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Abstract
Existing fingerprint-based indoor localization uses either fine-grained channel state informa-
tion (CSI) from the physical layer or coarse-grained received signal strength indicator (RSSI)
measurements. In this paper, we propose to use a mid grained intermediate-level chan-
nel measurement — spatial beam signal-to-noise ratios (SNRs) that are inherently available
and defined in the IEEE 802.11ad/ay standards — to construct the fingerprinting database.
These intermediate channel measurements are further utilized by a deep learning approach
for multiple purposes: 1) location-only classification; 2) simultaneous locationand orienta-
tion classification; and 3) direct coordinate estimation. Furthermore, the effectiveness of the
framework is thoroughly validated by an in-house experimental platform consisting of 3 ac-
cess points using commercial-off-the-shelf millimeter-wave WiFi routers. The results show a
100% accuracy if the location is only interested, about 99% for simultaneous location-and
orientations classification, and an averaged root mean-square error (RMSE) of 11.1 cm and
an average median error of 9.5 cm for direct coordinate estimate, greater than 2-fold improve-
ments over the RMSE of 28.7 cm and median error of 23.6 cm for RSSI-like single SNR-based
localization
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ABSTRACT Existing fingerprint-based indoor localization uses either fine-grained channel state informa-
tion (CSI) from the physical layer or coarse-grained received signal strength indicator (RSSI) measurements.
In this paper, we propose to use a mid-grained intermediate-level channel measurement — spatial beam
signal-to-noise ratios (SNRs) that are inherently available and defined in the IEEE 802.11ad/ay standards
— to construct the fingerprinting database. These intermediate channel measurements are further utilized
by a deep learning approach for multiple purposes: 1) location-only classification; 2) simultaneous location-
and-orientation classification; and 3) direct coordinate estimation. Furthermore, the effectiveness of the
framework is thoroughly validated by an in-house experimental platform consisting of 3 access points using
commercial-off-the-shelf millimeter-wave WiFi routers. The results show a 100% accuracy if the location is
only interested, about 99% for simultaneous location-and-orientations classification, and an averaged root
mean-square error (RMSE) of 11.1 cm and an average median error of 9.5 cm for direct coordinate estimate,
greater than 2-fold improvements over the RMSE of 28.7 cm and median error of 23.6 cm for RSSI-like
single SNR-based localization.

INDEX TERMS Indoor localization, WiFi, millimeter wave, fingerprinting, machine learning, deep neural
networks, location, orientation, coordinate estimation.

I. INTRODUCTION

LOCALIZATION of people, objects and devices in in-
door environments has received tremendous attention

over the past few decades. Although the global positioning
system (GPS) is a prevailing technology for outdoor local-
ization, its use for indoor localization has been prevented due
to its large attenuation when penetrating buildings.

Radio frequency (RF) technologies, e.g., WiFi, infrared,
RF identification, ultra wide-band (UWB), Zigbee, Blue-
tooth, digital television, cellular and frequency-modulation
(FM) radio, have been proposed for indoor localization with
varying degree of implementation complexity and result-
ing accuracy. Most of them have been built upon informa-
tion/estimation either on i) time, e.g., time of arrival (ToA),
time of flight (ToF), time difference of arrival (TDoA), ii)
angles, e.g., angles of arrival (AoA) and departure (AoD),
iii) phases, e.g., phase of arrival and phase difference, and

iv) power, e.g., received signal strength indicator (RSSI) or
signal-to-noise ratio (SNR) [1], [2].

Compared with technologies requiring dedicated hard-
ware, such as anchors in UWB localization systems, indoor
localization systems using existing infrastructure are more
cost-effective solutions. Given its ubiquitous presence, WiFi
stands out as a technology for infrastructure-free indoor lo-
calization. Most WiFi-based indoor localization frameworks
use either fine-grained channel state information (CSI) from
the physical layer [3]–[12] or coarse-grained RSSI measure-
ments from the MAC layer [13]–[29] for fingerprinting or
direct localization; see more detailed literature review in the
next section.

The conventional RSSI measurement suffers from the
measurement instability and coarse granularity of the channel
information, leading to limited accuracy for localization. The
CSI measurement is more fine-grained but requires access
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to physical-layer interfaces and high computational power
to process a large amount of sub-carrier data. These lim-
itations motivate us to use mid-grained intermediate chan-
nel measurements which are more informative (e.g., in the
spatial domain) than the RSSI measurement and easier to
access than the lower-level CSI measurement. Specifically,
this paper proposes to use a new type of intermediate channel
measurement — spatial beam SNRs — that are inherently
available (with zero overhead) for beam training for the fifth-
generation (5G) and IEEE 802.11ad/ay standards operating
at millimeter-wave (mmWave) bands, to construct the finger-
printing database.

Using commercial-off-the-shelf (COTS) 802.11ad routers,
we conduct proof-of-concept experiments to collect the beam
SNR measurements at several location-of-interests for con-
structing a fingerprinting dataset at regular office environ-
ments. For the in-house measurement dataset, both classi-
fication and coordinate estimation are considered using a
deep neural network architecture inspired by residual net-
work (ResNet) [30] for location/orientation identification
and coordinate estimation. To verify the advantage of pro-
posed beam SNRs fingerprinting and neural networks, the
location accuracy and estimation error are analyzed through
the comparison to various machine learning methods. Our
contributions and results are summarized as follows:

• We propose to fingerprint beam SNR measurements
for location and orientation for indoor localization as
they provide relatively rich information on spatial prop-
agation paths of mmWave signals used during beam
training phase in IEEE 802.11ad standards, and are
accessible from COTS 802.11ad chipsets.

• We introduce a ResNet-inspired deep neural network
(DNN) by fusing feedforward fully-connected layers
and shortcut connections for one-dimensional beam
SNR vectors from multiple access points (APs).

• We implement a mmWave fingerprint-based indoor
localization system consisting of 4 COTS 802.11ad-
compliant WiFi routers and collect real-world measure-
ments in an office space during regular business hours.

• We conduct comprehensive performance analysis by
evaluating performance as a function of the number of
APs, training data size, sliding-window size, orientation
mismatch, and off-grid locations.

• High-accuracy localization performance is achieved by
using beam SNRs, which is greater than 2-fold improve-
ments over the conventional RSSI-like single SNR-
based fingerprinting localization.

It is noted that this paper takes one step further from our pre-
liminary work in [31] and [32] by introducing the customized
deep learning (DL) neural network and achieving significant
improvements, especially for the coordinate estimation.

It is worth noting that our work is inspired by earlier
efforts in [33]–[35] which enabled easy access to beam SNR
measurements from COTS 802.11ad WiFi routers. How-
ever, rather than formulating it to a direct localization as a

constrained optimization and requiring dedicated chamber
measurements of beam patterns, we propose to direct fin-
gerprint beam SNR measurements as features for location
and orientation. This is motivated by the conventional wis-
dom that fingerprinting yields better performance than direct
localization by registering locations-of-interest directly with
WiFi propagation features without the need for an accurate
propagation model.

The remainder of the paper is organized as follows. Sec-
tion II reviews the existing literature of using the coarse-
grained RSSI measurements and fine-grained CSI measure-
ments for indoor localization. In Section III, we introduce the
principle of a multi-AP data collection system. Section IV
details the offline fingerprinting phase to build the labeled
training dataset and the deep learning-based online local-
ization phase. Section V describes the in-house experiment
setup, the classification performance, and the accuracy of
direct coordinate estimation. Finally, conclusions are drawn
in Section VI.

II. LITERATURE REVIEW
In the following, we provide a literature review on WiFi-
based indoor localizations using RSSI and CSI measure-
ments and related applications.

A. RSSI FINGERPRINTING

Early WiFi-based indoor localization systems used RSSI
measurements to estimate indoor location in a direct local-
ization fashion [13]–[16]. For fingerprinting-based methods,
RSSI was used directly as fingerprinting data in systems such
as Radar [17], Compass [18], and Horus [19] due to easy
access to 802.11ac- and 802.11n-compliant devices.

Classical machine learning methods such as the k-nearest
neighbor (kNN) and support vector machine (SVM) were
applied to RSSI fingerprinting measurements [17], [20]–[23].
In [19], a probabilistic Bayesian method was proposed to
measure the similarity between the test and fingerprinted
RSSI measurements. Instead of using parametric statistical
distributions such as the Gaussian and lognormal distribu-
tions, non-parametric kernel methods were applied to the
RSSI measurements to extract statistical distribution of RSSI
measurements to infer the likelihood of test measurements
[24], [25]. Leveraging modern machine learning frameworks
such as discriminant-adaptive neural network [26], robust
extreme learning machines [27], and multi-layer neural net-
works [28], RSSI fingerprinting-based indoor localization
methods showed improved localization performance over
classical machine learning approaches. More recently, [29]
proposed to apply recurrent neural networks (RNNs) to RSSI
measurements for utilizing trajectory information.

Nevertheless, RSSI measurements have limitations such as
1) instability of RSSI measurements at a given location and
2) coarse-grained channel information.
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B. CSI FINGERPRINTING
At low frequency bands, CSI measurements can be accessed
from COTS 802.11n, 802.11ac and 802.11h devices. These
data are complex-valued channel measurements over multi-
ple subcarriers at 2.4 and 5 GHz bands [3]–[8]. With richer
channel information, a larger amount of CSI measurements
from fingerprinted locations can be trained by more advanced
deep learning architectures to learn the mapping from CSI to
locations. For instance, ConFi [9] used convolutional neural
networks (CNNs) to train CSI measurements from three
antennas, for classifying the location, and estimating location
coordinates with weights equal to the classified category
posteriors. [10] fingerprinted full CSI over multiple time
instants, calibrated their phases and fitted one autoencoder
for one location. An unknown location was estimated as
centroid of fingerprinted locations with weights computed
from autoencoders’ reconstruction errors. Besides the above
classification-first localization methods, CSI measurements
were trained directly to provide the coordinate estimation by
formulating a regression problem in [11], [12].

At mmWave bands (e..g, 28-GHz for 5G communication
and 60 GHz for IEEE 802.11ad [36] and 802.15.3c [37]),
the use of CSI measurements for fingerprinting was much
less reported in the literature due to the cost of a dedi-
cated mmWave platform or no access to CSI measurements
from COTS mmWave WiFi devices. RSSI and AoA from
multiple APs were fingerprinted and then used to estimate
location using the weighted nearest neighbor algorithm [38].
A two-dimensional power delay profile (PDP) over multiple
beampatterns was used as fingerprints at 28 GHz band for
outdoor localization [39]. It exploited the fact that clients’
locations can be registered by multipath delays due to sur-
rounding obstructions (e.g., buildings and trees). To obtain
high-resolution PDP, it assumed that base stations can trans-
mit short pulses with a sequence of directive beamforming
patterns and a high sample rate was required at the client to
separate closely-spaced delays. However, this concept was
verified only using ray-tracing simulated datasets.

C. RELATED LITERATURE
In the following, we provide a brief overview of direct
localization and related sensing applications.

1) mmWave Direct Localization

With no requirements of offline fingerprinting, direct lo-
calization methods using mm-Wave channel features were
proposed. Examples include a three-stage location and ori-
entation estimation method in [40], direct localization for
massive multi-input multi-output (MIMO) based on AoA
and ToA in [41], and three-dimensional (3D) localization
using a large-scale mmWave uniform cylindrical array [42].
Similarly, [43]–[45] estimated location from knowledge of
mmWave channel in the angular domain with one or more
APs. Nonetheless, hardware constrains limit the number of
RF chains that can be employed in a mmWave device due to

(a) Talon AD7200 Router

(b) Beampatterns for beam training

FIGURE 1: (a) Commercial off-the-shelf 802.11ad device:
Talon AD7200 router; (b) Two directional transmitting beam-
patterns and a quasi-omnidirectional receiving beampattern
used for beam training are shown. The beampatterns were
measured in a chamber at the TU Darmstadt [33].

cost and power consumption, rendering the above referenced
direct localization methods impractical.

2) Human Sensing
Beyond indoor localization, WiFi-band and mmWave
frequency-modulated continuous-wave (FMCW) signals
from dedicated devices and commercial sensing evaluation
boards (e.g., TI AWR/IWR chipsets) were utilized to take ad-
vantage of their high-resolution range and angle information
to track persons behind the wall, determine personal identity,
estimate pose and gestures, and track 2D/3D skeleton move-
ments [46]–[51].

With success of mmWave FMCW signals for human sens-
ing, commercial WiFi signals, especially CSI measurements
from commercial 802.11n chipsets at low frequency (2.4
GHz) bands, were trained via supervised learning or cross-
modal deep learning for human sensing tasks such as device-
free localization, activity recognition, fall detection, personal
identification, emotion sensing, and skeleton tracking [52]–
[62]. Most recently, [60] used annotations from camera im-
ages to train fine-grained CSI measurements over 30 sub-
carriers and 5 frames from 3 transmitting and 3 receiving
antennas. The cross-modal deep learning approach showed
the great potential of commercial WiFi signals for sensing ap-
plications. Nevertheless, explicit utilization of beam features
from commercial mmWave communication (5G and WiFi)
signals was not yet reported in the literature.

III. DATA COLLECTION SYSTEM
A. HARDWARE
We use TP-Link Talon AD7200 routers to build our in-house
data collection system. Complying with IEEE 802.11ad
standards, this router implements Qualcomm QCA9500
transceiver that supports a single stream communication in
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FIGURE 2: Illustration of beam SNR measurements as a
function of transmitting and receiving beampatterns.

60 GHz range using analog beamforming over 32-element
planar array, as shown in Fig. 1(a).

To search for desired directions, a series of pre-defined
beampatterns or sectors are used by APs to send beacon mes-
sages to potential clients which are in a listening mode with
a quasi-omnidirectional beampattern. These beampatterns
were measured in a chamber at the TU Darmstadt [33], [34]
and three selected beampatterns (two for transmitting and one
for receiving) are shown in Fig. 1(b). Then, clients send a
series of beampatterns while the APs are in a listening mode.
After beam training, the link can be established by choosing
the pair of beampatterns between the AP and clients. Such
beam training is periodically repeated and the beam sectors
are updated to adapt to the environmental changes. It is noted
that the resulting beampatterns depart from the theoretical
ones and exhibit fairly irregular shapes due to hardware
imperfections and housing at 60 GHz.

B. BEAM SNR
When directional beampatterns are used, beam SNRs are
collected by 802.11ad devices as a measure of beam quality.
For a given pair of transmitting and receiving beampatterns,
corresponding beam SNR can be defined as

hm = BeamSNRm =
1

σ2

I∑
i=1

γm(θi)ζm(ψi)Pi, (1)

where m is the index of beampattern, I is the total number
of paths, θi and ψi are the transmitting and receiving azimuth
angles for the ith path, respectively, Pi is the signal power
at the ith path, γm(θi) and ζm(ψi) are the transmitting
and receiving beampattern gains at the ith path for the mth
beampattern, respectively, and σ2 is the noise variance. Fig. 2
shows an example of I = 3 paths between the transmitting
side that probes the spatial domain using the (m = 24)th
directional beampattern and the receiving side which is in a
listening mode. For Talon AD7200 routers, the beam SNR
measurements are further quantized in a stepsize of 0.25 dB.
Overall, from one beam training, one AP can collectM beam
SNRs for M transmitting beampatterns.

FIGURE 3: The data collection system uses multiple com-
mercial 802.11ad devices as APs and one 802.11ad device
as client for fingerprinting. The client sequentially performs
beam training over multiple APs. During the beam training
phase, beam SNR measurements are collected from each AP
to a workstation via Ethernet cables.

FIGURE 4: Beam SNR measurements when the client is
located at (a) three locations with the same orientations; and
(b) the same location but with different orientations.

C. CONFIGURATION
To access the raw beam SNR measurements at Talon AD7200
routers, we followed the work in [33]–[35] and used the
open-source software package in [63]. Particularly, we used
the Nexmon firmware patching framework [64], which en-
ables the development of binary firmware extensions in C.
By matching the patterns of IEEE 802.11ad beam training
frames with the memory inside the chip, one can identify
parts of the firmware handling the beam training frames
and extract beam SNR measurements from these memory
addresses.

The data collection system consists of multiple Talon
AD7200 routers, three serving as APs and one as the client,
in a configuration shown in Fig. 3. The client sequentially
performs beam training over multiple APs. During the beam
training phase, beam SNR measurements are collected from
each AP to a workstation via Ethernet cables.

D. DATA VISUALIZATION
Fig. 4 shows collected beam SNRs over the time (packet
index) and spatial beam (sector index) domains from one AP
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to a client. The top row shows the beam SNR measurements
when the client is located at three different locations (i.e.,
Locations 1, 2, 3) with the same orientation (Orientation
90◦), while the bottom row shows the beam SNR mea-
surements when the client is located at the same location
(Location 3) but with different orientations (i.e., Orientations
0◦, 90◦, 180◦). Overall, beam SNR measurements are stable
over time (packet index) with only a few fluctuations, possi-
bly due to people moving. On the other hand, the measure-
ments are sensitive to the client’s location and orientation as
beam SNRs change more rapidly over sector index.

IV. INDOOR LOCALIZATION BY MMWAVE BEAM
FINGERPRINTING
In the following, we utilize the beam SNRs to build fin-
gerprinting dataset at reference locations and orientations,
and then introduce a ResNet-based deep learning approach
for classification and coordinate estimation. Compared with
our earlier classical machine learning approaches such as the
kNN, SVM and Gaussian process (GP) [32], the deep learn-
ing approach shows significant improvements on localization
errors, as verified in Section. V.

A. OFFLINE TRAINING DATASET
To construct the fingerprinting dataset, we follow the stan-
dard procedure by stacking all SNR measurements from
all beam sectors as a fingerprinting vector, e.g., h =
[h1, h2, . . . , hM ]T where M is the number of beampatterns
used for beam training and [·]T denoting the transpose. When
multiple APs are used, we combine beam SNR measurements
from each AP to form one long fingerprinting snapshot, i.e.,
h̃ = [hT

1 ,h
T
2 , . . . ,h

T
P ]

T ∈ RMP×1, where P is the number
of APs. For a given location and orientation,R fingerprinting
snapshots, h̃1(l, o), . . . , h̃R(l, o), are collected to construct
the offline training dataset, where l and o are the indices for
the location and orientation, respectively. By collecting many
realizations of beam SNR measurements at multiple APs over
L locations-of-interest and O orientations, we will have LO
sets of MP × R beam SNR measurements in the training
dataset.

Albeit simple, the offline fingerprinting phase is time- and
manpower-consuming. This issue becomes worse when one
sets the resolution of fingerprinting positions and orientations
to a finer granularity. In our experiment, it is not uncommon
to collect the fingerprinting datasets in days. To alleviate this
issue, one can borrow the concept of crowdsourcing [65],
[66] which exploits pervasive (mmWave) WiFi devices to
collect training samples and labels with unconscious coop-
eration among volunteering users [67], and adaptive sam-
pling which exploits adaptivity to identify highly informative
fingerprinting positions and, hence, reduces the amount of
labeled samples.

B. ONLINE LOCALIZATION
When new fingerprinting measurements from an unknown
location are available, the problem of interest is to identify

its location and/or orientation and estimate its coordinate.
To this end, we propose a deep learning architecture by
fusing feedforward fully connected (FC) layers and shortcut
connections (SC) of the ResNet for both classification and
coordinate estimation.

1) Proposed Network Architecture
The proposed deep neural network architecture for indoor
localization is shown in Fig. 5. It first feeds beam SNRs from
multiple APs to an input layer with a dimension ofNw, where
Nw refers to the layer width. In the case of three APs, a total
of 108 beam SNRs by cascading measurements from APs is
used as an input. The input layer is implemented by using a
fully-connected linear layer, i.e., y0 = Winputh̃+binput, for a
weight of Winput ∈ RNw×108 and a bias of binput ∈ RNw×1.

Then, the output y0 is fed into Nd consecutive residual
blocks, where a shortcut connection is used to jump from the
input to the output of each residual block in order to learn
residual gradient for improved training stability,

y` = f`(y`−1,θ`) + y`−1, ` = 1, 2, . . . , Nd, (2)

where f` is the nonlinear mapping with weights θ` to be
learned, y` is the output of the `th residual block and input
for the next residual block, and Nd is the number of residual
blocks.

For the residual block architecture, the form of f` can be
flexible in terms of the number of hidden layers, the use of
bottleneck layers for dimension reduction and computational
reduction, activation functions, and regularization formats.
In Fig. 5, we consider the batch normalization (BN) and
rectified linear unit (ReLU) activation function followed by
hidden layers implemented by two fully-connected layers of
the same dimension of Nw. The use of the same dimen-
sion through the residual block allows an identity-mapping
shortcut connection which introduces neither additional pa-
rameters nor computation complexity, but allows for more
efficient gradient backpropagation to mitigate gradient ex-
ploding or vanishing. More specifically, the output of the
previous residual block y`−1 first goes through a batch nor-
malization layer and a ReLU activation layer. Then a fully-
connected layer of Nw ×Nw is used for linear combination.
This process is repeated again to generate the output of the
nonlinear mapping f`(y`−1,θ`) which is added to the input
y`−1 which passes through the shortcut connection path. In
other words, for the particular architecture, the weights θ`

in (2) includes the linear weights of two hidden layers and
associated bias vectors. Finally, dropout operations are used
to silence a proportion of nodes of hidden layers to prevent
overfitting.

It is easy to see that the proposed deep neural network is
inspired by the ResNet [30] which stacks two-dimensional
convolution layers and uses shortcut connections for two-
dimensional image recognition. By comparing the original
ResNet with the proposed architecture, one can note a num-
ber of subtle differences here: First, we replace the two-
dimensional convolution layers with simple fully-connected

VOLUME 4, 2016 5



T. Koike-Akino et al.: Fingerprinting-Based Indoor Localization with Commercial MMWave WiFi: A Deep Learning Approach

Input: 1x108 

BN+ReLU

#1 residual block

Location score

FC: 1 x Nw

FC: 1 x Nw

BN+ReLU

FC: 1 x Nw

#Nd residual block

residual block #2 residual block

Dropout

Dropout

Dropout

residual block

FC: 1xN
N=7

Location label

N=28
N=2

Location & Orientation score

Location & Orientation label True 2D 
coordinate

Estimated 2D 
coordinate

Softmax
Cross-Entropy Loss MSE Loss

FIGURE 5: Proposed deep learning architecture by fusing
feedforward fully connected (FC) layers and shortcut con-
nections (SC) of ResNet along with batch normalization
(BN) and dropout regularization operations for multi-purpose
indoor localization: 1) location-only classification; 2) simul-
taneous location-and-orientation classification; and 3) direct
coordinate estimation.

layers since we deal with one-dimension vectors of beam
SNRs and linear combinations of input are sufficient to cap-
ture the interaction among them. Second, as a consequence of
the fully connected layers, the shortcut connection is operated
over the same dimension (i.e., Nw) as opposed to the skip
links in the original ResNet have to bridge over different
dimensions by zero-padding identity mapping or projection if
a stride of 2 or larger is used. Third, with simple fully-connect
layers, dropout operations are more meaningful to randomly
silence nodes in hidden layers and prevent overfitting.

Finally, for the output layer, we use a fully-connected layer
to generate an output vector u = WoutputyNd

+ boutput with
a dimension of N , where N is determined by the objective:
1) N = 7 for the location-only classification; 2) N = 28 for
the simultaneous location-and-orientation classification; and

FIGURE 6: Experimental setup with 3 APs (denoted by
triangles) in 7 locations-of-interest (denoted by crosses) and
4 orientations in an office environment during regular hours.

3) N = 2 for the two-dimensional coordinate estimation. In
the following, we further elaborate the three cases.

2) Classification: Location-Only and Simultaneous
Location-and-Orientation
With the above network architecture, one can attach a clas-
sification output layer to assign new beam SNRs into one of
fingerprinted locations and orientations. This is achieved by
formulating it as a classification problem. If only the location
is interested, the dimension of the last fully-connected output
layer is N = 7 for our experiments, while N = 28 if 7
locations and 4 orientations are simultaneously identified.
For a training input with a label, the corresponding output of
the last layer u is first normalized with the softmax operation
as

sn = exp(un)
/ N∑
i=1

exp(ui), n ∈ {1, 2, . . . , N}. (3)

where sn is the nth element of the normalized output un
that is referred to as the location or location-orientation score
vector in Fig. 5. Then, the cross-entropy loss function is
computed over the score vector s = [s1, s2, . . . , sN ] and the
corresponding one-hot label vector c = [c1, c2, . . . , cN ] as

Lclassification = −
∑
n

cn log(sn). (4)

The average probability of successful classification (or ac-
curacy) is calculated by the ratio between the number of
correct estimations and total samples, i.e., Pr(argmaxi si =
argmaxi ci) where Pr(·) denotes the sample probability that
the argument event is true.

3) Regression: Coordinate Estimation
One can also estimate the coordinates of new measurements
by formulating it as a regression problem. For the finger-
printing training dataset, the label is changed from the pair
of location and orientation to the coordinate values of the
fingerprinted location. Therefore, we set N = 2 in the

6 VOLUME 4, 2016



T. Koike-Akino et al.: Fingerprinting-Based Indoor Localization with Commercial MMWave WiFi: A Deep Learning Approach

TABLE 1: Number of training (test) samples for each loca-
tion and orientation

Loc. / Ori. 0◦ 90◦ 180◦ 270◦

1 417 (480) 594 (549) 562 (361) 560 (326)
2 572 (140) 546 (302) 582 (176) 402 (224)
3 207 (319) 267 (253) 565 (328) 428 (299)
4 520 (204) 510 (192) 453 (167) 129 (223)
5 511 (287) 498 (322) 396 (307) 118 (303)
6 507 (427) 419 (220) 300 (190) 281 (156)
7 530 (199) 210 (72) 413 (139) 510 (196)

output layer u for the two coordinate values in the Cartesian
coordinate system. Then, the mean-square error (MSE) of the
coordinate estimation is used as a loss function:

Lregression = |x− u1|2 + |y − u2|2, (5)

where (x, y) is the Cartesian coordinate of the true finger-
printing location for the training sample.

C. IMPLEMENTATION
The proposed neural network is implemented in Chainer 7
with python 3.7. A MacBook Pro 2016 with 2.9 GHz i7-
6920HQ processor and 16 GB memory is used for data analy-
sis. For optimization, adaptive momentum (Adam) stochastic
gradient descent method is used with a learning rate of 0.001
and a mini-batch size of 100. The maximum number of
epochs is 500 while early stopping with a patience of 10 is
used. Training the DNN architecture takes about 1.03 sec-
onds per epoch on the laptop computer.

D. COMPUTATIONAL COMPLEXITY
Now we analyze the computational complexity of the pro-
posed neural network during the test phase. As seen from
Fig. 5, the main building block is the FC layer. For each
FC layer with an input dimension of Nin and an output
dimension of Nout, the forward procedure mainly consists
of two components: the matrix multiplication between the
input vector and the Nout × Nin weight matrix and the
addition of the bias vector of Nout × 1, which gives a total
of about 2NinNout floating-point operations (FLOPs). For
each residual block, it consists of two FC layers, ReLU
layers and a skip connection. In general, the ReLU activation
layer can be implemented with bit-wise AND operations
per dimension, while the skip connection introduces single
addition per dimension. Therefore, each residual block has
about (4Nw +3)Nw FLOPs. Adding the FC-based input and
output layers, the overall computational complexity is about
Nd(4Nw + 3)Nw + 2MPNw + 2NNw FLOPs, where MP
is the input dimension, and Nd and Nw denote the number
of residual blocks and the number of nodes per hidden
layer, respectively. In the case of simultaneous location and
orientation classification of N = 28 with Nw = 100, we
have about 67.5 thousand FLOPs for Nd = 1 residual block
and, respectively, 148.1 thousand FLOPs forNd = 3 residual
blocks.

(a) Beam SNR: 98.9% Acc.
F1 = 0.99

(b) Conv. SNR: 44.5% Acc.
F1 = 0.31

FIGURE 7: Confusion matrices for simultaneous location-
and-orientation classification using the proposed DL ap-
proach.

(a) Beam SNR: 100% Acc.
F1 = 1.00

(b) Conv. SNR: 56.6% Acc.
F1 = 0.54

FIGURE 8: Confusion matrices for location-only classifica-
tion using the proposed DL approach.

V. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
The data collection system is deployed in an office envi-
ronment during office hours, as shown in Fig. 6. There are
6 offices on both sides and 8 cubicles in the middle. All
6 offices and 4 cubicles on the right are occupied by staff
members. Furniture including chairs, tables, and desktops are
present in the cubicles.

These 3 APs, denoted as red triangles, are fixed in the
aisle with fixed orientations. Specifically, AP1, AP2 and AP3
point to 90◦, 180◦ and 0◦, respectively, where the orientation
reference is marked out in Fig. 6. To collect fingerprinting
training data, we location a client at one of 7 locations-of-
interest marked by crosses in Fig. 6. At each of the 7 loca-
tions, we collect beam SNR measurements by rotating the
client to 4 orientations at [0◦, 90◦, 180◦, 270◦]. Overall, the
offline training dataset consists of beam SNR measurements
from L = 7 locations and O = 4 orientations1. The number
of labeled training data for each location and orientation is
listed in Table 1.

1The in-house mmWave Beam SNR Fingerprinting (mmBSF) dataset will
be released at https://www.merl.com/demos/mmBSF.
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TABLE 2: Average probability of successful classification for
location and orientation identification with different methods

Location & Orientation Location-Only
Single SNR Beam SNRs Single SNR Beam SNRs

LDA 41.1% 96.2% 47.7% 100%
QDA 41.0% 92.3% 54.2% 100%
SVM 39.9% 96.7% 54.1% 99.7%
DT 31.3% 72.1% 46.1% 91.7%

1NN 33.2% 98.5% 46.7% 99.9%
3NN 35.6% 98.6% 48.1% 99.8%
DL 44.5% 98.9% 56.6% 100%

TABLE 3: Average probability of successful classification as
a function of training size R for the proposed DL method

No. of Training (R) Loc. & Orn. Loc. Only
10 94.1% 99.8%
20 96.8% 99.9%
50 98.4% 100%

100 97.9% 100%
original size 98.9% 100%

B. PERFORMANCE OF CLASSIFICATION
We first present our results on the location and orientation
classification for our mmWave beam SNR fingerprinting-
based localization system. For this purpose, we use the
confusion matrix C as a performance visualization:

C(i, j) =
1

Tj

Tj∑
t=1

1[l̂(h̃t(j)) = i], (6)

where i and j are indices, respectively, for the estimated and
true locations/orientations, and Tj is the number of sample
in the test dataset for the index j. In addition, l̂(h̃t(j)) is the
location/orientation estimate by using the tth sample batch
from the test data collected at jth location/orientation.

We first evaluate the localization performance of the pro-
posed DL approach with Nw = 100 and Nd = 1, i.e.,
one residual block, for both location and orientation deter-
mination. Fig. 7(a) shows the confusion matrix using the
proposed approach using the beam SNR measurements. The
indices are arranged as ` = (l − 1) × 4 + (o − 1) where
l ∈ {1, . . . , 7} is the location index and o ∈ {1, . . . , 4} is the
orientation index. It is seen from Fig. 7 that the proposed DL
approach is able to localize both location and orientation with
high probability. The probability of successful classification
is 98.96% on average. The averaged F1 score (harmonic
mean of precision and recall) is also present in the figure
captions for reference. When only the location is interested,
corresponding confusion matrix is shown in Fig. 8(a). The
results show that the DL approach with the beam SNRs can
achieve an accuracy of 100%.

1) Beam SNRs versus Conventional SNR
To illustrate advantages using beam SNRs, we compare the
performance with the traditional fingerprint-based approach
with only one SNR measurement (or RSSI) available at each
AP. For this purpose, we extract only one SNR measurement
(from the highest average SNR) from all M = 36 beam

SNRs at each AP and, therefore, the fingerprinting training
data are R realizations of the RSSI-like single SNR values
at each location and orientation. We apply the DL approach
with the same architecture except that the input dimen-
sion is now 3. Corresponding confusion matrices are shown
in Fig. 7(b) for the simultaneous location-and-orientation
classification and Fig. 8(b) for location-only classification.
This comparison clearly shows significant performance gains
from conventional RSSI-like measurements to beam SNRs
that carry richer spatial channel information.

2) Impact of Classification Methods
Next, we confirm that the proposed DL approach yields better
performance over several classical machine learning meth-
ods, such as linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), SVM, decision tree (DT), and
kNN. The results are shown in Table 5. Overall, we have the
following observations:

• Classification using beam SNRs significantly improves
the accuracy compared to the cases using single SNR.

• With beam SNRs, all classification methods except the
DT show excellent performance with a nearly 100%
accuracy.

• Our DL method consistently outperforms other consid-
ered machine learning methods.

We further remark a comparison in terms of computational
complexity between the DL method and the simple kNN
method. As analyzed in Section IV-D, once the training
is done, the computation complexity of the proposed DL
method depends on the dimension but not on the number
of training samples. In contrast, the complexity of the kNN
is a function of the number of labeled training samples in
the fingerprinting dataset (i.e., R · L · O), the dimension of
fingerprinting samples (i.e., MP ), and the value of k. In the
most naïve implementation, e.g., calculating each Euclidean
distance and identifying the labeled samples closest to the test
sample, the kNN method has a computational complexity of
O(RLO(k+MP )) although a further complexity reduction
can be achieved [68] by using partial distance, editing, and
prototype pruning. In our case, the total number of training
samples is RLO = 12,007 in Table 1, and the dimension of
the sample is MP = 108. Hence, the DNN method can be
simpler than the naïve kNN implementation.

In the following, we focus on evaluating its performance
as a function of training data size, sliding-window size, the
number of APs, and orientation mismatch, as the DL method
achieves the best performance.

3) Impact of Training Data Size
In the above performance evaluations, all training data listed
in Table 1 were used for training the proposed neural
network. To evaluate the impact of the number of train-
ing data on the localization performance, we truncate the
original training dataset to smaller datasets with R =
{10, 20, 50, 100} beam SNR snapshots in each location and
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TABLE 4: Average probability of successful classification as
a function of window size Q

Window Size (Q) Loc. & Orn. Loc. Only
1 98.9% 100%
2 98.7% 100%
5 99.6% 100%
10 99.2% 100%

(a) AP1
F1 = 0.81

(b) AP2
F1 = 0.91

(c) AP3
F1 = 0.76

(d) AP1+AP2
F1 = 0.92

(e) AP1+AP3
F1 = 0.90

(f) AP2+AP3
F1 = 0.93

FIGURE 9: Impact of the number of APs on the performance
of the simultaneous location-and-orientation classification
accuracy.

orientation. The average probabilities of successful classifi-
cation are listed in Table 3. It is not surprising to see that
the performance degrades as the number of training data
reduces. Nevertheless, even in the case of only R = 10
fingerprinting beam SNRs, the average success probabilities
are greater than 94% for the simultaneous location-and-
orientation classification and maintain a nearly 100% for the
location-only classification.

4) Impact of Window Size

Then we evaluate the localization performance as a function
of window size Q, where Q denotes the number of consec-
utive packets used for the location and orientation classifi-
cation. For each location and orientation, the beam SNRs
fingerprint is now expanded to a Q × 108 matrix. To keep
the dimensionality constant regardless of the window size Q,
we employed principal component analysis (PCA) before the
feed to the proposed neural network. As listed in Table 4,
the results reveal that the window size Q has a minor effect
on the classification performance for both location-only and
simultaneous location-and-orientation classification. In turn,
this further confirms that the spatial feature (beam SNRs) is
more dominant than the temporal feature (snapshots) in the
fingerprinting training dataset.

TABLE 5: Average probability of successful localization for
various combinations of APs

APs Loc. & Orn. Loc. Only

1 AP
AP1 84.3% 85.5%
AP2 90.9% 99.6%
AP3 80.2% 89.4%

2 APs
AP1 + AP2 94.9% 100%
AP1 + AP3 94.5% 100%
AP2 + AP3 93.8% 99.7%

All 3 APs AP1 + AP2 + AP3 98.9% 100%
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FIGURE 10: Histogram of predicted orientations from simul-
taneous location-and-orientation classification on two test
datasets with a 45◦ orientation mismatch at Location 5. The
predicted location from the proposed DL approach is always
Location 5 with a 100% accuracy.

5) Impact of APs
We now evaluate the impact of classification performance
by changing the combinations of multiple APs. When only
one AP is available, the result of confusion matrices are
shown in the top row of Fig. 9. It shows that each AP has its
own ambiguity region in terms of locations and orientations.
For example, AP1 is hard to distinguish some orientations
in Locations 2, 4 and 7, i.e., the 7th, 16th, 26th and 28th
diagonal elements are missing, while AP2 shows several mis-
classifications at Location 7, i.e., the 25th diagonal element
is missing. The average probabilities of successful classifica-
tion are shown in Table 5, where the success probabilities of
simultaneous location-and-orientation classification can still
reach at 84.3%, 90.9% and 80.2% for AP1, AP2 and AP3,
respectively.

With one more AP available (i.e., 2 APs), the ambiguity
region is significantly reduced as seen from the bottom row
of Fig. 9. This is particularly true for the combination of AP1
and AP2, where the average probability of successful classifi-
cation jumps to 94.9%. When all three APs are available, the
accuracy improves to 98.9% for the simultaneous location-
and-orientation classification.

6) Sensitivity to Orientation Mismatch
Finally, we evaluate the sensitivity of the classification per-
formance with respect to the orientation mismatch. To this
end, we collect another independent test dataset at Location
5 with two additional orientations at 225◦ and 315◦ with
a 45◦ orientation mismatch to their nearest fingerprinted
orientations in the training dataset.
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FIGURE 11: Learning trajectory in localization MSEs of the
proposed DL method over epochs.

TABLE 6: Configuration of APs, on-grid training and testing
locations, and off-grid testing locations

AP 1 2 3
x (cm) 11 306 0
y (cm) 226 221 0

On-grid location 1 2 3 4 5 6 7
x (cm) 53 122 67 48 88 110 142
y (cm) 133 167 188 62 62 99 233

Off-grid location A B C D
x (cm) 83 99 67.5 103
y (cm) 155 133.5 94.25 192

For both mismatch cases, there is no compromise on the
performance for the location classification. In other words,
it maintains 100% accuracy to classify the location even if
there is an orientation mismatch between the training and
test datasets. Taking closer look at the test case of orienta-
tion 225◦ in Fig. 10(a), 88.0% out of the test samples are
classified to the orientation 270◦ and the remaining 12.0%
to the orientation 180◦, two closest orientations included in
the training dataset. Similarly, for the test case of orientation
315◦ at Location 5, the histogram of orientation classification
Fig. 10(b) shows that all test samples are classified to 270◦,
again, one of two closest orientations in the training dataset.
Overall, the results of Fig. 10 imply that 4 orientations for
constructing the training fingerprint data may be sufficient
to localize the client location even for the case when the
true orientation of the test data is not included in the 4
orientations.

In a short summary, the above results on the classification
performance confirm that the beam SNR measurements are
able to register distinctive fingerprinting signatures for local-
ization and orientation. Both classical classification (except
the DT) and DL methods are able to a nearly 100% accuracy.
In terms of computational complexity, the DL method can
be faster than the naïve kNN implementation for testing,
although it takes additional training time.
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FIGURE 12: CDF curves of localization error for the pro-
posed DL approach using beam SNRs and RSSI-like single
SNR for 7 on-grid and 4 off-grid testing locations. The results
were averaged over 20 time with different initializations.
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FIGURE 13: Location-wise RMSEs of coordinate estimation
for the proposed DL approach using beam SNRs and RSSI-
like single SNR at 7 on-grid and 4 off-grid testing locations.

C. PERFORMANCE OF COORDINATE ESTIMATION

In this section, we directly predict the 2D coordinate of the
client location by formulating it as a regression problem.
Particularly, we consider a more practical scenario where an
independent test dataset at 4 off-grid locations (denoted as
A, B, C, and D in Figs. 14) was collected on a different date
(four months later than the date of training data collection)
during regular business hours. As shown in Table 6, these
off-grid locations are not the same as the 7 fingerprinted loca-
tions (denoted as on-grid locations with labels 1, 2, · · · , 7 in
Fig. 14) in the training dataset and the distance from each off-
grid test location to its closest on-grid fingerprinted location
is about the same and less than 70 cm to test the capability of
sub-meter localization accuracy.
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FIGURE 14: Coordinate estimates at 4 off-grid testing locations (referred to as A,B,C,D in black squares).

1) Learning Trajectory
To predict the 2D coordinate, we attach an output layer of
dimension 2 to the proposed neural network architecture of
Nw = 100 and Nd = 1 in Fig. 5 with the MSE loss function.
To achieve better generalizability for off-grid coordinate es-
timation, the dropout rate is increased from 0.1 to 0.8, and
reduced the learning rate of Adam to α = 0.0001. We applied
a data augmentation technique based on a pairwise super-
position with Gaussian noise injection to both beam SNR
values and fingerprinted location coordinates with variances
of 0.5 dB2 and 0.02 m2, respectively.

Fig. 11 presents the MSE trajectories of 2D coordinate
estimation as a function of epochs for both training and
testing. One can see that the training MSE (blue curves) at
7 on-grid locations rapidly decreases from 1m2 to 0.001m2,
while the testing MSE (red curves) at the same 7 on-grid
locations but in a different date exhibits a slower convergence
and finally reaches to a level slightly below 0.01m2 over 250
epochs. More importantly, the proposed DL approach can
achieve the testing MSE at 4 off-grid locations at a level of
0.01m2. It is worth noting that the testing MSE at the 4 off-
grid locations is smaller than that at the 7 on-grid locations
because the average distance among the off-grid locations is
smaller than that of the fingerprinting locations and all the
off-grid locations are inside the regions encompassed by the
7 on-grid locations.

2) Average Localization Performance
To evaluate the average localization performance, we trained
the proposed neural network for 20 times starting with
different initialization setups. Fig. 12 shows the averaged
cumulative distribution function (CDF) of coordinate esti-
mation error over the 4 off-grid locations. Compared with
the RSSI-like single SNR fingerprinting, the proposed beam
SNR fingerprinting along with the deep learning approach
achieves significant improvements. Specifically, the averaged

median root mean-square error (RMSE) is improved by an
order of magnitude from 34.6 cm to 3.6 cm for the 7 on-
grid testing locations. For the 4 off-grid testing locations,
the averaged median RMSE of 9.5 cm by using the beam
SNR is considerably better than that by using the RSSI-like
single SNR with a median RMSE of 23.6 cm. The proposed
DL-based approach also outperforms the classical machine
learning method (i.e., GP) with a median RMSE of about
18 cm as reported in [32].

3) Location-Wise Localization Performance
Fig. 13 shows location-wise RMSE at the 7 on-grid locations
and 4 off-grid locations. For the conventional RSSI-like
single SNR fingerprinting at on-grid locations, the proposed
DL approach achieves an RMSE of about 45.7 cm, where the
best performance is obtained at Location 4 which is closest to
AP3, whereas the worst performance is obtained at Location
6 possibly because it is relatively far from any APs. By
using the beam SNR, one can achieve an RMSE of 3.6 cm,
which is nearly 10-fold better than the single SNR-based
fingerprinting. It is noted that the RMSE at Location 7 was
exceptionally higher than those at the other 6 locations. This
may be due to a few scattering paths for Location 7 to exploit
spatial beam patterns as it is at the line-of-sight propagation
between AP1 and AP2 and on the edge of fingerprinted
coverage.

For the 4 off-grid testing locations, the single SNR fin-
gerprinting shows an RMSE of 28.7 cm, while the beam
SNR fingerprinting gives an RMSE of 11.1 cm. The sample
distributions of coordinate estimates at the off-grid locations
are shown in Fig. 14. It is clear to see that the single
SNR fingerprinting-based coordinate estimates are scattered
around the middle regions of fingerprinted locations and the
beam SNR-based counterpart shows well-clustered coordi-
nate estimates around corresponding true locations.

VOLUME 4, 2016 11



T. Koike-Akino et al.: Fingerprinting-Based Indoor Localization with Commercial MMWave WiFi: A Deep Learning Approach

 5

 10

 15

 20

 25

 30

 35

 40

 25  50  100  200  400

R
o
o
t 
M

a
a
n
-S

q
u
a
re

 E
rr

o
r 

(c
m

)

Number of Neuron Nodes

Standard Deviation
Best ResNet

Worst ResNet
Nominal ResNet
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FIGURE 16: Nominal, worst and best RMSEs of coordinate
estimation as a function of the network depthNd whenNw =
100. The total number of hidden layers is given by 2Nd + 1.

4) Impact of Neural Network Architecture

Finally, we show the impact of the neural network architec-
ture in terms of the number of neuron nodesNw of the hidden
layers and the network depth Nd. Fig. 15 shows the nominal,
best and worst RMSEs from 20 independently trained neural
networks as a function ofNw whenNd = 1, i.e., there is only
one residual block and three hidden layers (one input layer
and two FC layers in the residual block) in total. It is seen
that the RMSEs rapidly reduce when the number of node
increases from Nw = 25 to Nw = 100 and then increase
again when Nw > 100. When Nw = 100, the nominal
RMSE is about 10 cm with the best performance can break
into the centimeter-level accuracy, i.e., 8.6 cm.

Fig. 16 shows the nominal, best and worst RMSEs as a
function of the network depth Nd when Nw = 100, i.e., the
number of nodes is fixed to 100 for each layer. Given the
structure of the residual block in Fig. 5, the total number of

hidden layers is given by 2Nd+1 as each residual block con-
tains two hidden layers plus the input layer. We also include
the performance of a plain multilayer perceptron (MLP) that
is identical to the proposed architecture in Fig. 5 but without
shortcut connections. First, it can be verified from Fig. 16
that deeper networks with shortcut connections give slightly
improved performance in terms of the nominal MSE. Second,
concerning the best RMSE, the proposed architecture with
at least one residual block, i.e., at least three hidden layers,
can give a centimeter-level localization accuracy. Finally, the
proposed architecture with shortcut connections can maintain
the robustness against the network depth, while the RMSE of
the plain MLP quickly explodes over the network depth.

In a short summary, it is noticeable that the proposed DL
approach can achieve higher accuracy than the conventional
machine learning methods for the direct coordinate estima-
tion. For instance, the median RMSE is improved from 18 cm
of the GP method to 9.5 cm of the proposed DL approach.
The use of the beam SNR measurement over the RSSI-like
single SNR measurement is also justified with about 2-fold
improvements on the median RMSE.

VI. CONCLUSION
This paper has demonstrated that, by fingerprinting real-
world beam SNRs from multiple COTS mmWave WiFi de-
vices in our office environment, the proposed deep learning
approach can identify the location and orientation of a client
with high accuracy (100% accuracy if the location is only
interested and about 99% for simultaneous location-and-
orientations classification) and directly estimate the coordi-
nate of a client with localization performance of 9.5 cm
and 11.1 cm in term of the median and mean RMSEs,
respectively. The localization performance was further eval-
uated as a function of various factors such as training data
size, window size, the number of access points, orientation
mismatch, and network width and depth.
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