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Abstract
Rapid advances in information and communications technologies (ICT) have made it possible
to deploy large collections of sensors to be used in traditional Supervisory Control and Data
Acquisition (SCADA) systems and modern Internet of Things (IoT) installations. These
sensors are intended for use in analytical formulas, AI algorithms, and traditional rulebased
monitoring that determine optimal operation parameters, maintain smooth operation, or
detect operation anomalies. Yet, advances in ICT do not always improve the reliability of
data collection. Instead, the frequent use of consumer-grade sensors in IoT deployments, and
an increasing array of customer choices often lead to inaccessibility of sensors or systematic
absence of sensor readings. The lack of reliability in data collection leads to failures in
the algorithms responsible for monitoring the system operation. We term this ”the missing
input problem”, and discuss several state-of-the-art solutions. We specifically focus on the
straightforward approach using standard imputation methods, as well as recent deep learning
imputation methods. We show that none of the existing algorithms today perform very well
in the face of missing sensors, and we outline several research directions that can lead to
improvements.
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Abstract—Rapid advances in information and communications
technologies (ICT) have made it possible to deploy large collec-
tions of sensors to be used in traditional Supervisory Control
and Data Acquisition (SCADA) systems and modern Internet
of Things (IoT) installations. These sensors are intended for
use in analytical formulas, AI algorithms, and traditional rule-
based monitoring that determine optimal operation parameters,
maintain smooth operation, or detect operation anomalies. Yet,
advances in ICT do not always improve the reliability of data
collection. Instead, the frequent use of consumer-grade sensors
in IoT deployments, and an increasing array of customer choices
often lead to inaccessibility of sensors or systematic absence of
sensor readings. The lack of reliability in data collection leads to
failures in the algorithms responsible for monitoring the system
operation. We term this ”the missing input problem”, and discuss
several state-of-the-art solutions. We specifically focus on the
straightforward approach using standard imputation methods,
as well as recent deep learning imputation methods. We show
that none of the existing algorithms today perform very well
in the face of missing sensors, and we outline several research
directions that can lead to improvements.

Index Terms—time series, missing sensor, imputation

I. INTRODUCTION

Rapid advances in information and communications tech-
nologies (ICT) have made possible deployments of large col-
lections of sensors used for remote monitoring, data collection,
and device control. These developments have increased the
size of traditional Supervisory Control and Data Acquisition
(SCADA) systems and introduced a new type of installation
termed the Internet of Things (IoT). Unfortunately, the larger
number of sensors has not positively affected the reliability
of the data collection process. There are several reasons for
this. First, IoT deployments frequently use consumer-grade
ICT components which can become faulty and/or inaccessible;
second, both SCADA and IoT installations are affected by
customer choices about the grade or level of deployment; and
third, sensor deployments are affected by tasks such as routine
maintenance that may render groups of sensors inaccessible for
scheduled periods of time.

This creates a problem when the corresponding sensor
readings are intended to be used in analytical formulas, AI
algorithms, and traditional rule-based monitoring algorithms,
whose goal is to monitor and optimize performance and detect
anomalies. At test time, when the measurement is part of the
input to an analytical formula or a rule, the corresponding
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output can only be computed if all arguments are known.
When the measurement is an input argument to a statistical
model such as an AI or ML algorithm, the output of the model
is only predictable when all inputs are present, because the
model is usually trained offline, with a full input set. Thus, the
absence of a sensor severely affects the ability to automatically
monitor and operate SCADA and IoT deployments, and can
result in catastrophic failure of operation. For this reason,
methods are needed for dealing with missing sensors values
that result in a more graceful degradation of performance.

In general, dealing with missing data at random is a well-
known problem in the field of machine learning, and vari-
ous data imputation methods have been proposed over the
years. The current problem of systemically missing sensors
is different for two reasons. First, given the large number
of deployed sensors, modern SCADA and IoT deployments
may suffer sensor outages or inaccessibility for prolonged
periods of time. Second, customer choices during the initial
deployment may reduce the number of available sensors. When
sensors are inaccessible for systematic reasons (e.g. choice
made during deployment), or are faulty for extended periods
of time, standard imputation methods fail because they can
no longer leverage time-lag correlations within the sensor
measurements to perform imputation. Thus, known solutions
to the missing sensor problem, such as using imputed values,
will typically fail. This will be especially noticeable when the
target usage of a sensor is the computation of an analytical
formula, or as an input to an AI/ML algorithm.

However, SCADA and IoT deployments exhibit the favor-
able circumstance in which there is often substantial redun-
dancy and correlation among the readings of different sensors.
Sometimes this is intentional, and sometimes it is not; often,
by virtue of the ever-decreasing marginal cost of installing
more sensors, a few extra sensors end up being installed. For
example, identical temperature or vibration sensors can be in-
stalled at multiple points on the body of a large machine, with
the hope that more sensors will give better indication when
something goes wrong with the operation of this machine. This
favorable circumstance makes data imputation methods that
leverage cross-correlation between sensors good candidates for
solving the problem of missing sensor data in IoT and SCADA
installations via imputation.

However, while imputation methods based on cross-
correlation between the sensors lead to a more graceful
degradation of performance, the direct use of imputed val-



ues as inputs to functions is not optimal. This is because
the imputation methods are not geared towards imputation
of multiple systematically missing sensors. Many imputation
methods essentially try to learn the covariance matrix across
all sensor variables, but usually they only learn the covariance
between strongly correlated variables. Ideally, the optimal
solution would learn not just an approximation of the sensor
covariance matrix, but a full probability distribution over the
measured quantities. Such a distribution can be leveraged
during exploitation when multiple sensors are systematically
missing.

We believe that the absence of sensors for extended periods,
whether due to faults, inaccessibility, or customer choices,
presents a significant problem in SCADA and IoT systems.
This problem prevents physics-based analytical functions,
statistical models, or rule-based methods from being fully
utilized for anomaly detection and operation of the underlying
physical processes. To demonstrate the problem in this paper,
we experiment with the well-known solution of using existing
imputation methods to show the ability of these models to im-
pute missing sensor time series. We show that despite the large
volume of existing algorithms, few demonstrate fidelity in re-
constructing the missing data. This indicates that the methods
are not able to capture the correct correlations between the
existing sensors and are very susceptible to further sensor
faults and inaccessibility. In addition to standard methods of
imputation, we envision that latent space/distribution methods
may provide a good approach to learning better relationships
in the system. Thus, the review presented here also introduces
novel deep learning latent space methods geared toward the
imputation of randomly missing data.

II. PROBLEM FORMULATION

Formally, the problem can be stated as follows. We observe
a set X of N variables, xi ∈ X , i = 1, . . . , N . This set
of variables is used to compute a function y = f(·) whose
output y is used at test time for system monitoring and
optimization. At training time, a complete data set x1, . . . , xN
is available. This allows the learning or specification of an
optimal f(·). At deployment time, one or more of the variables
xi, i = 1, . . . ,M are missing, making it impossible to directly
compute the function f(·).

In contrast to the standard imputation problem where the
variables in X have only some measurements missing at
random, here the variables in X are systematically missing due
to a reduced set of sensors chosen during deployment, or the
long term failure of existing sensors. A further complication is
that in some cases, the dependency between the sensors might
change over time. In all cases, it is assumed that there are
dependencies across the variables in X through the underlying
system which is being monitored.

In the purely imputation-based (IB) setting, the effect of
missing sensors is handled as follows. Let X− ⊆ X be
the set of missing variables of X . Correspondingly, let the
sets of available variables be denoted by X+ = X \ X−.
If a variable xi ∈ X is missing, its value x̂i = gi(X

+) is

imputed from some or all available variables in X+, where
gi(·) is an imputation procedure. It is preferable that gi(·)
be a procedure that can work with arbitrary sets of available
variables, including an empty one. Using gi(·), the estimated
values x̂i of the variables in X− can be substituted for the
true values in the expression f(·) for computing z, such that
the imputation-based monitoring output becomes, for example,
ŷI = f(x1, . . . , xi−1, x̂i, xi+1, . . . , xM ), for the case when
only one variable xi is missing.

III. BACKGROUND LITERATURE

In this section, we review existing imputation algorithms
that could be useful in the direct imputation setting. We focus
on embedded space algorithms and generative models, because
of these models’ ability to learn an abstract representation
of the data, from which other industrial AI applications
can be deployed. This is different from standard methods
of imputation (which will be described later) that focus on
choosing the correct statistic for randomly missing data in a
given application. Here, we explore black-box methods that
might be broadly applicable to the missing sensor problem
such as: the (variational) autoencoder, HI-VAE [1], GP-VAE
[2], and BRITS [3]. We also briefly discuss two other standard
methods for imputation: regression-based imputation [4] and
matrix factorization [5]. There are also other approaches, such
as generative adversarial network (GAN) based models [6],
which leverage learning at test time for imputation. Such
approaches are most likely too slow for online exploitation
and are not reviewed here.

A. AE/VAE

The autoencoder (AE) [7] is a neural learning method for
learning representative subspaces or data features of lower
dimension than that of the original data. An autoencoder
is a symmetric network, shown in Fig. 1, which maps the
input data, X , to a lower dimensional encoding z via an
encoding function E(X), and then from the lower dimensional
space back to an estimate of the input data via a decoding
function function D(z). The autoencoder is trained using a
reconstruction loss that compares the difference between the
input data, X , and the reconstructed data, X̃ = D(E(X)).

Fig. 1. An example of an autoencoder.



Building on the AE, the variational autoencoder (VAE) [8]
learns a distribution in the embedded space and reconstructs
the data from samples of this distribution. More specifically,
the variational autoencoder is a latent variable model that
learns the joint distribution p(x, z) where x in this paper
represents a vector of all sensors xi, and z is a vector of latent
variables. Then, by marginalizing out z, we could obtain the
likelihood of x: log p(x) =

∫
p(x, z)dz. Unfortunately, this

integral is usually intractable, making it hard to evaluate and
optimize the likelihood. This leads to a proposed solution
called variational inference. In particular, a VAE model is
learned by maximizing the evidence lower bound (ELBO) as
a surrogate to maximizing likelihood,

ELBO , Eqφ(z|x) log pθ(x|z)−KL(qφ(z|x)||p(z)).

It is composed of an encoder to output the variational distri-
bution qφ(z|x) and a decoder to provide the data distribution
given latent variable pθ(x|z). In practice, qφ(z|x) is set as
a mean-field Gaussian distribution, and the encoder learns to
map the data x to the parameters of this distribution. Typically,
the prior distribution p(z) is set as standard Gaussian N(0, I).
The prior can be viewed as a regularization on qφ(z|x).
The distribution, pθ(x|z), could also take different forms for
different types of x. For example, for continuous variables, the
distribution is typically chosen to be a multivariate Gaussian
with a diagonal covariance matrix; for binary variables, the
distribution is usually chosen to be a multivariate Bernoulli
distribution with independent variables. The choice of indepen-
dence type between variables is important because it restricts
the ability of models to learn correlations among the inputs.
However, in practice this has not been observed to be a great
limitation.

Both the AE and VAE are algorithms that can be used for
value imputation. To perform value imputation, the input is
zero padded at the index of the missing values. The completed
vector is mapped to the latent space/distribution, and the
imputations are recovered from the reconstructed output. The
idea is that the latent mapping will remain true even when the
input is missing values. In practice, this is often not the case,
and researchers have sought to improve on the models.

B. HI-VAE

HI-VAE (Heterogeneous Incomplete VAE) [1] is an ap-
proach that builds on the VAE to model heterogeneous data
sets that are incomplete. To handle heterogeneous data, the
authors propose to factorize the distribution modeled by the
decoder and deploy different network layers for different input
types. To model the incomplete data, a HI-VAE builds an
encoder (recognition) network that takes the observed vari-
ables as input and outputs the corresponding latent distribution,
and a decoder (generative) network transforms the latent
distribution to the distribution of the observed and missing
data. Missing data can occur both during the training stage
and during the testing stage. During the training process,
incomplete inputs are filled with zeros before being input
into the (fully-connected) network to ensure missing variables

are prevented from affecting the decoder output. The ELBO
is only optimized over the observed variables because the
missing variables are inaccessible. During the testing stage,
HI-VAE takes a zero-padded incomplete data vector as input
and returns imputed values sampled from the data distribution
at the output of the decoder. To facilitate learning of the
interaction of input variables, HI-VAE replaces the standard
Gaussian prior with a Gaussian mixture distribution and in-
troduces an intermediate homogeneous representation in the
decoder.

C. GP-VAE

GP-VAE [2] is the first paper that specifically discusses
imputation in the context of time series. The addition of time
series, explicitly as a condition in this work, means that a fully
factorized variational distribution would have independent
components equal to the dimension of the latent space times
the length of each time series window. In addition to having
a large dimension, this distribution also does not accurately
represent time series problems because consecutive points of
a time series are not truly independent. To correctly account for
the time lag information, GP-VAE uses an encoding network
which consists of 1-D convolutional layers over each time
window and a variational distribution with some off-diagonal
covariance terms. These covariance terms account for the
dependence in the time lag components of the time series.
Samples of the latent distribution are transformed by another
decoder network with several multi-layer perceptron blocks.
Because of the special structure of the variational distribution,
the prior distribution has to be tailored to time series data. GP-
VAE applies Gaussian process with Rational Quadratic kernel
as the prior to learn the dynamics of the time series in the
latent space.

D. BRITS

An alternative to the embedded space and probabilistic
models introduced so far is presented in BRITS [3]. The idea
of this paper is to leverage the Recurrent Neural Network
(RNN) machinery to impute missing values. Specifically, the
authors augment the update equations of RNNs by imputing
the missing dimensions of a data point xt using the past hidden
state of the RNN. Like HI-VAE, the authors calculate the
training loss only over the observed values.

Dependency among the time series dimensions is added into
the model via a feature estimation step. Here, the features are
estimated from a complement state, which is the ordinary state
with the imputed missing value calculated from the prior state
of the network. This feature is combined into the state of the
RNN. Lastly, to ensure stability, the authors run the model in
a bi-directional fashion.

E. Regression-Based Imputation

A more traditional approach to imputation is regression-
based imputation. In its most basic form, regression-based
imputation takes the form of finding a regressor from the



observed sensor measurements to the missing sensor measure-
ments. Because this regressor cannot be generated on-demand,
all regressors with combinations of input and output sensors
must be learned a-priori and stored. This means that storage
complexity of this approach is proportional to the size of the
power set of the number of system sensors. It is clear that
such storage is prohibitively expensive for the large sensor
deployments of modern SCADA and IoT sensors. Nonetheless,
in this paper, we compare this performance as an upper bound
on the performance of all algorithms.

To avoid storing all regressors, a round-robin approach can
be used. Such an approach is implemented in scikit-learn under
the name iterative imputer [9], building on the work of Buck
[4] and on various imputation packages in R [10]. During
training, the iterative imputer learns one regressor for each
sensor from the remaining sensor set, and the mean of each
sensor. During test time, all missing values are replaced with
the mean of the sensor. Then, the values are imputed using
the appropriate regressor in a prescribed imputation order.
The imputation order is traversed a fixed number of times,
which gives the method its name, the iterative imputer. We will
include this imputation method in our experiments as well.

F. Matrix Factorization

A popular approach to imputation, particularly in the field
of recommender systems, is matrix factorization. The idea of
matrix factorization is to factor a data matrix XD ∈ Rd1×d2
into two low rank matricies, U ∈ Rd1×d and V ∈ Rd×d2 , with
dimension d equal to the rank of XD. Here we can interpret U
as capturing the correlation between points along dimension d1
and V as capturing correlation between points along dimension
d2. For collected time series data, d1 can represent the number
of sensors and d2 can represent the length of the recorded data
T . Thus U captures the correlation among the recorded time
series, while V captures the time lag correlation in each time
series.

Having factored XD into U and V , X̃D can be recovered
by taking the dot product UV T . When data is missing at
random and the approximations of the matrices are correct,
the reconstructed matrix should include good reconstructions
of the missing values. For the case of missing sensors, this
approach suffers from the inability to compute accurate low-
rank matrices U and V . Thus, we expect the precision of the
imputed values to suffer.

IV. EXPERIMENTAL SET-UP

A practical issue that has hampered the adoption of AI algo-
rithms in physical industries has been the lack of standardized
data sets. In this paper, we want to compare the performance
of several previously proposed models along with two baseline
methods. To perform this comparison, we designed our own
experiment, which mimics the type of industrial problem that
can be commonly found.

We created an experimental test bed based on a cooling
loop, shown in Fig. 2. The cooling loop is created using
a Thermaltake C360 hard tubing PC water cooling kit. The

loop consists of two heat sinks attached to 40W silicone
heaters, one pump, and one cooling radiator cooled by three
120mm fans. The loop is equipped with the following sensors:
temperature sensors after each component (a total of 4), 2 flow
sensors, and 5 room air temperature sensors that are placed at
the corners of the test bed and in the middle of the test bed. The
cooling and heating of the loop, as well as the data collection
of the loop, are controlled via an Arduino MEGA 2560 with
a custom built IO board. The two heating commands and the
three fan speed commands are sampled from a multivariate
Gaussian distribution with a random covariance matrix. The
heat commands, xi, are discretized as xi = 0 if xi < 0 else
1. The generated fan speed commands are truncated to integer
levels from 0 to 300. Each command (heating and cooling)
is issued to the loop for 2 minutes, and data samples are
continuously collected at 3-second intervals.

Fig. 2. Cooling Loop Test bed.

The experimental test bed described here can be used to
collect an unlimited amount of data. Here, we use a 4-hour
data collection window, generating the loop control commands
randomly. The resulting data set contains 7271 data samples.
This data set is used below in model evaluation.

V. NUMERICAL RESULTS

A. Standard Imputation Methods

In addition to the imputation methods discussed in the
background section, in this work we also test all easily
implementable imputation methods using scikit-learn [9] and
the Python library fancyimpute. In particular, we evaluate
simple imputation methods such as mean, median, and most
frequent value; the kNN imputation method that averages the
k-Nearest Neighbors to impute the missing values; SoftImpute,
a method developed by Mazumder et. al. [11] which computes
the SVD of the data matrix and applies a soft threshold to
the singular values; and Iterative SVD [12], which performs
imputation via SVD but does not apply soft thresholding.



B. Data Subset Selection

In the context of missing values of sensor measurements,
we observe that the majority of imputation methods simply
predict the mean of a given sensor measurement, the average of
other sensors that are highly correlated, or a linear combination
of the existing sensors. Thus, those methods can be used
on systems with redundant sensors. However, in this paper,
we would like to explore the performance of imputation
methods when there are correlated (possibly highly correlated)
sensors, thus learning how much of the underlying system
is learned from the sensor measurements. In the data set
collected for this paper, the following sensors are available:
Left Fan Speed, Middle Fan Speed, Right Fan Speed, Loop
Flow, Fluid Temperature at Heater 2, Fluid Temperature After
Cooling, Fluid Temperature after Heater 1, Fluid Temperature
after Loop Pump, Room Temperature on Control Board, Room
Temperature Upper Right of Test Bed, Room Temperature
Lower Left of Test Bed, Room Temperature Upper Left of
Test Bed, Room Temperature Lower Right of Test Bed, Heat
1 Command, and Heater 2 Command. From this set of sensors,
we select the following subset for our imputation experiments:
Left Fan Speed, Middle Fan Speed, Loop Flow, Fluid Tem-
perature at Heater 2, Fluid Temperature After Cooling, Room
Temperature on Control Board, Room Temperature Upper Left
of Test Bed, Heat 1 Command, and Heater 2 Command.

In particular, we use a subset of measurements that is
redundant in only one other sensor. Thus, this provides the
opportunity to examine the imputation algorithms to determine
if they are learning the physical properties of the system or
simply learning the direct correlation between sensors.

C. Experimental Results

Using the data set collected for this experiment and the
subset of sensors specified above, we first perform an ex-
periment using the standard imputation methods specified in
section V-A. In this experiment, we train an imputation method
and then sequentially remove each of the sensor time series,
impute their values, and calculate the normalized root mean
square error (NRMSE) of the imputed time series with respect
to the true time series. NRMSE is normalized by the standard
deviation of the true time series and reveals how well a method
performs with regard to using simply the mean value on the
training set for imputation. The experiment is repeated in a
5-fold cross-validation. The average error is reported for all
sensors with a mean and standard deviation. The results for
standard imputation methods are shown in Table I.

The results of standard imputation methods are illustrative.
These approaches show that no approach outperforms mean
imputation and that a simple statistic like NRMSE does not
tell us the full information about an imputation method. We
first evaluate the NRMSE measurment by comparing the KNN
imputation, median impuation, and most frequent imputation
to mean imputation. All comparison methods perform worse
than mean imputation on average as well as when taking into
account the standard deviation of the error. In fact, median
and most frequent imputation results in an NRMSE over five

times worse then mean imputation. Yet these results also show
the drawback of using a single statistic like NRMSE to report
imptuation of entire sensor measurements. For comparison, we
plot the Fluid Temperature after Cooling and Room Temper-
ature on Control Board normalized in Fig. 3. From this plot
it is clear that a mean imputation would have small NRMSE
but would not capture any of the system dynamics. Thus mean
imputation would not be a good approach when the goal of
imputation is to input the imputed values into a monitoring
algorithm such as those described in section I.

Fig. 3. Sample Temperature Time Series

Next we perform experiments with the more complex, mod-
eled imputation methods. We experiment with three methods
that attempt to model the data matrix in a low dimensional
space, and the iterative imputer regression method that models
the missing time series from the observed time series. The re-
sults for these experiments are shown in Table II. Interestingly,
we note that the soft imputation outperforms all other matrix
based imputation methods, but it is still inferior to simply
using the iterative imputer which uses a regressor to model the
missing time series. Because we have already established the
inadequacy of judging imputation performance by NRMSE,
we now plot the imputation performance for SoftImpute
(Fig.4), Iterative SVD (Fig.5), and Matrix Factorization (Fig.6)
on the Fluid Temperature of Heater 2 and for the Regression
method. Note here we choose a fluid temperature sensor
because it is a continuous sensor which is the easiest type
of sensor to impute. From these plots we see that regressive
imputation has the best performance; however, iterative SVD
appears to learn the time series, including its dynamics, up to
an offset factor.

The plots shown in Figures 4-6 show that, qualitatively, only
regression imputation and iterative SVD imputation demon-
strate the ability to learn time series dynamics of the missing
time series. This appears to fit our intuition about the methods.
Methods that substitute an average value for the missing time
series do not capture any of the time series dynamics. Methods
that try to learn an imputed data matrix via matrix factorization
are designed for the case when values are missing at random
and do not perform well when a whole time series is missing.
On the other hand, methods that focus on finding strong
correlations in the data learn well how to relate one sensor
time series to another.



TABLE I
IMPUTATION ERROR FOR STANDARD IMPUTATION APPROACHES.

Mean Median Most Freq. kNN-1 kNN-2 kNN-3 kNN-4 kNN-5
Loop Flow 1.05 4.98 4.87 1.42 1.41 1.40 1.39 1.38

Left Fan Speed 1.00 5.14 5.62 1.32 1.30 1.29 1.28 1.27
Middle Fan Speed 1.01 5.17 5.51 1.18 1.17 1.16 1.15 1.15
Heat 1 Command 1.03 7.51 7.51 1.34 1.33 1.32 1.32 1.31
Heat 2 Command 1.03 7.59 7.59 1.28 1.27 1.25 1.25 1.24

Fluid Temperature (Heater 2) 1.04 5.19 10.52 0.71 0.70 0.69 0.69 0.69
Fluid Temperature after Cooling 1.04 5.28 5.76 0.76 0.75 0.74 0.74 0.73

Room Temperature on Control Board 1.11 5.45 5.27 1.08 1.08 1.07 1.07 1.06
Room Temperature Upper Left of Test Bed 1.08 5.27 5.34 1.18 1.17 1.17 1.17 1.17

Overall µ 0.94 5.16 5.8 1.03 1.02 1.01 1.00 1.00
Overall σ 0.33 2.06 2.66 0.43 0.43 0.43 0.42 0.42

TABLE II
IMPUTATION ERROR FOR MODELED IMPUTATION APPROACHES.

SoftImpute Iterative SVD Iterative Imputer Matrix Fact.
Loop Flow 1.10 2.80 1.05 2.91

Left Fan Speed 1.19 2.49 0.88 1.83
Middle Fan Speed 1.22 2.24 0.77 1.95
Heat 1 Command 1.35 1.55 1.00 1.73
Heat 2 Command 1.33 1.60 1.03 1.50

Fluid Temperature (Heater 2) 1.37 3.27 0.23 2.12
Fluid Temperature after Cooling 1.39 3.15 0.23 2.57

Room Temperature on Control Board 1.56 3.19 0.71 2.24
Room Temperature Upper Left of Test Bed 1.30 4.04 0.81 3.04

Overall, µ± σ 1.18 ±0.43 2.43 ±1.15 0.67 ±0.38 1.99 ±0.86

Fig. 4. Sample imputation of a time series using SoftImpute.

Fig. 5. Sample imputation of a time series using Iterative SVD.

Next, we evaluate using imputation based on regression.
This is motivated by the relatively good qualitative perfor-
mance demonstrated by the iterative imputer with respect to

Fig. 6. Sample imputation of a time series using Matrix Factorization.

NRMSE. Specifically, we are interested in how much regres-
sion models for regression-based imputation can learn beyond
the relationship to the sensor with the highest correlation. To
evaluate the performance of the regression-based method, we
plot a sample of the Fluid Temperature of Heater 2 time series
when only this sensor is missing, in Fig. 7, and when both fluid
temperature sensors are missing, in Fig. 8. We observe that
when a highly correlated sensor exists in the observed data,
regression-based imputation can almost exactly impute the
missing time series by copying the correlated sensor. However,
when the correlated sensors are both imputed at the same
time as in Fig. 8, we observe that imputation suffers. This
shows that regression based imputation likely identifies the
most correlated sensor and then imputes based on this sensor.
This is further illustrated in Fig. 13, which shows that the
average NRMSE of the imputed sensors degrades as a function



of the number of missing sensors.

Fig. 7. Regression-based imputation with one highly correlated sensor.

Fig. 8. Regression-based imputation without the presence of highly correlated
sensors.

It is clear that standard methods of imputation are not
sufficient to address the challenge of missing sensors when
the purpose of imputation is to use the imputed time series in
monitoring algorithms. We evaluate next the ability of modern
deep learning methods to impute missing time series. In
particular, we would like to find out if deep learning methods
can learn to model the instantaneous correlation between the
time series and the time lag correlation between and within
the time series. We focus on four models: AE, VAE, HI-VAE,
and GP-VAE. The results of imputing a single sensor for these
methods is shown in Table III.

Observing the mean NRMSE and standard deviation of the
RNMSE in Table III shows that the deep learning methods
appear to outperform mean imputation, but continue to exhibit
poorer performance than standard regression based methods. It
is notable that standard AE/VAE models have performance on
par with HI-VAE and GP-VAE because the latter two methods
are specifically developed for heterogeneous data (HI-VAE)
and time series data (GP-VAE). Thus, it appears that neither
accounting for heterogeneity nor accounting for time lag has
benefited these models. We suspect that this is the case because
these algorithms were still developed for the case of randomly
missing data and do not fully learn the underlying system
processes.

Next, we evaluate the performance of HI-VAE when a
single fluid temperate sensor is missing and when both fluid

temperate sensors are missing. The results are shown in Fig.
9 and 10. We observe that while HI-VAE is capable of mostly
imputing the missing time series for one sensor, it is unable
to do so when all correlated sensors are removed. In fact,
its latter performance is on par with the performance of the
regression-based imputation, which suggests that the more
complex model does not benefit this problem.

Fig. 9. Imputation of HI-VAE for one missing sensor when another highly
correlated sensor is present..

Fig. 10. Imputation of HI-VAE for both missing temperature sensors, i.e.
when both correlated sensors are missing.

We repeat this evaluation for GP-VAE in Figs. 11 and
12. Interestingly, here we observe that while the initial re-
construction of the missing sensor is poorer than HI-VAE
and regression-based imputation, its imputation when both
correlated sensors are removed shows that the model learned
at least the low frequency behavior of the system. This suggest
that the time series component of the model is important in
this application.

Lastly, we plot the degradation of the performance of the
HI-VAE, GP-VAE, the iterative imputer, and standard least
squares linear regression with respect to the number of missing
sensors. Here the least squares linear regression is compared
by fitting a model from the existing sensors to the missing
sensors for each combination possible given the number of
missing sensors. The results reported are the average of all
missing sensor combinations for a given number of missing
sensors. The results are shown in Fig. 13. We observe all
methods have a significant drop in NRMSE with just one



TABLE III
IMPUTATION ERROR FOR MODELED IMPUTATION APPROACHES.

AE VAE HI-VAE GP-VAE
Loop Flow 1.10 1.05 1.05 1.04

Left Fan Speed 0.95 1.00 1.01 0.93
Middle Fan Speed 0.87 0.90 0.95 1.00
Heat 1 Command 1.19 1.11 1.33 1.15
Heat 2 Command 1.04 1.10 1.20 1.18

Fluid Temperature (Heater 2) 0.44 0.31 0.62 0.51
Fluid Temperature after Cooling 0.46 0.31 0.50 0.43

Room Temperature on Control Board 0.88 0.87 0.99 0.86
Room Temperature Upper Left of Test Bed 1.00 1.05 0.87 0.97

Overall, µ± σ 0.88 ±.025 0.86 ±0.30 0.95 ±0.24 0.89 ±0.25

Fig. 11. Imputation of GP-VAE for one sensor with a highly correlated sensor
present.

Fig. 12. Imputation of GP-VAE for both missing temperature sensors, i.e.
when both correlated sensors are missing.

missing sensor. Linear regression outperforms all other meth-
ods, with the iterative imputer outperforming HI-VAE until
half of the sensors are missing. Thus, HI-VAE has a more
graceful degradation in the presence of missing sensors than
the iterative imputer. Last among all of the methods is GP-
VAE with the fastest degradation of performance of all the
methods.

VI. DISCUSSION AND RESEARCH CHALLENGES

The previous section explored the ability of classical im-
putation methods and state-of-the-art deep learning methods
to impute missing time series. Recall here that the goal of
this paper is to evaluate the simple imputation approach to
correcting for missing sensors in SCADA or IoT deployments

Fig. 13. Degradation of imputation method as the number of missing sensors
increases.

as described in section II. The setting in which these methods
are tested is very different from the classical setting of
imputation, for which all the reviewed methods have been
proposed. This is because when data is missing at random, the
existing data can provide both temporal context and correlation
context among the recorded sensors.

In this paper, we are interested in recovering information
that would have been present in a missing time series. It
appears that if only a single sensor is missing at test time, and
there exists a strong correlation between the missing sensor
and other measurements, then the standard approach of using
regression from other existing sensors is the best way of
recovering the missing information. Yet, the performance of
this approach quickly deteriorates as the number of missing
sensors with correlation increases.

Modern deep learning methods offer an approach to impu-
tation that holds the promise of learning generative models of
the system. The promise of these models is that learning will
go beyond the simple first order correlation that is learned in
regression-based models. Unfortunately, these models do not
appear to fulfill this promise to date. In the course of this study,
we identify four difficulties in the state-the-art that necessitate
further research.

A. Deeper learning

The experiments in this paper show that, at the moment,
classical and deep learning methods learn only the closest
correlation among the sensor variables. In addition, the present
generation of methods does not emphasize learning over



subsets of sensors and instead only focuses on imputing
missing values at random. Solutions are needed that emphasize
learning system behavior from subsets of relevant sensors.
We can think of this as methods that enforce a learning
regularization such that the relevant sensors contribute to the
prediction of a derived variable.

B. Training Loss

With regard to the deep learning models used for im-
putation, an important research challenge is to choose the
correct loss function used in learning. In the course of this
work, we experimented extensively with the mean squared loss
and dynamic time warping (DTW). We found that the added
complexity of the DTW did not yield improved time series
imputation. In addition, we experimented with adding a loss
component that measured the MSE between the imputed and
true Fourier domain of the time series window. This also did
not yield improved learning in the models.

The challenge of determining the proper time series loss
stems from the fact that the sensor data encountered in industry
is not always continuous. In fact, in the experiments for this
work, the data contained continuous, categorical, and discrete
data. The treatment of such heterogeneous time series data is
still very much an open question in the field of deep time
series analysis.

C. Evaluation Metric

Another challenge we observe is how to evaluate the
imputed time series. In the computer vision community, the
Frechet Inception Distance (FID Score) [13] has been devel-
oped to evaluate the quality of generated images. No such
metric exists for time series. Yet, without such a metric,
many imputation methods appear the same. For example, we
note that the mean imputation has the same NRMSE as the
regression based imputation. On the surface these methods are
identical, but by plotting the two imputation methods as we
have done here, we observe that a large amount of temporal
information is lost in mean imputation but preserved when
using regression. Thus, research is needed in quantifying the
quality of generated or imputed time series.

D. Target Task

Lastly, there is a need for benchmark tasks and data sets on
industrial time series data. These tasks could serve as the de-
rived variables in the problem discussed in this paper. Several
candidate tasks exist: anomaly detection, regime classification,
and prediction/forecasting. Yet, unlike in the field of com-
puter vision where researchers have compiled benchmark data
sets and innovate around mutually agreed benchmark tasks,
the field of time series industrial data remains fragmented
with multiple candidate tasks and unpublished data sets. To
motivate increased interest and to speed development in this
field, its is critical that these benchmarks be established by the
research community.

VII. CONCLUSION

In this work, we introduced the missing sensor problem. We
evaluated experimentally the suitability of existing classical
approaches of imputation and cutting edge approaches in deep
learning in addressing the missing sensor problem. The setting
for this evaluation is the straightforward imputation of the
missing time series information. We demonstrated that the
methods defining the state-of-the-art were not able to recover
the missing data, particularly when multiple sensors were
missing, and we challenge the research community to innovate
by discussing the relative strengths and weaknesses of the
proposed algorithms.
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