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Abstract
Millimeter-wave (mmWave) communications is an emerging technology expected to bring
unprecedented data rates and throughput. WiFi operating at unlicensed 60 GHz range is
envisioned to become an ubiquitous technology and the IEEE 802.11ad standard is an initial
attempt in that direction. Although spatial and temporal resolution of mmWave signals make
them suitable for location estimation, a variety of hardwarerelated issues and commonly en-
countered difficulties in extracting channel measurements from commercial chipsets, challenge
opportunistic use of commercial mmWave WiFi chips for indoor localization. We propose in
this paper an indoor localization method that fingerprints transmit beam indices that a pair
of WiFi transceivers employ to establish a mmWave link, as well as the resulting received sig-
nal strength (RSS). In particular, we develop an algorithm that learns possible probabilistic
models from the fingerprint data and leverages them to perform indoor localization in the
online stage. The proposed algorithm is experimentally evaluated using commercial 60 GHz
WiFi routers in an office space
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Abstract—Millimeter-wave (mmWave) communications is an
emerging technology expected to bring unprecedented data rates
and throughput. WiFi operating at unlicensed 60 GHz range is
envisioned to become an ubiquitous technology and the IEEE
802.11ad standard is an initial attempt in that direction. Al-
though spatial and temporal resolution of mmWave signals make
them suitable for location estimation, a variety of hardware-
related issues and commonly encountered difficulties in extract-
ing channel measurements from commercial chipsets, challenge
opportunistic use of commercial mmWave WiFi chips for indoor
localization. We propose in this paper an indoor localization
method that fingerprints transmit beam indices that a pair of
WiFi transceivers employ to establish a mmWave link, as well
as the resulting received signal strength (RSS). In particular, we
develop an algorithm that learns possible probabilistic models
from the fingerprint data and leverages them to perform indoor
localization in the online stage. The proposed algorithm is
experimentally evaluated using commercial 60 GHz WiFi routers
in an office space area and localization error of around 30 cm
is demonstrated.

I. INTRODUCTION

Indoor localization, aimed to estimate location of people
and objects in an enclosed area where signals from the Global
Positioning System (GPS) do not penetrate, has received
considerable attention over the last few decades. A variety of
technologies such as radio (WiFi, infrared, RFID, ultra wide-
band, Zigbee, Bluetooth, DTV, cellular, FM), optics (lasers,
cameras), sound (audible, ultrasound), magnetism (geomag-
netism, coil-induced magnetism) have been considered to aid
indoor localization. Leveraging one or more signal features
that contain information about location, such as time (time
of arrival, time of flight, time difference of arrival, round
trip time), phase (phase of arrival, phase difference), angle
of arrival or power (received signal strength, signal to noise
ratio) has led to development of numerous algorithms, com-
prehensively surveyed in [1]. Nevertheless, indoor localization
still remains an open problem due to stringent requirements
for high accuracy and low cost, demanded mostly from
applications related to assisted living.

Due to its pervasive deployment and use, indoor localization
built upon the exiting 2.4/5 GHz WiFi infrastructure has been
widely considered as an appealing cost-effective localization
technology. In a prevailing fingerprinting approach, received
signal strength (RSS) measurements from one or more access
points (AP) are recorded at pre-determined locations in the

offline stage, and a device is localized in an online stage
by fusing online RSS measurements with those stored in the
fingerprint database [3]. In an alternative, direct localization
approach, a device is localized solely based on online WiFi
RSS measurements, such that an often labor-intensive finger-
printing is avoided at the expense of deteriorated accuracy [2].
More recently, extraction of channel state information (CSI)
from commercial IEEE 802.11n WiFi chipsets has become
feasible and, thus, CSI fingerprinting with data-driven local-
ization in the online stage has been studied [4].

To accommodate an ever increasing demand for
data throughput, communication systems operating over
millimeter-wave (mmWave) frequency ranges have started
to emerge [5], [6]. Standards for indoor connectivity
over unlicensed 60 GHz frequency range, such as IEEE
802.15.3c [7] and IEEE 802.11ad [8], have been around
for some time. Envisioning that mmWave communications
will become an ubiquitous technology, we study in this
paper how future WiFi based on mmWave can be leveraged
for indoor localization. More specifically, we propose a
low-cost fingerprint-based localization method, where in
addition to the RSS measurements we also fingerprint beam
indices that two mmWave devices select from a finite set
of feasible beams during their beam alignment procedure.
The proposed method is experimentally evaluated using
commercial off-the-shelf (COTS) IEEE 802.11ad-compliant
60 GHz routers and localization error of around 30 cm is
achieved.

II. RELATION TO PRIOR WORK

MMWave signals possess a certain set of features which
make them highly suitable for indoor localization. First of all,
mmWave signals experience relatively large propagation atten-
uation, especially pronounced at 60 GHz. On the other hand,
small wavelengths enable packing a large number of antenna
elements in relatively small form factors such that mmWave
link between two devices is established using beamforming.
In addition to the beamformed path, mmWave signal often
propagates over few more paths, such that mmWave channel
is sparse in the angular domain. In principle, the angular
spectrum of mmWave channel between two devices can be
directly mapped into location estimate of one device with
respect to the other device, which has been utilized in [9]–



[12]. In an alternative approach, indoor localization based on
mmWave channel fingerprinting has also been attempted. As
such, [13] fingerprints RSS and angle of arrival (AoA) of
mmWave signals transmitted from one or more APs. In a
related work, [14] fingerprints high-resolution power delay
profiles (PDP) over multiple beampatterns.

However, practical implementation of the above-referenced
methods is challenging using current mmWave technology and
communication standards. Namely, only a limited number of
radio frequency (RF) chains are implemented into a mmWave
transceiver due to hardware-related constraints. This precludes
them from processing signals from all antenna elements in
discrete-time domain and obtaining mmWave channel angular
spectrum. Instead, a mmWave transceiver implements a finite
number of possible beampatterns such that two mmWave
devices establish communication link by probing different
combinations of beams and choosing the one that yields
the largest power in the received signal. In addition, even
those limited channel measurements are not (easily) accessible
from commercial mmWave chipsets which poses additional
challenges to mmWave-aided localization.

We propose in this paper an indoor localization method
based on fingerprinting measurements recorded during beam
alignment stage and easily available from commercial
chipsets. More specifically, we fingerprint RSS measurements
and beam indices that two mmWave devices select from a
finite set of feasible beams. Thus, in comparison to [13],
[14], we are fingerprinting actual measurements that commer-
cial mmWave devices record without requiring any hardware
modifications. The closest work to this paper is [16], where
SNRs over spatial beams measured during beam alignment
procedures between commercial mmWave WiFi devices are
extracted with the goal to directly estimate unknown loca-
tion (i.e., without fingerprinting). In addition to extracting
easily available RSS measurements and beam indices, our
localization approach is based on fingerprinting, which yields
more accurate location estimates even with fewer APs. This
is more so when SNR measurements over spatial beams are
fingerprinted, as done in our companion paper [17]. In addition
to proposing a novel fingerprinting approach, we develop
in this paper a method for extracting probabilistic models
from the fingerprinted dataset and leveraging the models
for online location estimation. Finally, we demonstrate the
practical viability of the proposed method by implementing
and experimentally testing it using our testbed comprising
of commercially available 60 GHz off-the-shelf 802.11ad-
compliant devices.

III. PROPOSED LOCALIZATION METHOD

In this section, we describe the proposed localization
method which comprises of offline, i.e., fingerprinting stage,
and online, i.e., operational stage.

A. Localization Setup

Our indoor localization method is based on a fully op-
portunistic use of commercial off-the-shelf (COTS) mmWave

Fig. 1: Irregular beampatterns from TP-Link router [16].

WiFi routers. In particular, the proposed method leverages
information about mmWave links established between a client
and one or more APs that could be extracted from commercial
transceiver chipsets. Towards that end, we utilize TP-Link
Talon AD7200 router, which is one of the first and most
popular WiFi 60 GHz devices complying with the IEEE
802.11ad standard. The TP link router implements Qualcomm
QCA9500 transceiver that supports a single stream communi-
cation in 60 GHz range using analog beamforming over 32-
element planar array. The TP-Link’s transceiver receives in
quasi-omnidirectional configuration and transmits by steering
signal into one of 34 possible beams, realized using pre-stored
beamforming weights. Notably, the resulting beams depart
from the theoretical ones and exhibit fairly irregular shapes
due to hardware imperfections at 60 GHz. As an example,
Fig. 1 shows magnitudes of two transmit beams, experimen-
tally measured in an anechoic chamber [16]. Two TP-Link
devices establish mmWave communication link during beam
alignment stage whereby one device is in the reception mode,
i.e., implements quasi omni-directional beam, and measures
the received signal levels of pilots sequentially transmitted
over different beams by the other device. Upon this procedure,
the two devices swap the roles the repeat the process. The
beam alignment procedure yields beam indices to be used
during data transmission, along with the RSS level measured
over such a link. Following [15], we extract the recorded RSS
and pair of transmit beam indices resulting from the TP-Link’s
beam alignment procedure and use that information for indoor
localization. We emphasize that the developed algorithm can
be generalized for the cases when mmWave transceivers
employ different beam alignment procedures, for example
when quasi-directional receive beams are also employed in
addition to transmit beams.

B. Fingerprinting Stage

We assume K access points (AP), indexed k = 1, . . . ,K,
are deployed in an area of interest and their locations and ori-
entations are fixed. An indoor area of interest is fingerprinted
by a client device at different locations l = 1, . . . , L, such
that the fingerprint measurements at each location are taken
at different orientations of the client, indexed o = 1, . . . , O.
The measurement record taken at a location-orientation pair
(l, o) and corresponding to a mmWave link established with
AP k is given as a set of triplets

Dl,o,k =
{(
zn, b

(AP)
n , b(C)

n

)N
n=1

}
, (1)



where zn is the received signal strength (RSS) measured over
the link defined with beam indices b(AP)

n and b(C)
n that the AP

k and client use for transmission. Without loss of generality,
we assume the number of measurements N is the same
irrespective of the location, orientation and AP. The overall
measurement record corresponding to location-orientation pair
(l, o) is

Dl,o = ∪Kk=1Dl,o,k (2)

As we have previously elaborated, the devices probe dif-
ferent beam pairs during the beam alignment stage of the
mmWave protocol, and the pair of beams over which the
training signal is received with the highest RSS level is the
one used for information exchange. During the fingerprint
stage, measurements of N such beam pairs, along with the
corresponding RSS levels, are recorded by forcing the devices
to perform beam alignment N times. Due to dynamics in
the environment, the most prominent one being movement
of people, the mmWave link measurements are not time-
invariant. On the other hand, due to the directivity of mmWave
channel, it is unlikely to observe N significantly different
recordings of beam pairs. In particular, our measurements in
an office space environment with a usual people traffic during
regular business hours indicate that only several different beam
pairs (b(AP), b(C)) emerge over N ∼ 1000 measurements.

Consequently, we summarize the measurement record
Dl,o,k by clustering it into Jl,o,k modes. Each mode is
represented with a distinct pair (b(AP)

j , b
(C)
j ), j = 1, . . . , Jl,o,k.

The mode probability pj is estimated as the relative frequency
of occurrence of the beam pair representing mode j over the
record of N measurements,

pj =
1

N

N∑
n=1

1(b(AP)
j , b(AP)

n )1(b(C)
j , b(C)

n ), (3)

where 1(a, b) = 1, if a = b, and zero, otherwise. Furthermore,
the RSS levels measured for the same beam pair, i.e., mode,
vary and thus each mode j is associated with a set of measured
RSS levels Zj . This set is used to estimate mode probability
distribution of RSS levels p(z|j).

To estimate p(z|j), the RSS level z is treated as a discrete
random variable because commercial chipsets commonly mea-
sure it with a coarse quantization step, such as 1 dBm. Hence,
p(z|j) is the probability mass function directly estimated from
the relative frequency of occurrence of RSS levels z in Zj .
Due to silent fluctuations in mmWave channel and coarse
quantization of RSS levels, it is not uncommon to observe
previously unseen RSS levels over the link defining mode j
that are thus not present in Zj . Therefore, p(z|j) is estimated
by accounting for that possibility such that

p(z|j) =
1 +

∑
z̃∈Zj

1(z̃, z)

|Zj |+mj + 1
, if z ∈ Zj (4)

and

p(z|j) = 1

|Zj |+mj + 1
if z 6∈ Zj (5)

where mj denotes the number of different RSS levels in
Zj , i.e., the alphabet size of the RSS levels. The adjustment
of classical expressions for relative frequency of occurrence
in (4) and (5) is motivated by the fact some RSS levels
may not be well-represented in Zj , i.e., their number of
occurrences is relatively small that the maximum likelihood
(ML) estimate for the corresponding probability needs to be
smoothed. In addition, a previously "unseen" RSS level may
be measured in the online stage and thus we account for that
situation by extending the RSS alphabet by one more element,
corresponding to "unseen" RSS levels in the fingerprinting
stage. The prior probability of occurrence of each element
from such an alphabet is modelled as Dirichlet distribution
with all hyper-parameters equal to one. The posterior prob-
ability of occurrence upon observing measurements from Zj

is evaluated according to (4) and (5), and often referred to as
Laplace smoothing [18].

Overall, the fingerprint measurements Dl,o,k recorded at
location l, with orientation o of the client device and cor-
responding to mmWave link with the AP k, is represented
with the set of modes Sl,o,k,

Sl,o,k =
{
pj , b

(AP)
j , b

(C)
j , p(z|j)

}Jl,o,k

j=1
(6)

Analogously to (2), all mmWave link measurements taken
at location l and orientation o of the client devices are
summarized as

Sl,o = ∪Kk=1Sl,o,k (7)

Overall, the fingerprint database thus stores

S = ∪l,oSl,o (8)

We note that the clustering approach considerably reduces the
amount of memory required for storing fingerprint data. In
addition, it streamlines the localization process in the online
stage, as described in the following part.

C. Localization Stage

A client device is at unknown location and orientation in the
environment and performs a cycle of beam alignments with
all K APs sequentially before establishing a mmWave com-
munication link with one of them. Without loss of generality,
we assume the client performs I cycles of beam alignments
with the APs. The measurements collected from AP k are
represented as a set

Mk =
{
(zi, b

(AP)
i , b

(C)
i )Ii=1

}
(9)

The collection of measurements from all APs is

M = ∪Kk=1Mk (10)

We first consider the problem of detecting location l and
orientation o represented in the fingerprint dataset, based on
measurements M and fingerprint data S. This is done by
evaluating posterior distribution of (l, o) given measured and
training data, which is using Bayes’ rule expressed as

p(l, o|M,S) ∝ p(M|l, o,S) p(l, o) (11)



where l = 1, . . . , L, o = 1, . . . , O. The prior distribution
of the client p(l, o) is assumed uniform over the space of
possible (l, o). We note that in device tracking problem,
p(l, o) encodes prior information of client’s position based
on previous position estimate and odometry measurements.
Since the set of location-orientation pairs (l, o) is finite, the
normalization constant in (11) is not explicitly computed.

Assuming independent measurements across APs and time,
the likelihood term from (11) is given by

p(M|l, o,S) = p(M|Sl,o) =
K∏

k=1

p(Mk|Sl,o,k)

=

K∏
k=1

I∏
i=1

p(zi, b
(AP)
i , b

(C)
i |Sl,o,k) (12)

The conditional probability of a measurement triplet in (12)
is evaluated assuming independence of the RSS level from
the beam indices, as well as the independence of the beam
indices,

p(zi, b
(AP)
i , b

(C)
i |Sl,o,k) =∑Jl,o,k

j=1 pj p(zi|j) p(b(AP)
i |b(AP)

j ) p(b
(C)
i |b

(C)
j ) (13)

where pj , b(AP)
j , b(C)

j and p(z|j) are, respectively, the probabil-
ity, AP’s beam index, client’s beam index and RSS distribution
representing mode j of Sl,o,k from (6).

We consider two approaches in specifying the conditional
probabilities p(b(AP)

i |b(AP)
j ) and p(b

(C)
i |b

(C)
j ). Noting that the

functional form of those distributions is the same irrespective
of the device type, AP or client, we omit the superscript and
denote with p(bi|bj) the conditional probability that beam
alignment procedure suggests beam index bi for transmission
when the device is in the mode represented by beam index
bj . In a hard approach,

p(bi|bj) = 1(bi, bj) (14)

More specifically, this approach excludes the possibility that
the suggested beam index is different from the one represent-
ing a mode. In other words, if a client and AP negotiate a pair
of beam indices that is not present in the fingerprint dataset
at a certain location and orientation, the model (14) assigns
zero posterior probability that the client is at that particular
location and orientation. This approach is justified when the
beampatterns corresponding to beam indices are orthogonal, or
sufficiently large number of measurements at each location-
orientation (l, o) is recorded. However, the beampatterns of
the COTS mmWave WiFi routers are considerably deviating
from the theoretical ones, let alone orthogonal, as illustrated in
Fig. 1. As a result, a link between AP and client over a certain
channel path can often be established with more than one
possible pair of beam indices. For example, assume AP and
client communicate over (b(AP)

1 , b(C)) and (b
(AP)
2 , b(C)) equally

well, i.e., with the same RSS level, and that the beampatterns
corresponding to b(AP)

1 and b(AP)
2 are quite similar, which is not

uncommon in COTS devices. Thus, if (b
(AP)
1 , b(C)) is present

in the fingerprint dataset and (b
(AP)
2 , b(C)) is measured in the

localization stage at the same location and orientation (l, o),
the hard model (14) would assign zero probability that the
client is at (l, o). To avoid such an issue, a softer approach in
modeling p(bi|bj) is needed.

Since the beampatterns of COTS devices can be measured
and are available, we model the conditional beam probability
p(bi|bj) with a cross-correlation between the corresponding
beampattens’ magnitudes,

p(bi|bj) =
bT
i bj∑P

p=1 b
T
p bj

, i = 1, . . . , P (15)

where bi and bj are vector representations of the magnitudes
of beampatterns indexed with bi and bj , and P is the number
of different beampatterns implemented in the used COTS
devices. Therefore, the soft beam probability model (15)
assigns relatively high probability to all beampatterns that are
similar to the one indexed by bj . Back to our simple example,
even though the measured beam index b(AP)

1 is different from
the one recorded in the fingerprint dataset, b(AP)

2 , the fact
their corresponding beampatterns are similar yields relatively
high beam probability p(b(AP)

1 |b(AP)
2 ), thus giving the algorithm

chance to detect that the client is at correct location and
orientation (l, o).

Finally, substituting (15) into (13), and the result into (12)
yields the likelihood of test measurements M at a location-
orientation pair (l, o). This likelihood is substituted into (11),
together with possibly non-uniform prior p(l, o), to eventu-
ally yield (after normalization) the posterior distribution of
location-orientation pairs. The client’s location and orientation
are detected based on its measurements M as the location-
orientation pair with the largest posterior probability,

l̂, ô = argmax
l,o

p(l, o|M,S) (16)

Commonly, unknown location and orientation of the device
are not the ones at which fingerprint data is collected. There-
fore, we estimate the client’s location and orientation as
centroids of locations and orientations at which fingerprint
data is collected, with weights equal to the posterior proba-
bilities (11). More formally, denoting the vector of Cartesian
coordinates corresponding to location indexed with l as rl and
the orientation indexed with o as θo, the unknown client’s
position and orientation are estimated as

[r̂ θ̂] =
∑
l,o

p(l, o|M,S) [rl θo] (17)

When the client’s Cartesian coordinates are only of interest,
which is often the case, their vector representation is estimated
as

r̂ =
∑
l

p(l|M,S) rl, (18)

where the posterior probability of locations is given by
p(l|M,S) =

∑
o p(l, o|M,S).



Fig. 2: Floor plan of the indoor area.

IV. EXPERIMENTAL EVALUATION

The proposed localization approach and algorithm are tested
in an indoor office space, whose floor plan is shown in Fig. 2.
The indoor area consists of offices, separated from hallway
by wooden doors, concrete wall and glass windows, as well
as of cubicles separated by typical partitions. More details on
the indoor area can be seen in Fig. 3. We deploy four TP-
Link routers in the indoor area. Three routers are designated
as access points (AP) and their locations and orientations
are fixed, while the remaining router acts as a client and
is moved throughout the indoor area. The indoor area is
fingerprinted at L = 6 locations, with O = 4 possible
orientations at each location, where θ = {0, 90◦, 180◦, 270◦},
yielding overall 24 location-orientation pairs. All fingerprint
and tests measurements are taken during business hours with
regular traffic of people, including opening and closing of
doors, people passing by, small groups of people standing in
different areas of the space for some, usually short, amount
of time. The positions of APs (red triangles) and fingerprint
locations (blue crosses labeled with numbers) are shown in
Fig. 2. Referring to Figures 2 and 3, the separation between
AP1 and AP2 is 2.95 m, while that of AP1 and AP3 is 2.26 m.
The distance between fingerprint locations ranges between
0.4 m and 1.28 m, with the mean value of 0.82 m.

As discussed, a location-orientation pair is fingerprinted
with measurements of RSS and indices of transmit beams
yielded from the beam alignment stage with each of the three
APs. We emphasize that the RSS measurements extracted
from the COTS routers are coarsely quantized with 1 dBm
quantization step. The number of measurements taken at
different location-orientation settings is between 1000 and
3000. An example of measurements at l = 6 and o = 1
(θ = 0◦) recorded during the establishment of a link with
AP3 is shown in Fig. 4. As can be seen, the beam indices
exhibit a low-to-moderate variability, while the RSS varies
within 10 dB over the measurement window.

To evaluate the localization performance, we take test
measurements of RSS and beam indices at three test locations,
labeled A, B and C, at all four considered orientations. The test
measurements are taken several months after fingerprinting.

Fig. 3: Pictures of the indoor area.

Fig. 4: Link measurements at l = 6, o = 1 (θ = 0◦) to AP3.

The relative positions of the fingerprint (FP) and test locations
are shown in Fig. 5. Notably, the average distance of the test
locations from the fingerprint locations is 60 cm. The number
of measurements taken at a test location and each of four
orientations is summarized in Table I.

Although a test measurement at a test location is taken by
pointing the client towards one of four orientations, our goal is
to estimate location of the device. Consequently, the proposed
method estimates the coordinates of the unknown location
by essentially integrating over orientations represented in the
fingerprint dataset, as suggested by (18). It is worth pointing
out that device’s orientation could also be estimated using

Fig. 5: Coordinates of fingerprint (FP) and test locations.



TABLE I: Number of test measurements

Test location 0◦ 90◦ 180◦ 270◦ All
A 949 1326 1887 2034 6169
B 1712 1533 1469 1304 6018
C 1399 2426 2427 2403 8655

Fig. 6: Empirical CDF of localization errors at test locations.

the proposed algorithm, provided that fingerprint dataset is
recorded with finer orientation resolution.

The localization algorithm employs soft beam model (15)
and is supplied with one measurement triplet consisting of
RSS and beam indices corresponding to each of three APs,
i.e., I = 1. The localization error, measured as the distance
between the estimated and ground-truth locations, is used as
a performance metric. The empirical cumulative distribution
function (CDF) of localization errors measured at each of the
three test locations separately, as well as across all test loca-
tions, is shown in Fig. 6. The mean and median localization
errors achieved at each and across all test locations are sum-
marized in Table II. Overall, the proposed algorithm achieves
around 30 cm error in estimating unknown locations whose
average distance from the fingerprint locations is 60 cm. In
comparison to our companion paper [17] which fingerprints
SNR measurements across all beams with resulting localiza-
tion accuracy of 17.5 cm, the method in this paper fingerprints
smaller amount of measurements, more easily available from
the COTS devices, and at coarser quantization level.

V. CONCLUSIONS

We presented in this paper an indoor localization method
based on a fully opportunistic use of commercial mmWave
WiFi routers. The proposed method fingerprints transmit
beam indices used by a pair of WiFi devices to establish
mmWave communication link, as well as the RSS associated
with that link. Notably, this information is relatively easily
available from commercial WiFi transceivers. We developed
an algorithm that learns possible probabilistic modes from
the fingerprint data and leverages those modes for estimat-
ing unknown location in the online stage. The developed
method is experimentally validated using four commercially

TABLE II: Mean and median of test localization errors

Test location A B C All
Mean error [m] 0.3654 0.2428 0.3144 0.3089

Median error [m] 0.3609 0.2306 0.2831 0.2831

available 60 GHz TP-Link routers complying with the IEEE
802.11ad standard operating over 60 GHz and localization
error ∼ 30 cm is demonstrated.
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