the first 100 cycles of 

each cell. This has an impact on the lower MRE since they do 

not try to predict very low RUL values. 

 

 
Fig. 5. MES scheme, where the RUL classifier acts as a selector of the expert 

 
TABLE II 

ERROR METRICS FOR DIFFERENT ALGORITHMS 

Algorithm 
RMSE 

(cycles) 
MRE (%) 

MRE (%) 

(>150 cycles) 

Global MLR 90 53.81 18.51 

Global MLP 52 23.03 10.51 

MLP Short RUL 

expert (<150 cycles) 
13 28.73 - 

MLP Long RUL 

expert (>150 cycles) 
61 10.32 10.32 

MES 49 15.2 9.79 

Elastic Net 86 10.1 - 

 

 

 
Fig. 6. Error rates for the MLP algorithm vs. observed RUL. a, RMSE. b, MRE  
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Fig. 7. RUL estimate with MES for all the cycles belonging to cell #100 

 
Fig. 8. Capacity prediction for cell #100 after 150 cycles 

TABLE III 

ERROR RESULTS FOR CAPACITY PREDICTION 

Cycles ahead δ MRE (%) 

100 
1 0.45 

10 0.24 

150 
1 0.67 

10 0.45 

200 
1 0.82 

10 0.64 

 
TABLE IV 

ERROR RESULTS FOR RUL PREDICTION BASED ON CAPACITY 

Cycles ahead MRE (%) 

100 6.9 

150 8.6 

200 9.99 

 

 Capacity prediction approach 

In the problem of capacity prediction, the algorithm will 

predict the future capacity of the cell, after a set number of 

cycles ahead from the cycle where the features have been 

measured. As test examples, we have considered 100, 150, and 

200 cycles ahead. The closer the prediction horizon is located, 

the more accurate will be the prediction. The same features as 

in the RUL estimation algorithm have been chosen. Besides, 

different δ values for the measurement cycles have been 

considered. Since MLP had obtained the best results among the 

global algorithms, it has been chosen for this task. The results 

are shown in Table III. 

The accuracy in the prediction of capacity is very high 

according to the MRE metrics obtained. Among the δ and 

cycles ahead values that have been tested, the best MRE 

obtained is 0.24%. However, a higher window observation δ or 

a closer prediction horizon provides better error figures. As an 

example, Fig. 8 shows the output for cell #100 in the dataset, 

when predicting capacity 150 cycles ahead of the measurement 

moment. 

Observing the accurate capacity prediction results, we 

wonder if there is a possibility of using this algorithm for RUL 

estimation purposes. In this scenario, we define an EoL 

condition based on capacity (e.g. 80% of nominal capacity) and 

we train algorithms to predict cell capacity X cycles ahead. We 

keep track of the battery along with its life, and when the 

prediction falls below the EoL condition, we predict RUL as X 

cycles. Table IV shows the accuracy in this RUL prediction 

method, which is higher than for the case of the MES algorithm 

but with a fixed number of cycles ahead. 

 Indirect RUL Estimation approach 

So far, we have described the study of the RUL estimation 

problem from a Direct Estimation approach, meaning that 

capacity measurements are available as a feature for further 

analysis. This is meaningful from the second life application 

perspective since we are conducting some test cycles to a cell 

in a controlled environment and it can be charged and 

discharged at will.  

However, it is interesting to see how well these features can 

perform in other scenarios e.g., a system where the battery 

cannot be completely discharged for test purposes, such as in 

an Uninterruptible Power Supply (UPS). In these systems, 

direct measurement of capacity and other capacity-related 

features is generally unavailable and thus, RUL estimation 

algorithms must do as best as they can with a subset of features. 

This has been introduced as “Indirect RUL Estimation” in the 

literature [19], [28]. 

Thus, from the features we have been considering until now, 

Capacity and ΔC are not suitable for this approach. Even more, 

capacitance peak related features (Vpk, Cpk) should not be 

considered as well (they are found in the last 10% of SoC). For 

this reason, only TIEDVD and IR features are considered for 

this approach. From the algorithms that have already been 

introduced, the MES performs the best. The RMSE and MRE 

metrics are contained in Table V. The error metrics are far from 

those obtained in the Direct Estimation approach, but still may 

be of interest in these applications. 

 
TABLE V 

ERROR RESULTS FOR MES IN INDIRECT ESTIMATION 

Algorithm RMSE (cycles) MRE (%) 
MRE (%) (>150 

cycles) 

MES 109 45.19 23.94 
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V. CONCLUSIONS 

Remaining Useful Life estimation is becoming a popular 

topic in battery-related research. Due to the complexity of the 

problem, data-driven approaches are appropriate for the task, 

although until very recently, publicly available datasets were 

small and simple. We address the problem of RUL estimation 

from the second life application point of view. The main 

hypothesis assumes that past information about cell use is not 

available. By conducting some simple charge and discharge 

tests and analyzing the voltage waveforms, we can determine 

the number of RUL cycles with high accuracy. For this purpose, 

we have proposed several HI to be analyzed. Among them, 

there are well-known features such as Capacity or Internal 

Resistance, previously described features such as TIEDVD, and 

two novel HI (Cpeak, Vpeak), which have been observed in this 

specific dataset. 

We propose some simple but effective algorithms to classify 

used cells into “Short Remaining Useful Life” and “High 

Remaining Useful Life” categories with an average accuracy 

higher than 97%. We also proposed methods to estimate the 

exact number of remaining cycles for cells in an unknown 

moment of their lives, with 49 cycles of RMS Error, providing 

an overall MRE of 15.2% and 9.79% for high RUL cells. In the 

capacity prediction problem, we obtain high accuracy when 

predicting the future value in a set amount of cycles, with 

relative errors below 1% in all the studied scenarios. As the last 

contribution, we study the viability of performing indirect 

estimation in embedded applications with a sub-set of features, 

obtaining approximate values for the RUL of these cells. The 

high accuracy in the prediction of short RUL cells (highly 

decayed and not useful) makes this approach a suitable method 

for determining whether a cell would be useful for a second life 

application such as grid-oriented ESS. On top of this, the 

prediction of the exact number of RUL cycles is made with high 

accuracy and is considered good for this purpose.  

This work has been developed with the dataset by TRI since 

it is the most complete in terms of the number of cells and 

cycles among the datasets currently available. Even though this 

approach would be valid for determining the RUL of any 

chemistry and type of cell, a specific dataset would be needed 

for said kind of cell to be able to train the algorithms. 

Additionally, the applicability of the novel HI described in the 

paper would need to be researched for other chemistries, which 

is a subject for future work. 

Additionally, future lines of work also include developing 

advanced algorithms, to enhance the prediction of RUL and the 

classification of the cells. 
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