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Abstract
A distribution matcher (DM) maps a binary input sequence into a block of nonuniformly
distributed symbols. To facilitate the implementation of shaped signaling, fast DM solutions
with high throughput and low serialism are required. We propose a novel DM architecture
with parallel amplitudes (PA-DM) for which m - 1 component DMs, each with a different
binary output alphabet, are operated in parallel in order to generate a shaped sequence with
m amplitudes. With negligible rate loss compared to a single nonbinary DM, PA-DM has
a parallelization factor that grows linearly with m, and the component DMs have reduced
output lengths. For such binary-output DMs, a novel constant-composition DM (CCDM)
algorithm based on subset ranking (SR) is proposed. We present SR-CCDM algorithms that
are serial in the minimum number of occurrences of either binary symbol for mapping, and
fully parallel for demapping. For distributions that are optimized for the additive white Gaus-
sian noise (AWGN) channel, we numerically show that PA-DM combined with SR-CCDM
can reduce the number of sequential processing steps by more than an order of magnitude,
while having a rate loss that is comparable to conventional nonbinary CCDM with arithmetic
coding.
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Abstract—A distribution matcher (DM) maps a binary input
sequence into a block of nonuniformly distributed symbols.
To facilitate the implementation of shaped signaling, fast DM
solutions with high throughput and low serialism are required.
We propose a novel DM architecture with parallel amplitudes
(PA-DM) for which m− 1 component DMs, each with a different
binary output alphabet, are operated in parallel in order to
generate a shaped sequence with m amplitudes. With negligible
rate loss compared to a single nonbinary DM, PA-DM has a
parallelization factor that grows linearly with m, and the compo-
nent DMs have reduced output lengths. For such binary-output
DMs, a novel constant-composition DM (CCDM) algorithm based
on subset ranking (SR) is proposed. We present SR-CCDM
algorithms that are serial in the minimum number of occurrences
of either binary symbol for mapping, and fully parallel for
demapping. For distributions that are optimized for the additive
white Gaussian noise (AWGN) channel, we numerically show that
PA-DM combined with SR-CCDM can reduce the number of
sequential processing steps by more than an order of magnitude,
while having a rate loss that is comparable to conventional
nonbinary CCDM with arithmetic coding.

Index Terms—Constant Composition Distribution Matching,
Subset Ranking, Probabilistic Amplitude Shaping, Coded Mod-
ulation.

I. INTRODUCTION

Numerous techniques have been proposed to close the
so-called ultimate shaping gap of 1.53 dB signal-to-noise
ratio (SNR) for the additive white Gaussian noise (AWGN)
channel [1]. The essence of all these constellation-shaping
techniques is to mimic the capacity-achieving Gaussian distri-
bution. The two main approaches to achieve this are geometric
shaping, which describes the optimized rearrangement of the
constellation points in the complex plane, and probabilistic
shaping, which keeps the constellation on a fixed grid yet
utilizes a non-uniform, i.e. shaped, distribution. Integrating
probabilistic shaping into a coded modulation architecture is
a non-straightforward task, and various methods have been
proposed to this end [2]–[5].

Probabilistic amplitude shaping (PAS) as proposed in [6,
Sec. IV] has recently attracted a lot of attention as a method
for incorporating probabilistic shaping into bit-interleaved
coded modulation (BICM) systems. The reverse concatenation
principle of PAS allows to use existing binary forward error
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correction (FEC) without the need for demapper-decoder itera-
tions at the receiver. PAS enables significant shaping gains and
rate adaptivity for a fixed-rate FEC. It has been used in many
different communication settings, such as the optical channel
[7]–[10], for orthogonal frequency-division multiplexing [11,
Sec. IV], Terahertz frequency wireless communication [12]
and polar coded modulation [13]–[15].

The distribution matcher (DM) plays an integral role in the
PAS framework as the transmitter-side processing block for
mapping a sequence of uniform data bits into shaped ampli-
tudes [16]. At the receiver, the inverse operation, demapping, is
carried out. In this paper, we consider block-wise, fixed-length,
invertible DMs with binary input for mapping and binary
output for demapping. All finite-length DMs suffer from a
rate loss that ultimately limits the throughput of a shaped
coded modulation system. The rate loss can by decreased by
increasing the DM block length, which has the disadvantages
of long processing time (and thus latency) and high memory
requirements.

In order to properly characterize and compare different
DMs, we differentiate between the DM system, describing
the general DM architecture and its properties, and the DM
method, which relates to the actual implementation (e.g.,
algorithm) of the DM mapping and demapping function. A
widely used DM system is based on constant-composition
distribution matching (CCDM) [17, Sec. III], and the proposed
algorithm to realize CCDM is arithmetic coding [17, Sec. IV].

For CCDM, each shaped output sequence has the same
composition, i.e., the relative frequency of each amplitude
within each block is fixed for all possible output sequences.
As shown in [17, Sec. III-B], the CCDM rate loss becomes
negligibly small for output lengths beyond approximately
500 symbols. Arithmetic coding (AC) was proposed in [17,
Sec. IV] as an implementation of CCDM. The main drawback
of this method is that it is serial in the number of input bits
k for mapping and in the sequence length n of the shaped
amplitudes for demapping. To the best of our knowledge,
there is no constructive CCDM algorithm other than AC,
and we refer to it as AC-CCDM.1 The serial nature of AC-
CCDM in combination with the long blocks required for low
rate loss currently make real-time operation of CCDM highly
challenging.

Recently proposed DM systems lift the constant-
composition principle, thereby reducing the length that is

1The use of lookup tables is not considered because their size and thus
hardware requirements are infeasible in practice at an acceptable rate loss.
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required for a certain rate loss in comparison to conventional
CCDM. In [18], distribution matching via multiset partitioning
is proposed. Shell mapping to index the output sequences is
proposed in [19]. Both techniques are shown to give a block
length reduction by approximately a factor of 5 compared to
CCDM. The low-complexity DM of [20] generates two shaped
output sequences for each binary input word and chooses
the one with less average energy, which implicitly leads to a
Gaussian-like distribution. In [21], an enumerative amplitude
shaping method is proposed that is based on choosing those
sequences in a trellis that have a certain maximum energy.
The DM proposed in [22] compares different sequences
generated by a mark ratio controller and selects the sequence
that has desired properties. In [23], a prefix-free code is used
to generate bits-to-codeword mappings that are variable in
length, with an additional framing technique to enable fixed
data-rate transmission.

Parallelization of a nonbinary-alphabet DMs can be
achieved with product distribution matching [11] and bit-level
distribution matching (BL-DM) [24]. These two independently
proposed schemes realize a nonbinary-to-binary transforma-
tion by factorizing the nonbinary distribution of m amplitudes
into log2 m binary component distributions.2 For each bit level,
a single CCDM is used and the respective binary outputs are
combined to give the desired nonbinary output sequence. In
addition to parallelization by a factor log2 m compared to a
single nonbinary DM, BL-DM can have a smaller rate loss
than employing a single nonbinary DM, at the expense of a
limited choice of target distributions as they must be product
distributions. A combination of parallel bit-level distribution
matching and a multi-composition codebook was proposed in
[25], making use of the improved short-length performance
of multi-composition codebooks and the complexity gains of
BL-DM.

In this paper, a novel distribution matcher with parallel
amplitudes (PA-DM) is proposed for which several binary
DMs are operated in parallel instead of a single nonbinary
DM.3 A binary CCDM is employed for each of the m − 1
out of m shaped amplitudes, with the alphabet of every
binary output subsequence comprising a specific amplitude
and a different, arbitrary zero-symbol representing the absence
of that amplitude. These subsequences are then sequentially
combined to generate the desired sequence of shaped am-
plitude symbols. In PA-DM, the number of parallel DMs
grows linearly with m, which results in a higher degree of
parallelization than for BL-DM, which has a DM per bit level
and thus a number of parallel DMs that is logarithmic in m.
Therefore, PA-DM has reduced algorithmic serialism, which
may enable lower latency and higher throughput for resource
constrained hardware implementations, and thus allows for
faster distribution matching than previously introduced DM
architectures.

We further propose a method for CCDM mapping and
demapping via subset ranking (SR) as an alternative to AC-

2In the following, we jointly refer to these two proposals as BL-DM since
they carry out the same task.

3All considered DM mappers have binary input, so the distinction between
binary and nonbinary alphabets relates only to its output.

CCDM for binary alphabets. The proposed method is closely
related to the enumerative techniques used by Schalkwijk [26]
and Cover [27]. In this paper, we focus on SR implementations
that reduce the number of sequential operations as much as
possible. In contrast to AC-CCDM, CCDM mapping with the
SR algorithm, which we refer to as SR-CCDM, is serial in
the smallest number of occurrences of either binary symbol in
the output sequence, and demapping via SR-CCDM is fully
parallel. We show that this serialism constitutes a significant
improvement over AC-CCDM, which is sequential in the
length of its input. A further discussion of computational
complexity is omitted in this manuscript as the actual speed
of the investigated CCDM algorithms, in particular in an
application specific integrated circuit (ASIC), depends greatly
on hardware specifications and implementation details that are
out of the scope of this paper. For a distribution with m = 8
shaped amplitudes that is optimized for the additive white
Gaussian noise (AWGN) channel, combining PA-DM and SR-
CCDM is numerically shown to give a reduction in serialism
of more than an order of magnitude with similar performance
as conventional CCDM.

II. PRELIMINARIES

A. Notation

The realizations ai, i ∈ {1, . . . ,m} of a random variable
A are drawn from an alphabet A according to a probability
mass function (PMF) PA. Vectors of length n are denoted as
x(n) = [x1, . . . , xn]. If the elements of such a vector are binary,
e.g., a and b, we can also write {a, b}n. Sets are denoted as
calligraphic letters, e.g., N = {1, . . . , n}.

B. Probabilistic Amplitude Shaping (PAS)

We briefly outline PAS in the following and refer to [6,
Sec. IV] for details. A block diagram of PAS is shown in
Fig. 1, where we assume for simple representation that the
DM output and FEC input lengths are compatible. When the
DM is shorter than the FEC, several DM sequences must be
combined within each FEC block.

The binary data word to be transmitted is split into the
DM input sequence b(k) and uniform data bits. The DM
mapping fDM transforms b(k) into a sequence x(n) comprising
the shaped amplitudes {a1, , . . . , am}. The sequence is given
a binary label and input into a systematic FEC encoder.
The information bits of the FEC output correspond to the
shaped amplitudes, while the parity bits combined with the
uniform data bits represent the sign bits of the constellation
symbols. After modulation, typically with two-dimensional
quadrature amplitude modulation (QAM), the shaped symbols
are transmitted over a channel such as the AWGN channel.
The demapper computes log-likelihood ratios that are used
for FEC decoding or estimation of the achievable information
rate (AIR) for bit-metric decoding (BMD) [6, Sec. VI]. When
decoding is successful, which is assumed herein, the bits
that correspond to shaped amplitude are transformed into the
sequence of shaped amplitude bits x(n). After DM demapping
f −1
DM, the initial word b(k) is recovered.
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Fig. 1. Block diagram of PAS. The plus node combines the shaped amplitude bits (which remain unchanged by the systematic FEC encoder) and the sign
bits, which are the parity bits and possible some uniform input bits. This paper covers DM systems and methods (red boxes).

C. Constant-Composition Distribution Matching (CCDM)

1) Principle: We consider distribution matchers that map
a binary input b(k) ∈ {0, 1}k to a shaped output sequence
x(n) = [x1, . . . , xn] of length n. The DM mapping function
establishes an invertible mapping fDM : b(k) → x(n), and the
inverse operation (demapping) is f −1

DM : x(n) → b(k).
The m different output amplitudes that can occur in x(n) are

taken from the alphabet A = {a1, . . . , am}. The CCDM output
sequence is said to have the composition C = {n1, . . . , nm}
with ni denoting the number of times the ith amplitude ai
occurs, i.e.,

ni =
��{ j : xj = ai}

�� (1)

with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. This implies that the
relative frequency PA of ai is PA(ai) = ni

n , which is referred
to as type [28, Sec. II]. Throughout this paper, the type of all
CCDM output sequences is fixed, i.e., all CCDM outputs have
the same composition.

2) Input Length and Rate Loss: The number of input bits k
of a DM depends on the number of different output sequences,
which is given by the multinomial coefficient

M(C) =
(

n
n1, n2, . . . , nm

)
=

(
m∑
i=1

ni

)
!

m∏
i=1
(ni!)

. (2)

It is a natural choice to consider only DMs with an integer
number of input bits. The input length k in bits is thus

k = log2bM(C)c2, (3)

where b·c2 denotes rounding down to the closest power of two.
The rate loss of a DM is then defined as

Rloss = H (A) − k
n
, (4)

where H (A) is the entropy of the amplitudes A with the
quantized distribution PA. Such a quantization is necessary
in many finite-length cases to achieve an integer-valued com-
position. The quantization criterion used in this paper is
the minimization of Kullback-Leibler divergence between the
initial unquantized PMF and the quantized distribution PA [29,
Sec. IV].

3) Arithmetic Coding as CCDM Method: CCDM mapping
and demapping can be carried with arithmetic coding (AC)
[17, Sec. IV]. More details on AC including a discussion of
the algorithm implementation can be found in [30, Ch. 4]. The
underlying principle is drawing without replacement where in
every AC step, interval boundaries are computed based on
those elements of the composition that have not yet been

used in the output sequence. Since the size of these intervals
depends on previous steps, AC is an inherently sequential
algorithm that, in the worst case, is serial in the number of
input elements to choose from, which is k for mapping and n
for demapping.4 Within each serially executed AC operation,
the number and complexity of computations to be performed
varies as it depends on the specific interval boundaries.

III. DISTRIBUTION MATCHING WITH PARALLEL
AMPLITUDE LEVELS

In the following, a distribution matching transformation
from a single DM with nonbinary output to parallel DMs that
each have a binary output alphabet corresponding to a shaped
amplitude. Since the amplitudes are effectively processed in
parallel, we refer to this scheme as parallel amplitude (PA)-
DM.

A. Preliminaries: Binomial and Multinomial Coefficients

To explain the proposed approach, it is insightful to ex-
press the multinomial coefficient M(C) of a composition
C = {n1, . . . , nm} with length n =

∑m
i=1 ni (see (2)) as a product

of binomial coefficients (BCs),

M(C) =
(

n
n1, n2, . . . , nm

)
(5)

=

(
n
n1

)
︸︷︷︸

BC1

·
(
n − n1

n2

)
︸    ︷︷    ︸

BC2

· . . . ·
(
n − n1 − . . . − nm−2

nm−1

)
︸                      ︷︷                      ︸

BCm−1

·
(
nm
nm

)
︸︷︷︸
BCm

(6)

=

m∏
i=1

(n − i−1∑
j=0

nj

ni

)
︸        ︷︷        ︸

BCi

, (7)

where we define n0 = 0 in (7) for notational convenience.
We recall that the first factor of (7) represents the number of
ways to choose n1 out of n elements (disregarding their order),
the second one the ways to choose n2 elements out of the
remaining n−n1 elements and so forth. Varying the ordering of
the binomial expansion can give different component binomial
coefficients (see also Sec. III-D), but their product is always
equal to M(C) and the last factor BCm in (7) is equal to 1. In
the following, we use the product of binomial coefficients of

4Note that there are cases where the AC algorithm can be terminated early
because the remainder of the output sequence follows with probability 1. We
neglect these cases and discuss only worst-case serialism which occurs when
all AC steps must be carried out.
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Fig. 2. Mapping structure of distribution matching with parallel amplitudes
(PA-DM). m−1 parallel binary DMs of varying lengths are employed and their
outputs are sequentially combined to achieve the nonbinary shaped sequence
x(n).

(7) to transform a nonbinary DM into binary component DMs
with parallel amplitudes.

B. PA-DM Method

In the PA-DM architecture, the first m − 1 BCs in (7) each
correspond to a DM instance that maps a binary input to a
sequence whose alphabet comprises the considered amplitude
and another symbol which we denote as and which repre-
sents the absence of that amplitude. Figure 2 shows a block
diagram of the mapping with PA-DM. First, the binary input of
length k is split into m−1 substrings that are each input into a
binary-input binary-output DM. The mapping operation of the
first DM is to place n1 occurrences of the first amplitude a1 in
n positions, with the output sequence {a1, }n being the result
of mapping the input of length k1 = log2bBC1c2. The second
DM maps k2 = log2bBC2c2 bits by placing the amplitude
a2 n2-times in the remaining (unused) n − n1 positions. By
repeating this for all amplitudes up to am−1, x(n) can be
gradually constructed. Finally, the remaining nm positions of
x(n) that are not yet occupied are filled with am. This gives
the desired nonbinary output sequence x(n).5 An example of
PA-DM mapping is given below in Example 1. Demapping for
PA-DM is achieved by performing the above steps in inverse
order, i.e., by first decomposing the shaped sequence into
binary subsequences, applying inverse distribution matching,
and combining the outputs to generate the initially transmitted
b(k). The method for the binary component DMs can be
either conventional AC-CCDM or the subset-ranking method
described in Sec. IV.

An important benefit of PA-DM is that it allows the DM
mapping to be split in parallel instances, thereby enabling
high-throughput DM implementations. The number of parallel
DMs (and thus the parallelization factor compared to a single

5We note that this sequential combination can also be done in a tree-like
fashion by repeatedly combining two amplitudes at once, which reduces the
number of sequential operations.

TABLE I
PARALLELIZATION FACTORS OF PA-DM AND BL-DM COMPARED TO
NONBINARY DM FOR ASK FORMATS WITH m SHAPED AMPLITUDES

Format m PA-DM BL-DM
4ASK (16QAM) 2 1 1
8ASK (64QAM) 4 3 2

16ASK (256QAM) 8 7 3
32ASK (1024QAM) 16 15 4

nonbinary DM) is m−1 and hence grows linearly with the one-
dimensional modulation order, whereas the number of parallel
DMs is logarithmic in m for BL-DM. The parallelization
factors compared to a nonbinary DM are summarized in
Table I for two-sided amplitude shift keying (ASK), i.e.,
including the PAS sign bit. Since the amplitudes are binary
for 16QAM, a parallelization factor of 1 describes that neither
PA-DM nor BL-DM give any benefit. For QAM of order 64
and more, however, PA-DM employs significantly more DMs
than BL-DM. An additional advantage of PA-DM could be
that the binary component DMs have decreasing output length
and thus potentially improved computational complexity, while
they are of identical length for BL-DM.

C. Rate Loss of PA-DM

As each factor of (7) corresponds to a DM that maps an
integer ki = log2bBCic2 bits, the aggregate number of input
bits of all DMs in the PA-DM architecture is

k =
m∑
i=1

ki =
m∑
i=1

log2bBCic2. (8)

For a nonbinary DM, in contrast, we have k = log2bM(C)c2,
see (3). Depending on the specific composition, rounding
down each individual BC to the largest power of 2 can yield
no additional rate loss, or can also result in a small loss up to
m − 2 bits compared to a single nonbinary DM.

Example 1 (Mapping Operation for PA-DM): Consider the
composition C = {4, 3, 2, 1} for the amplitudes {α, β, γ, δ}
and an output sequence x(n) with n = 10 that is supposed
to have this composition. By (2), we have M(C) = 12600
permutations, and thus log2b12600c2 = 13 input bits that can
be mapped with a conventional nonbinary DM. By splitting the
multinomial coefficient into a product of binomials according

to (7), we have M(C) =
(
10
4

)
·
(
6
3

)
·
(
3
2

)
·
(
1
1

)
= 210 ·

20 · 3 · 1 = 12600, which gives log2b210c2 + log2b20c2 +
log2b3c2 + log2b1c2 = 7 + 4 + 1 + 0 = 12 bits at the PA-
DM input. Thus, PA-DM has an additional rate loss of 1 bit
compared to a nonbinary DM. Now suppose that the 12-bit
data word to be mapped is b(k) = [011101000101], which
is split into subsequences of lengths k1 = 7, k2 = 4, and
k3 = 1. Depending on the mapping algorithm (see Sec. IV),
the m − 1 = 3 DM mapping outputs are as follows, with
denoting the absence of an amplitude:
• fDM1 : [0111010] → [α, , , α, , , α, α, , ]
• fDM2 : [0010] → [β, β, , , β, ]
• fDM3 : [1] → [γ, , γ]
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Fig. 3. Accumulated PA-DM input length over permutation index of lexico-
graphically sorted composition C = {4, 3, 2, 1}. There are six permutations
and thus ordering of DMs in the PA-DM system that achieve the maximum
input length of 13 bits.

These three output sequences are then combined sequentially.
The 6 free positions of the first DM output are filled with
the output of the second DM, giving the temporary sequence
[α, β, β, α, , , α, α, β, ]. The remaining 3 positions are used
by the third DM and we have [α, β, β, α, γ, , α, α, β, γ].
The remaining open position is filled with nm = 1 occur-
rence of δ, giving the final CCDM output sequence x(n) =
[α, β, β, α, γ, δ, α, α, β, γ]. 4

D. Ordering of Binomial Coefficients

As previously noted in the context of (7), the product of
binomial coefficients is always equal to the multinomial coef-
ficient, but the individual factors can vary. Hence, depending
on the ordering of the BCs, each component binary DM can
take a different number of bits ki = log2bBCic2 at its input.
Due to the nonlinearity of the flooring of each BC (see (8)),
the order of the BCs has an impact on k and thus on the
DM rate loss. By a simple one-time exhaustive search over
all possible orderings (of which there are at most m!), the
rate loss of PA-DM can be minimized, as illustrated in the
following Example 2. A detailed rate loss comparison between
PA-DM, BL-DM, and a nonbinary DM for AWGN-optimized
distributions can be found in Sec. V-A.

Example 2 (Optimize BC Ordering to Minimize Rate Loss):
Given the composition C = {4, 3, 2, 1} for the amplitudes
{α, β, γ, δ} as described in Example 1, there are m! = 24
different orderings of the binomial coefficients. In Fig. 3, the
accumulated number of input bits ki per DM is shown over
the index of the BC orderings, which are sorted lexicograph-
ically. This means that permutation index 1 corresponds to
C = {1, 2, 3, 4} and index 24 is C = {4, 3, 2, 1}. We observe
from Fig. 3 that there are 6 composition orderings that allow to
address k = 13 bits. One of these orderings is C = {1, 2, 3, 4},
for which we have M(C) =

(
10
1

)
·
(
9
2

)
·
(
7
3

)
·
(
4
4

)
= 10·36·35·1 =

12600. In this case log2b10c2+log2b36c2+log2b35c2 = 13 bits
can be mapped by PA-DM, resulting in zero additional rate
loss in comparison to a single nonbinary DM. 4

IV. DISTRIBUTION MATCHING VIA SUBSET RANKING

This section outlines binary-output CCDM mapping and
binary-input CCDM demapping methods with low serialism.
The key parameters are the output length n in bits, the DM

input length defined as k = log2

⌊(
n
w

)⌋
2
, and the weight w

denoting the numbers of occurrences of a symbol a in the
binary sequence x(n) ∈ {a, b}n, i.e.,

w = |{i ∈ {1, . . . , n} : xi = a}|. (9)

Since x(n) is binary, we have n − w occurrences of b.
The proposed DM method is based on techniques for the

ranking of subsets that are drawn from a set, which is a
well-known problem in enumerative combinatorics (e.g. [31,
Sec. 2.4]). A similar approach has been applied by Schalkwijk
[26] and Cover [27] for source coding, and recently been used
in enumerative sphere shaping [32]–[34]. We focus on highly
parallel algorithms for subset ranking, with an application to
CCDM, noting that the proposed approach can be used for
any binary enumerative coding technique.

In the following, we review the preliminaries for subset
ranking (SR) before linking it to distribution matching. Al-
gorithms are presented, their application is discussed, and
compared to a conventional AC-CCDM.

A. Preliminaries and Definitions for Subset Ranking

Let N = {1, . . . , n} with n being the DM output length as
introduced earlier in this manuscript. We further define the set

S to consist of the
(
n
w

)
w-element subsets of the n-set N .

The w-element subset T ⊆ N contains the integer elements
{t1, . . . , tw} and thus constitutes the elements of S.

We are interested in ordering the subsets S, for which a
natural choice is lexicographic (lex) ordering. To impose this
order on S, we first introduce the list representation

−→T of T
as −→T = [t1, t2, . . . , tw] , (10)

where the elements of
−→T are sorted in ascending order,

t1 ≤ t2 ≤ . . . ≤ tw, (11)

as indicated by the arrow direction of
−→T . The lex ordering

of the subsets S is obtained by sorting the sequences
−→T in a

dictionary-style fashion, i.e., by applying ascending order to
the component integers [t1, t2, . . . , tw].

Another common ordering besides lex is colexicographic
(colex). In analogy to (10), we define the colex list represen-
tation of T as ←−T = [t1, t2, . . . , tw] . (12)

with
t1 ≥ t2 ≥ . . . ≥ tw . (13)
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The colex ordering in S is achieved by applying lex ordering
to all sequences

←−T .
Given a specific ordering, the ranking of a w-element subset

T determines its position (or rank) within all
(
n
w

)
subsets S.

Thus, the rank of a specific subset for a given ordering is the
number of precursors that this subset has. For the example
of lex ordering, a list

−→Ta =
[
ta,1, . . . , ta,w

]
is a precursor

to
−→Tb =

[
tb,1, . . . , tb,w

]
if the smallest (leftmost) position

j ∈ {1, . . . ,w} where we have ta, j > tb, j is smaller than the
leftmost position k ∈ {1, . . . ,w} where ta,k < tb,k . Formally,
a ranking is a bijective function from S to the integer rank r ,
i.e.,

frank : S → r, r ∈ {0, . . . ,
(
n
w

)
− 1}. (14)

The inverse operation is called unranking and defined as

funrank : r → S, r ∈ {0, . . . ,
(
n
w

)
− 1}. (15)

In the following, we introduce a specific notation for the
ranking and unranking functions depending on the ordering,
which is indicated by the subscript lex or colex. The ranking
of a particular subset T with lex ordering is denoted as

ranklex (T ) = rlex, (16)

and we write for colex ordering

rankcolex (T ) = rcolex. (17)

In analogy, the unranking functions are

unranklex (rlex) = T (18)

for lex and
unrankcolex (rcolex) = T , (19)

for colex. Note that lex and colex ranking are linked with the
simple relation [31, Theorem 2.4]

ranklex (T ) + rankcolex (T ′) =
(
n
w

)
− 1, (20)

where
T ′ = {n + 1 − ti : ti ∈ T }. (21)

This relationship can be useful if ranking or unranking algo-
rithms of a certain ordering has computational advantages.

Example 3 (Ranking for Lex and Colex Ordering): Consider

w = 2 and the n = 5-set N = {1, . . . , 5}. There are
(
5
2

)
= 10

subsets T in the set S. The subsets, their list representation
and the corresponding ranking for lex and colex ordering are
listed in Table II. 4

B. Binary Sequence as a Constant-Order Subset

A binary sequence {a, b}n with alphabet {a, b} can be
described by a subset of the integers {1, . . . , n} that denotes
the positions of either symbol, for example a, in that sequence.
The complementary set then gives the locations of the other
symbol, here b. Applying a constant order (such as ascending)
to this integer subset gives an equivalent description of the

TABLE II
RANKS FOR LEX (LEFT) AND COLEX (RIGHT) ORDERING FOR n = 5 AND

w = 2 AS PER EXAMPLE 3.

T −→T rlex
[1,2] [1,2] 0
[1,3] [1,3] 1
[1,4] [1,4] 2
[1,5] [1,5] 3
[2,3] [2,3] 4
[2,4] [2,4] 5
[2,5] [2,5] 6
[3,4] [3,4] 7
[3,5] [3,5] 8
[4,5] [4,5] 9

T ←−T rcolex
[1,2] [2,1] 0
[1,3] [3,1] 1
[2,3] [3,2] 2
[1,4] [4,1] 3
[2,4] [4,2] 4
[3,4] [4,3] 5
[1,5] [5,1] 6
[2,5] [5,2] 7
[3,5] [5,3] 8
[4,5] [5,4] 9

sequence {a, b}n. This correspondence is used in the next
section to propose a CCDM method via subset ranking.

Example 4 (Binary Sequence as Integer Subset): Suppose
we have the binary sequence {aabbabaa} with n = 8.
The integer subset describing the positions of symbol a in
ascending order is {1, 2, 5, 7, 8}. The complementary subset for
b is thus {3, 4, 6}. 4

C. Subset Unranking and Ranking as DM Mapping and
Demapping

We now link the above outlined subset ranking to the
DM terminology. With the ranking and unranking functions
(16) to (19), a bijective mapping between the subset T and
its rank is established. The rank (in binary representation)
of T corresponds to the uniform binary sequence b(k) that
is the input of the binary-alphabet DM mapper. The w-
element subset T that corresponds to this rank describes which
positions of the DM mapper output sequence carry one of the
two binary output symbols, see Sec. IV-B.6 The DM mapping
operation from uniform data word b(k) to shaped sequence x(n)
can thus be considered an unranking problem. In analogy, the
DM demapper carries out a ranking operation: given a shaped
sequence that corresponds to the subset T , the rank is to be
determined.

Example 5 (DM Mapping and Demapping with Lex Subset
Ranking): Consider a binary DM with n = 10 and the desired
binary distribution PA(0) = 0.6, PA(1) = 0.4. We have w = 4

and thus the DM input length k =
⌊(

10
4

)⌋
2
= 7 bits. Suppose

the binary word to be mapped is b(k) = [1110101], which
is rlex = 117 in denary representation. With an unranking
algorithm of Sec. IV-D, the subset T in lex ordering that
has rlex = 117 is determined as

−→T = [2, 4, 8, 9].7 From
this, the DM output sequence of length 10 is determined, as
follows in Sec. IV-B. The sequence elements that have indices
[2, 4, 8, 9] are set to ‘1’, i.e., we have x(n) = [0101000110].
At the demapper,

−→T is determined from the sequence x(n),

6Which symbol is represented by w is a somewhat arbitrary choice. The
same SR functionality is achieved when the w-element subset T represents
the positions of the complementary binary symbol.

7Note that colex ordering is also feasible. For rcolex = 117 we would get←−T = [9, 8, 6, 3].
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and a ranking of this subset gives the initial data word
b(k) = [1110101]. 4

D. Ranking and Unranking Algorithms

In the following, we present pseudo-code algorithms for
subset ranking and unranking [31, Sec. 2.4] and discuss their
serialism. Ranking for the subset T in lex and colex ordering
is presented in Algorithms 1 and 2, respectively. We note that
the inner nested for-loop of Algorithm 1 (line 6) can be easily
replaced with parallel vector operations, which makes the lex
ranking algorithm serial in w. The colex ranking does not have
any loops and is thus of great interest for low-latency high-
throughput DM demapping.

The unranking algorithms for lex and colex ordering are
given as Algorithms 3 and 4, respectively. The inner nested
loops in Algorithm 3 (line 4) and Algorithm 4 (line 4) can
again be executed in parallel. Furthermore, if w > n

2 , the un-
ranking algorithm can be set to determine the positions of the
complementary binary symbol, thereby limiting the required
number of loop iterations in the unranking Algorithms 3 and 4
to min(w, n − w).

Algorithm 1 Lex ranking function ranklex(·) of (16)

Require:
−→T , w . Ordered subset, weight of binary seq.

1: function LEXRANK(
−→T , w)

2: rlex ← 0
3: t0 ← 0 . For notational convenience
4: for i from 1 to w do
5: if ti−1 + 1 ≤ ti − 1 then
6: for j from ti−1 + 1 to ti − 1 do

7: rlex ← rlex +

(
n − j
w − i

)
8: end for
9: end if

10: end for
11: return rlex . See (16)
12: end function

Algorithm 2 Colex ranking function rankcolex(·) of (17)

Require:
←−T , w . Ordered subset, weight of binary seq.

1: function COLEXRANK(
←−T , w)

2: j← [1, 2, . . . ,w] . Integer list from 1 to w

3: rcolex ←
w∑
i=1

(
ti − 1

w + 1 − ji

)
4: return rcolex . See (17)
5: end function

E. Comments on Computational Complexity

We observe from the above algorithms that an integral part
of ranking and unranking is to compute binomial coefficients.
For the considered application as DM mapping and demapping
functions, it is important that the computation is exact since an
inaccurate rank calculation, for instance due to rounding, could
lead to the DM introducing a transmission error. Thus, integer

Algorithm 3 Lex unranking function unranklex(·) of (18)
Require: n,w,rlex . DM output length, weight of binary

seq., rank
1: function LEXUNRANK(n,w,rlex)
2: j ← 1
3: for i from 1 to w do
4: while

(
n − j
w − i

)
≤ rlex do

5: rlex ← rlex −
(
n − j
w − i

)
6: j ← j + 1
7: end while
8: ti ← j
9: j ← j + 1

10: end for
11: return

−→T = [t1, t2, . . . , tw] . See (10)
12: end function

Algorithm 4 Colex unranking function unrankcolex(·) of (19)
Require: n,w,rcolex . DM output length, weight of binary

seq., rank
1: function COLEXUNRANK(n,w,rcolex)
2: j ← n
3: for i from 1 to w do
4: while

(
j

w + 1 − i

)
> rcolex do

5: j ← j − 1
6: end while
7: ti ← j + 1

8: rcolex ← rcolex −
(

j
w + 1 − i

)
9: end for

10: return
←−T = [t1, t2, . . . , tw] . See (12)

11: end function

arithmetic should be employed rather than relying on typical
floating-point precision. We further note that the values of the
binomial coefficients can be huge for typical DM lengths. For
instance, for a short binary CCDM with n = 100, binomial
coefficients must be computed that exceed the maximum value
of an unsigned 64-bit integer.

A method of computing binomial coefficients that could
be particularly suitable for such large numbers is by prime
factorization of n!, where n is integer. We first note that only
prime numbers p ≤ n appear in the factorization of n. The
number of times that n! is divisible by the prime p, which we
denote as dp(n!), is defined as

dp(n!) =
blogp nc∑

i=1

⌊
n
pi

⌋
. (22)

This expression is known as Legendre’s theorem [35, Sec. 2.6].
With this relation, the factorial can be expressed as

n! =
n∏

p=2
pdp(n!), (23)

where p is prime and the product runs over prime numbers
only, i.e., p ∈ {2, 3, 5, 7, . . . }.
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The above definition of a factorial can be applied to calcu-

lating a binomial coefficient
(
n
w

)
. With the concept of prime

factorization, we have

(
n
w

)
=

n!
(n − w)! · w!

=

n∏
p=2

pdp(n!)(
n−w∏
p=2

pdp((n−w)!)
)
·
(

w∏
p=2

pdp(w!)
) , (24)

with the products again over primes only. The computations
for (24) can be further simplified by excluding those elements
in the numerator and denominator that will eventually cancel
out. The definition (24) can be beneficial because the numbers
in intermediate steps of computing the binomial coefficient
are relatively small; neither the bases nor exponents of (24),
i.e., the primes p and dp(n!) as per (22), exceed n. Also, the
computation can partly be implemented with bit shifts and
additions.

Example 6: We wish to compute 21!. The relevant primes
are p = {2, 3, 5, 7, 11, 13, 17, 19}. With the exponents computed
as per (22), we have 21! = 218 ·39 ·54 ·73 ·111 ·131 ·171 ·191 =
51090942171709440000. In particular, the multiplication of
the already huge number 39 · 54 · 73 · 111 · 131 · 171 · 191 with
218 can be performed efficiently with 18 bit shifts. 4

V. NUMERICAL RESULTS

In the following, we compare the finite-length rate loss
of the PA-DM of Sec. III to a nonbinary DM and the BL-
DM system of [11], [24]. The reduction in serialism from the
subset-ranking (SR) CCDM technique of Sec. IV compared to
CCDM via arithmetic-coding (AC), denoted as AC-CCDM, is
analyzed in Sec. V-B.

A. Rate Loss Comparison

Numerical simulations over the AWGN channel are per-
formed to compare the performance of PA-DM to a nonbinary
(NB) DM and BL-DM for CCDM-based shaping. The figure
of merit is the achievable information rate (AIR) for complex
QAM signaling and bit-metric decoding [6, Sec. VI] minus
the finite-length rate loss of the considered DM system, which
gives an AIR for the finite-length DM, see [18, Appendix]. The
AIRs for 64QAM as a function of the SNR of the AWGN
channel are shown in Fig. 4 for PA-DM (dotted), BL-DM
(dashed), and conventional nonbinary DM (solid). The channel
capacity log2(1 + SNR) and the asymptotic AIR for infinite-
length DM (i.e., with zero rate loss) and for uniform signaling
are included for reference. The targeted PMF is the optimal
Maxwell-Boltzmann PMF [4] at each SNR, quantized at each
block length n as to minimize Kullback-Leibler divergence
[29, Sec. IV]. We observe from Fig. 4 that for short lengths
such as n = 50, BL-DM has improved performance over NB-
DM and PA-DM. The reason for this is that the sum of rate
losses of the individual BL-DM instances is smaller than the
total rate loss of the other schemes. Note, however, that this
length regime is of limited interested since the AIR is smaller
than with uniform 64QAM. The performance improvement of
BL-DM over the other DM systems decreases with increasing
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4

4.5

5

5.5

n =
50

n =
100

n =
500

SNR [dB]

A
IR

[b
it/
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Fig. 4. Achievable information rate (AIR) for bit metric decoding and finite-
length DM systems with n = {50, 100, 500} (colored lines with markers)
versus the SNR in dB of the AWGN channel for 64QAM (m = 4). The
channel capacity and the AIRs for an infinite-length DM and for uniform
signaling are included as references (black lines).

TABLE III
COMPARISON OF PA-DM, BL-DM, AND NONBINARY (NB) DM, ALL FOR

n = 100 AND 64QAM (m = 4) AT 13 dB SNR

PA-DM BL-DM NB-DM
Number of DMs m − 1 = 3 log2 m = 2 1

Compositions (16, 32, 6, 46)
(78, 22)

and
(61, 39)

(46, 32, 16, 6)

(n, k, w) per DM
(100, 60, 16)
(84, 77, 32)
(52, 24, 6)

(100, 72, 22)
(100, 92, 39) (100, 161, −)

Total Rloss 0.1 0.09 0.1

n. For n = 500 symbols, all three investigated systems have
nearly identical performance. We further note that the rate loss
of PA-DM is smaller than 0.05 bits/2D-sym compared a single
nonbinary DM for all considered output lengths and SNRs.

In the following, we perform a detailed analysis of the DM
systems for 64QAM, n = 100 and 13 dB SNR. The results are
listed in Table III. First and foremost, we note that the rate
losses are very similar: 0.09 bits per 1D amplitude symbol for
BL-DM and 0.1 bit for NB-DM and PA-DM. The parameters
of the individual binary DMs are also given in Table III. In
comparison to BL-DM, PA-DM uses three binary DMs instead
of two, thus allowing a higher degree of parallelization, see
also Table I. Furthermore, the output lengths n, number of
input bits k and smallest number of occurrences w of either
binary symbol is smaller for the component DMs of PA-
DM compared to BL-DM, which potentially allows a DM
implementation with a smaller number of sequential computa-
tions. As the reduction in serialism depends on the employed
algorithm, we compare the degree of serialism between AC-
CCDM (outlined in Sec. II-C) and SR-CCDM (introduced in
Sec. IV-D) in the following.
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Fig. 5. Reduction in degree of serialism (DoS) of SR-CCDM compared to
AC-CCDM (see (25) for the formal definition) versus the ratio between weight
w of one of the binary symbols and DM length, which corresponds to the
PMF for that binary symbol. The DoS reduction is shown only for w ≤ n

2
as the results for larger values of w are a mirrored copy of those presented
in the above figure. The marker at w

n = 0.36 corresponds to Example 7.

TABLE IV
DEGREE OF SERIALISM (DOS) FOR SR-CCDM AND AC-CCDM

SR-CCDM AC-CCDM
Mapping min(w, n − w) k

Demapping 1 (no serialism) n

B. Degree of Serialism (DoS) Comparison

In order to assess the computational complexity of DM
algorithms, we introduce the notion of degree of serialism
(DoS), which describes the number of loop iterations that
is executed in either scheme for mapping and demapping.
Although this metric does not incorporate the complexity
or the required number of clock cycles for the operations
within each iteration, it can serve as an insightful metric for
evaluating the latency and the potential of parallelization for
the investigated CCDM algorithms.

For SR-CCDM, the unranking algorithms have a serialism
of min(w, n−w), and ranking with colex does not require any
iterations (see Algorithm 2), which we define as a serialism
of 1.8 In contrast, the AC-CCDM mapping and demapping
algorithms are in the worst case serial in the length of their
respective inputs, which is k for mapping and n for demapping.
This DoS is summarized in Table IV. The combined reduction
in DoS from SR-CCDM (with colex sorting) over AC-CCDM
is thus

k + n
min(w, n − w) + 1

. (25)

For comparing parallel DM architectures schemes such as
PA-DM and BL-DM, the DoS reduction is computed for the
respective worst-case component DM.

8The serial combination of the component subsequences in the PA-DM
scheme is neglected here.
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Fig. 6. Reduction in degree of serialism (DoS) of PASR-CCDM compared
to AC-CCDM over the SNR in dB of an AWGN channel for 64QAM and
256QAM. The marker corresponds to Table III.

In Fig. 5, the DoS reduction is numerically evaluated over
w
n , which corresponds to the probability of occurrence of either
binary symbol, for a CCDM with n = {50, 100, 500} shaped

bits out and k = log2

⌊(
n
w

)⌋
2

input bits. We observe that

the stronger the binary PMF is shaped, the larger the DoS
reduction, which can be more than an order of magnitude for a
strongly shaped distribution. The following example illustrates
the steps of this analysis for w = 64.

Example 7 (Serialism of Subset Ranking vs. Arithmetic
Coding): Consider a CCDM with n = 100 and w = 64, which
has k = 90 input bits. The combined worst-case serialism of
AC mapping and demapping is k+n = 190. Mapping with SR
has a serialism of min(w, n − w) = 36, and demapping always
has serialism 1 for colex ordering. Thus, the total reduction in
serialism from the subset-ranking method is 190/37 ≈ 5.14.
This reduction is shown in Fig. 5 as marker. 4

Considering the example of Table III, we note that SR-
CCDM is also beneficial for the BL-DM system, reducing the
DoS of the worst component DM by a factor of 4.8, from
100 + 92 = 192 to 39 + 1 = 40. When using PA-DM instead
of BL-DM, the serialism is further reduced to 32 + 1 = 33,
corresponding to an improvement of a factor of 5.8 from SR-
CCDM. Compared to a nonbinary DM, the total reduction
in serialism from jointly applying PA-DM and SR-CCDM,
which is referred to as PASR-CCDM, is 261/33 ≈ 7.9, at no
performance loss.

In Fig. 6, the reduction in DoS, again for the worst-case
DM, is shown for 64QAM and 256QAM over the SNR
of the AWGN channel. Similar to the results of Fig. 4,
the DM compositions are obtained from quantized Maxwell-
Boltzmann distributions. We observe that the DoS reduction
can be up to a factor 10 for 64QAM, and amount to more
than 20 for 256QAM. The additional PASR-CCDM rate loss
compared to NB-DM was in all cases either zero or 1/n, i.e.,
one extra bit. The reason for the parabola-like shape of the
curves is as follows. The DoS of NB-DM grows with SNR
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because for higher SNR, the distribution is more uniform-like,
which in general gives a larger k and thus a higher DoS. For
PASR-CCDM, however, the DoS depends on each composition
(and its ordering), and for the considered compositions, the
DoS is numerically found to grow fast at low SNR, causing
the dip in the DoS reduction curve, while for high SNR, the
DoS of PASR-CCDM grows slower than that of NB-DM.

VI. CONCLUSION

A DM system with parallel amplitudes (PA-DM) has been
proposed that employs binary-alphabet DMs for m − 1 out of
m amplitudes (the last amplitude requires no DM). The system
has no or negligibly small additional rate loss compared to a
single nonbinary DM. The output lengths of the component
DMs are decreasing and the number of parallel DMs grows lin-
early with the modulation order. These features could greatly
help to increase the throughput of practical DMs.

We have further introduced a binary-alphabet CCDM map-
ping and demapping method via subset ranking (SR). A key
difference of SR to arithmetic-coding based CCDM is that the
total number of serial operations required for SR mapping and
demapping is the smallest number of occurrences of either
binary output symbol (i.e., the minimum weight) plus one.
For SR-CCDM, the computational complexity lies mostly in
calculating binomial coefficients. Combining PA-DM and SR-
CCDM is numerically shown for AWGN-optimized distribu-
tions to give a serialism reduction by more than an order
of magnitude compared to a nonbinary DM, which could
facilitate a practical implementation of short-length CCDMs.
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