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Abstract
Destination prediction is an important task where the primary goal is to correctly predict a
user’s destination given an input movement trajectory. Intelligent machine learning models
that learn from observed movement data and can automatically forecast destinations from
partial query trajectories are of high interest as they can provide a plethora of benefits to
both creators and consumers in various markets. In this work, we present a novel framework
for tackling the problem of destination prediction in a contextless data setting where we solely
learn from trajectory coordinate information. We propose a Transformer model to predict
destinations from partial trajectories and we demonstrate its use on two datasets from dif-
ferent domains, including a simulated indoor dataset and an outdoor taxi trajectory dataset.
Our proposed method improves upon the previous state-of-the-art LSTM and BiLSTM deep
learning approaches in terms of accuracy and distance from true destinations
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Abstract—Destination prediction is an important task where
the primary goal is to correctly predict a user’s destination
given an input movement trajectory. Intelligent machine learning
models that learn from observed movement data and can auto-
matically forecast destinations from partial query trajectories
are of high interest as they can provide a plethora of benefits
to both creators and consumers in various markets. In this
work, we present a novel framework for tackling the problem
of destination prediction in a contextless data setting where
we solely learn from trajectory coordinate information. We
propose a Transformer model to predict destinations from partial
trajectories and we demonstrate its use on two datasets from
different domains, including a simulated indoor dataset and an
outdoor taxi trajectory dataset. Our proposed method improves
upon the previous state-of-the-art LSTM and BiLSTM deep
learning approaches in terms of accuracy and distance from true
destinations.

Index Terms—destination prediction, transformer, deep learn-
ing, personalized prediction, probabilistic prediction

I. INTRODUCTION

With the rapid advancement of technology in today’s so-
ciety, there exists an abundance of recorded data that can
be harnessed to understand people’s behavior, trends, and
tendencies. One relevant set of data is location information
(e.g., GPS data obtained outside while driving/walking via a
cellular device, indoor walking data obtained via proximity
sensors). Movement data in the form of trajectories can be
used by various indoor or outdoor location-based services
(e.g., Google Maps, Apple Maps) to assist a user in her
travels through the use of a destination prediction intelligence
method. Specifically, if such a service can perform destination
prediction, then user movement data can be used to predict
a person’s intended destination; with this, the service can
provide tailored advertisements based on the destination and
any nearby locations, fastest route information based on early
detection of a destination without any user input needed,
and more. The task of predicting destinations from input
trajectories is very advantageous to companies that can use
this information and can result in improved user satisfaction,
higher service usage, and increased efficiency in a user’s day.

∗Work performed while at Mitsubishi Electric Research Labs (MERL).

The problem of destination prediction has been studied in a
multitude of settings (e.g., pedestrian, vehicular, misc.); most
solutions involve either model-based or deep learning-based
approaches, with the latter being much more popular nowadays
due to the eminence and strength of deep learning techniques.

A. Model-Based Methods

Conventional model-based methods were some of the first
explored and heavily-used solutions to the task of destination
prediction and the closely-related trajectory prediction task.

In [1], a system called Predestination was proposed that
used driver destination history and behavior to predict potential
destinations during an ongoing trip. A Bayesian approach
was taken to form destination probability distributions over
a geographic area, which were then used to determine likely
destinations from partial trajectories.

In [2], PROCAB was presented for Probabilistically Reason-
ing from Observed Context-Aware Behavior. A probabilistic
model of behavior was formed where behavior was represented
as sequential actions in a Markov Decision Process whose
weights were learned using Inverse Reinforcement Learning
and the principle of maximum entropy. The created model
was successfully applied to vehicle route preference modeling
(e.g., turn, route, and destination prediction).

A trajectory distribution model was formed for destination
prediction in [3]. First, trajectories were clustered based on a
similarity measure, and each cluster was then modeled by a 2D
Gaussian Mixture Model. For a partial trajectory, destination
forecasting was then done by first finding the cluster that the
query would belong to, and then using a score metric over
the cluster’s constituent trajectories to determine a destination
estimate.

Markov models have been very popular for route and desti-
nation prediction [2], [4] and pedestrian trajectory prediction
[5], [6]. The Sub-Trajectory Synthesis algorithm was presented
in [7], [8] to deal with the data sparsity issue (the issue of
not having enough historical trajectories to cover all possible
queries) by decomposing historical paths into sub-trajectories
and connecting them into a plethora of synthetic trajectories. A
Markov model was then used to leverage historical information



and posterior distribution values were then calculated and
sorted to find the most likely destinations given an initial
query.

Hidden Markov Models (HMM) were used in [9] along with
road map knowledge to predict driver intent and destination.
HMM were also used in [10], [11] in route and destination
prediction problems. A combination of a Markov model and a
Prediction by Partial Matching compression method was used
in [12] for route and destination prediction.

B. Deep Learning-Based Methods

Deep learning-based methods have gained much traction
over recent years due to their ability to work with long
sequence inputs. Conventional model-based approaches en-
counter difficulties when dealing with long sequences of past
observed data, as early information tends to dissipate when a
long sequence is encountered. This limitation precludes these
methods from making the best and most informed decisions
in complex scenarios.

Deep learning methods for sequence processing first gained
traction for their successes in areas such as natural language
processing; they have been adapted since to non-language
applications, such as destination/trajectory prediction. Specifi-
cally, Recurrent Neural Networks (RNN), which work with
variable length time sequence data, have gained popularity
since trajectories, which can be thought of as time sequence
data, can be predicted via RNNs. Equivalently, RNNs can
also be used for destination prediction as an output target can
indeed be of length one.

In [13], a Multi-Layer Perceptron (MLP) was used for
the problem of taxi destination prediction reformulated as a
regression problem where the destination was expressed as a
linear combination of mean locations of destination clusters.
The proposed MLP method was the first place solution to the
2015 ECML/PKDD discovery challenge on taxi destination
prediction. In addition, RNN and Bidirectional (Bi) RNN
methods were also tested and performed very well (better than
the MLP on a larger and more representative test set than that
from the challenge, which the MLP performed the best on).

An RNN model was used for destination prediction in
[14] where candidate destinations were obtained from par-
tial trajectories by estimating visiting probabilities through
object movement simulation with stochastic sampling. As
an improvement, [15] used regularized RNN with surprisal-
driven zoneout, which serves to prevent error transmission
in an RNN, to solve the destination prediction problem in
a vehicular setting. A frequency domain processing approach
using Convolutional Neural Networks (CNN) and RNN was
also created for taxi destination prediction in [16].

RNNs have also been leveraged for various trajectory pre-
diction problems. In [17], an RNN was used for vehicle
trajectory prediction; as an extension, an attention-based RNN
model was used to accomplish the same task with improved
performance [18]. RNNs were also used in [19] to predict
hurricane trajectories.

RNNs are known to suffer from gradient vanish-
ing/exploding issues [20], [21], which hinder them from re-
membering long input sequences; to deal with this, Long-Short
Term Memory (LSTM) [22] was designed to allow for long
term dependency retention. LSTM methods are being used for
trajectory prediction because of their power to make informed
decisions by retaining and using past observed sequence data.

A Social LSTM approach for pedestrian trajectory predic-
tion was presented in [23] where an LSTM network was com-
bined with a social pooling layer to model pedestrian interac-
tions. In [24], an LSTM+MLP architecture was used to model
pedestrian affinity and in turn determine location/trajectory
displacements; [25] used a stacked LSTM approach for tra-
jectory prediction. A combination of LSTM, CNN, and a
Fully-Connected Neural Network (FCNN) was used in [26] to
analyze user behavior, position mapping, and external features,
respectively, for cyclist destination prediction.

C. Our Approach

We use a Transformer architecture as our destination pre-
diction model by converting our problem to an equivalent
sequence transduction problem that a Transformer is suitable
for. Specifically, we consider a partial query trajectory as
an input sequence and the end point of the full trajectory
as the output sequence (of length 1). We choose to use
the Transformer as our prediction model due to its dynamic
attention mechanism that allows for improved model training
speed through parallelization (problematic in RNN/LSTM)
and a better handling and retention of long term dependencies
(an issue in RNN and also sometimes in LSTM for long
sequences) that become integral in transportation problems
where long trajectories exist and beginning trajectory infor-
mation can greatly influence decisions.

In this paper, we make the following contributions. First,
we present a novel destination prediction system using the
attention-based Transformer architecture. Second, we apply
our method to both indoor movement and outdoor taxi tra-
jectory datasets. Third, we demonstrate through numerical
experiments that our approach achieves higher true destination
confidence in the indoor dataset and higher accuracy and lower
distance from the true destination in the outdoor dataset in
comparison to two previous state-of-the-art LSTM and Bi-
directional LSTM (BiLSTM) deep learning approaches.

II. TRANSFORMER ARCHITECTURE

The Transformer was first introduced in [27] as a sequence
transduction system that has been shown to outperform pre-
ceding state-of-the-art methods (RNN, LSTM, BiLSTM, etc.)
in various tasks such as language translation [27], [28], natural
language understanding [29], and document generation [30].
This system is devoid of any recurrent cell units present in
RNN models and instead relies on a more effective attention
module for relating elements in a sequence.

Unlike RNNs that deal with sequences in a sequential
manner which can inhibit parallelization within training, the
Transformer uses positional encoding and attention modules



which allow for parallelization and, in turn, a more efficient
training procedure. In addition, an RNN model might have
difficulty in learning dependencies between distant positions in
sequences of large lengths, again due to its sequential nature;
but, the Transformer’s attention mechanism can allow for
modeling of dependencies of elements in a sequence without
consideration of their distances. This solely attention-based
system consists of an encoder-decoder structure as seen in the
architecture displayed in Fig. 1.

The system contains a stack of N encoder and decoder
blocks in which there exist stacked self-attention and fully
connected feed forward layer components.

Before the encoder, an input sequence first passes through
an embedding layer where input tokens are converted to dmodel-
dimensional vectors. (The tokens are discrete elements.) Then,
order information about the elements of the input is obtained
using a positional encoding block, and is then combined with
the embedding vector via a summation operation. This new
vector then passes into the encoder where it first encounters
a multi-head attention block. Attention in the encoder is used
as a means of referencing other tokens in an input sequence
when attempting to encode a specific token; this multi-head
block consists of an array of scaled-dot product attention
components where an attention function is calculated based
on a data matrix X . The data matrix is projected using three
different matrices that are learned in training and projected
matrices Q, K, and V are obtained which represent queries,
keys, and values, respectively. Attention is then calculated
as: Attention(Q,K, V ) = softmax(QKT /

√
dk) × V , where

dk is the number of columns of the K matrix. Multi-head
attention involves calculating multiple attention functions with
different learned projections in order to yield improved rep-
resentation performance. A Residual connection along with a
Layer Normalization (RLN) then exists which connects the
input to the attention block with its output, adds them, and
then normalizes. The resulting elements then pass through a
feedforward sublayer followed by another RLN connection on
its way out of the encoder.

Before the decoder, a target output sequence passes through
embedding and positional encoding blocks (similar to those
regarding the input) before it enters a masked multi-head
attention block. This element is similar to that of the encoder
except that the output sequence is masked such that it can only
refer to preceding output sequence positions. After an RLN
layer, another attention block exists which is similar to that of
the encoder except that it uses information from the encoder
output as additional input in its calculation of attention. RLN,
feedforward, and RLN layers comprise the rest of the decoder
block.

Outside of the decoder, a linear layer exists that takes the
decoder output and creates a logit vector over all possible out-
put elements; then, a softmax operation is done to convert the
values to output probabilities from which we can extract the
maximum value and its index to locate a predicted destination.

When training the Transformer, a KL Divergence loss
function is minimized over multiple epochs and a greedy

Fig. 1. Transformer architecture [27] comprising an encoder-decoder
stack structure used for sequence-to-sequence conversion.

decoding scheme is used as the method for finding the output
destination. In our experiments, we trained the Transformer
model using parameter values similar to those discussed in
both [27], [31] as they empirically yielded the best prediction
performance.

III. EXPERIMENTAL RESULTS

We present numerical results on two complex datasets: A)
A small simulated indoor trajectory dataset, and B) A larger
taxi trajectory dataset. Other common datasets for destination
prediction problems are the TrajNet1 and the ETH2/UCY3

datasets; these consider small physical spaces (i.e. a room,
a city block, etc.) and their respective trajectories are not
very lengthy and/or sinuous. The data we consider contain
more complex trajectories due to their large lengths and their
circuitous nature, as evidenced in Figures 2 and 4.

For our experiments, we consider a minimal data setting
where we solely use trajectory coordinates for our predic-
tions (i.e., no contextual information such as timestamps and
identification tags). As a possible future extension, contextual
information can be incorporated to our prediction model for
improved performance. Since all our data involves coordinates,
we discretize the coordinate space into grid cells for easier data
representation and usage.

The methods we implement are our proposed Transformer
architecture with N = 4 encoder/decoder blocks along with 4

1http://trajnet.stanford.edu
2https://data.vision.ee.ethz.ch/cvl/aess/dataset
3https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data



level stacked LSTM/BiLSTM models, which are currently the
state-of-the-art in the destination/trajectory prediction domain.
Through our experiments, we ultimately observe that our
Transformer model outperforms the LSTM/BiLSTM architec-
tures in terms of quick destination prediction in addition to
destination proximity and accuracy.

A. Simulated Indoor Dataset

We first apply our developed Transformer system to a small
simulated indoor movement dataset. For this dataset, we use
SimTread simulation software to generate movement trajecto-
ries in an indoor setting based on a created floor architecture.
We generate 11 user movement trajectories with 4 possi-
ble destinations. Since this dataset contains a small amount
of trajectories, we use the Leave-One-Out Cross-Validation
(LOOCV) technique for obtaining average performance results
for our tested prediction models. Specifically, given S total
samples (trajectories), we go through S iterations where in
each iteration we use one of the S trajectories for model
testing and the remaining S − 1 paths for model training. Per
iteration, we obtain an array of correct destination probabilities
as we increase the percentage of our query test trajectory; we
then use these probability arrays over all S iterations to obtain
median destination prediction performance for a given model.

Fig. 2 displays the data split of an example iteration
where we train a prediction model using the 10 blue training
trajectories, where their starting locations are depicted with
dark blue circles, and test the model on the single red trajectory
as its observed length evolves. We discretize the continuous
space into a 50 × 50 grid and convert each trajectory into a
sequence of grid locations that serve as input to our models.
Overall, this data serves to mimic a single user’s movement
throughout a floor during some time period of a day where
the visited destinations can represent popular real-life indoor
destinations such as bathrooms, stairs, elevators, and break
rooms.

Fig. 3 displays the correct destination probabilities of the
three approaches where the top plot considers the median
performances along with nearby quantile behavior while the
bottom plot displays the destination probabilities for the spe-
cific setting shown in Fig. 2 where the true test trajectory
destination probability (destination is the location of the green
block where the red test trajectory culminates) is shown as a
function of the percentage of the observed test trajectory. In
the top section, we display the 40th, 50th, and 60th quantiles of
destination probabilities to measure variability in test trajectory
complexity. When carrying out the LOOCV approach, we
encounter test trajectories of varying lengths and similarities to
the training trajectories; with this, the destination probabilities
we obtain over some splits will differ and a robust destination
prediction model should be able to recognize the differences
in the trajectories and adapt its predictions accordingly, as can
be seen with a larger spread in prediction probabilities.

The top plot shows that the Transformer can yield an
improved destination prediction early in the development of a
trajectory, unlike the LSTM and BiLSTM methods that require

Fig. 2. Indoor data obtained from the SimTread human movement
simulation software and used by our destination prediction models.
The indoor space is partitioned into 502 blocks; each trajectory is
converted to a sequence of grid locations that can be used as input
for our decision models and each destination is represented as a single
grid index. The pictured training and testing splits are for a specific
iteration whose results are displayed in the bottom plot of Fig. 3.

more observation to make accurate predictions. In addition,
the variations in correct class probabilities for the Transformer
show improved accuracies over the baseline methods. In the
bottom section, we consider one split of the LOOCV approach
as shown in Fig. 2. In this case, the test trajectory begins
to overlap with some training trajectories early in its devel-
opment; this overlap provides helpful information regarding
a destination and should be recognized and exploited by a
prediction model. An ideal model would detect the early
overlap and would account for this by increasing the true
destination probability at around the 20% mark of the test
trajectory. This successful behavior is exclusively observed in
our Transformer model.

Ultimately, these results show that our Transformer ap-
proach is able to learn patterns in this simplistic, low-data
setting as evidenced by its increasing destination probabilities,
unlike the LSTM and BiLSTM approaches that are unable
to detect destinations correctly early in the development of a
movement trajectory.

B. Taxi Trajectory Dataset

To further investigate the performance of our Transformer
destination prediction approach in large real data scenarios,
we apply it to the task of outdoor taxi destination prediction.
We focus on the popular taxi trajectory dataset used in a 2015
Kaggle competition4 which is comprised of full trajectories
of 442 taxis in the city of Porto, Portugal, recorded over a
complete one-year period starting in July 2013. The whole
dataset contains a training set of over a million taxi trajectories
with a multitude of features, such as trajectory information (in
the form of latitude and longitude coordinate sets), taxi ID, and
ride time. For our approach, we desire to make a personalized

4https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data



Fig. 3. Evolution of the true destination grid index probability of the
Transformer, LSTM, and BiLSTM methods as more of the input test
trajectory is observed for the median (top) and test case (bottom) from
Fig. 2. The 40th and 60th quantiles of destination probability values
are also displayed in the median case to show the robustness of the
tested methods in dealing with trajectories of varying characteristics
(length, similarity to training set, etc.). Our Transformer is able to
accurately detect the true destination early in a trajectory due to its
apparent ability to learn in low data settings, unlike with the LSTM
and BiLSTM methods.

model for destination prediction, so we must focus on a small
subset of the expansive taxi dataset where the data in it
can effectively model a single entity’s behavior. Specifically,
we constrain our data to be within the following latitude
and longitude bounds: [41.135, 41.160] and [−8.600,−8.560],
respectively. This smaller region concentrates on a specific
neighborhood in Porto which we discretize into a 24×24 grid;
then, we convert each taxi trajectory of continuous coordinates
into a trajectory of grid locations from which we form our
training and testing sets.

For our problem, we focus on the case of minimal infor-
mation, where we solely have access to trajectory information
(i.e., no user identification tag or timestamp knowledge), so
we form the training and testing sets solely using trajectory
data. Our inputs are designed to be partial trajectories, without
the destination, whereas the outputs are just the destinations.
We form our training set by extracting 100 taxi trajectories
per destination over the top 20 most popular destinations in
the region; similarly, we create our testing set by extracting
10 trajectories per destination over the top 20 most popular

Fig. 4. A visualization of the taxi trajectories that comprise our
training and testing sets along with a display of our grid discretization
procedure. We partition the Porto neighborhood of interest into 242

blocks, which we label and use to convert all the coordinate taxi
trajectories into grid index trajectories as the Transformer accepts
discrete inputs.

destinations. Fig. 4 displays our trajectory data along with
our space discretization scheme, where the non-discretized
training and testing trajectories are depicted in blue and
red, respectively; the green markers represent non-discretized
trajectory destinations.

We train LSTM, BiLSTM, and Transformer models using
our custom training set, and then evaluate performance on the
test set when query trajectories evolve over time. Specifically,
we train on full trajectories and test on partial trajectories
of increasing lengths, in order to observe how destination
prediction performance changes on average when more of a
trajectory is observed. For all tested methods, we search over
the entire grid space when attempting to find a destination
given a query trajectory. We measure performance using
two metrics: 1) Block Distance (BD), and 2) Neighborhood
Accuracy (NA).

BD is a metric that measures how many grid jumps away
an obtained destination DO is from the true destination DT ;
essentially, it is a measure of closeness of a prediction to the
true destination. If DO and DT are mapped to row and column
grid pairs [xO, yO] and [xT , yT ], respectively, then BD can be
calculated as: BD|O−>T = max{|xT − xO|, |yT − yO|}. NA
is also a metric that measures the closeness of a prediction
to a true destination; it is an accuracy metric that classifies
predictions as correct as long as they are R grid jumps
away from the true destination. We obtain these performance
metrics by calculating them per inputted partial trajectory
(formed by extracting a given percentage of a test point’s full
trajectory) and averaging all obtained metric values for that
given observation percentage.

Fig. 5 displays BD trends of the compared prediction
models as the lengths of observed trajectories increase when
searching for the top 1 destination. We present results for
observed trajectory percentages of over 40%, as the obtained



Fig. 5. Block Distance (BD) metric trend as observed trajectories
evolve in length when searching for a single destination. We see
that the Transformer tends to yield the smallest BD metric over all
compared state-of-the-art methods when at least half of the input
trajectories are observed.

metrics are insignificant for smaller percentages in this taxi
application. It is seen that our Transformer consistently out-
performs the LSTM/BiLSTM models in terms of BD over
much of the trajectory percentages.

Fig. 6 shows NA metric behaviors of the compared models
as the lengths of observed trajectories increase when searching
for the top 1 destination for both R = 1 and R = 2 cases.
We see that our Transformer yields larger accuracy metrics
than the LSTM/BiLSTM models over most of the trajectory
percentages, especially when not much of the trajectories has
been seen; towards larger percentages, all methods perform
quite similarly as the inputs become proximate to the true
destinations.

IV. CONCLUSION

In this paper, we proposed a novel approach to destination
prediction based on the Transformer architecture. Numerical
experiments showed that our method improved upon the state-
of-the-art LSTM/BiLSTM methods’ performances in the case
of contextless, minimal data for both indoor and outdoor
datasets in terms of prediction accuracy metrics.

As future work, we are studying incorporating contextual
information into the Transformer architecture, possibly by
using a separate context encoder [32] or a simpler two-stage
neural network approach that can take as input various data,
such as user identification tags and timestamps. Also, a bi-
directional Transformer [33] can possibly be used to yield a
more robust destination prediction model.

Fig. 6. Behavior of the Neighborhood Accuracy (NA) metric of radius
1 and 2 as observed trajectories evolve in length when searching
for a single destination. The Transformer consistently yields larger
accuracy values than the state-of-the-art methods for both choices
of radius, except when almost the full trajectory has been observed,
when all methods tend to perform similarly.
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