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Abstract
Simultaneous screen-to-camera and screen-to-eye communications, i.e., watermarking, have
been proposed in visible light communications. The main purpose of such communications
is to provide many data bits for camera devices and visual information for human eyes by
using a common displayed image. To this end, the existing studies leverage the capability
discrepancy and distinctive features between the human vision system and camera devices.
However, the existing techniques mainly require high refresh rates in both screen and camera
devices to achieve better throughput while keeping high visual quality. In this paper, we pro-
pose a novel transmission scheme for efficient simultaneous screen-to-camera and screento-eye
communications without a need of high refresh rates. Specifically, we use deep convolutional
neural networks (DCNN)-based watermark encoder and decoder to embed many bits into
high-quality images, and then to maximize throughput from the bit-embedded image. With
end-to-end adversarial learning, the encoder networks learn a mapping function to embed
digital data into an original image based on a perceptual loss function while the decoder
networks also learn a mapping function from the bitembedded image to the data bits based
on a cross-entropy loss function. From the evaluations, we show that the proposed water-
mark encoding and decoding networks yield high throughput from the bit-embedded images
compared with a simple DCNNbased watermarking. In addition, the bit-embedded images
on the screen achieve high quality for human perception.
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Abstract—Simultaneous screen-to-camera and screen-to-eye
communications, i.e., watermarking, have been proposed in
visible light communications. The main purpose of such com-
munications is to provide many data bits for camera devices
and visual information for human eyes by using a common
displayed image. To this end, the existing studies leverage
the capability discrepancy and distinctive features between the
human vision system and camera devices. However, the existing
techniques mainly require high refresh rates in both screen and
camera devices to achieve better throughput while keeping high
visual quality. In this paper, we propose a novel transmission
scheme for efficient simultaneous screen-to-camera and screen-
to-eye communications without a need of high refresh rates.
Specifically, we use deep convolutional neural networks (DCNN)-
based watermark encoder and decoder to embed many bits into
high-quality images, and then to maximize throughput from the
bit-embedded image. With end-to-end adversarial learning, the
encoder networks learn a mapping function to embed digital data
into an original image based on a perceptual loss function while
the decoder networks also learn a mapping function from the bit-
embedded image to the data bits based on a cross-entropy loss
function. From the evaluations, we show that the proposed wa-
termark encoding and decoding networks yield high throughput
from the bit-embedded images compared with a simple DCNN-
based watermarking. In addition, the bit-embedded images on
the screen achieve high quality for human perception.

I. INTRODUCTION

Visible light communications (VLC) [1], [2] have emerged
as promising complementary technologies to conventional
radio-frequency (RF) wireless communications. Screen-
camera communications [3]–[6] are such VLC technologies,
where digital data can be transmitted via image signals from
a screen to a camera. For screen-camera communications,
digital bits are encoded in the screen image on devices,
e.g., laptop computers and smartphones. A receiver equipped
with camera image sensors captures the screen to decode
the digital information. Screen-camera communications can
be used for various wireless applications, such as inter/intra
vehicle communications [7], near field communications [8],
[9], and augmented reality (AR) [10].

The existing studies on screen-camera communications
can be classified into two types: 1) high-speed and reliable
short-range communications and 2) simultaneous screen-to-
camera and screen-to-eye communications. In former stud-
ies, PixNet [11] is a pioneer work of high-speed and re-
liable communication for screen-camera links. PixNet uses
orthogonal discrete multi-tone (DMT) for single-color channel
transmission. In Smartphone Visible Light Communication

(SVLC) [12], they realize screen-camera communications us-
ing smartphones as a sender and a receiver. Analogously,
COlor Barcode stReaming for smArtphones (COBRA) [13]
designed a two-dimensional (2D) color barcode for screen-
camera communications.

In the latter studies, they realize concurrent screen-to-
camera and screen-to-eye communications, i.e., watermark-
ing, using screen and camera for mainly AR applications.
Specifically, the sender embeds transmission bits into images
and then displays the bit-embedded images on the screen.
The receiver captures the displayed images by using camera
sensors. As a result, the displayed images provide visual infor-
mation for human eyes in addition to digital information for
camera sensors. A major challenge of the concurrent screen-to-
camera and screen-to-eye communications is to simultaneously
achieve unobtrusive visual communication for human and
higher throughput for camera sensors by using the common
bit-embedded images.

For this purpose, the existing studies mainly exploit the
capability discrepancy and distinctive features in the temporal
domain between human vision systems and camera devices.
InFrame++ [3] is a pioneer work of simultaneous screen-
to-camera and screen-to-eye communications. They propose
complementary frames to exploit flicker fusion property of
human vision system. HiLight [14] conveys data bits through
the pixel translucency change within a time window. Uber-in-
Light [15] also conveys data bits through intensity change over
red, green, and blue (RGB) color channels. ImplicitCode [16]
uses grayscale images and combines InFrame++ and HiLight
to adjust invisibility and throughput. TextureCode [17] realizes
video texture-aware adaptive embedding to improve invisibil-
ity. ChromaCode [18] also realizes adaptive bit embedding in
uniform color space for achieving better throughput. Although
the above-mentioned studies achieve unobtrusive and high-rate
communications by exploiting the difference between human
vision system and camera device, [3], [15]–[18] require even
high-rate screen and camera devices and [14] requires an
additional channel for the communications.

In this study, we aim at high throughput in simultaneous
screen-to-camera and screen-to-eye communications even in
low-rate screen and camera devices without additional channel
requirement. For this purpose, we propose deep convolutional
neural network [19]–[21] (DCNN)-based watermark encoder
and decoder to embed data bits into the images to simultane-
ously realize high throughput and visual quality. Specifically,



Fig. 1. Proposed watermark encoder and decoder, based on DCNN end-to-end design, for concurrent screen-to-camera and screen-to-eye communications.

the proposed scheme integrates DCNN-based image recon-
struction, specifically, recently proposed deep image prior
(DIP) [22], into simultaneous screen-to-camera and screen-to-
eye communications to reliably deliver a large number of bits
by using the bit-embedded images with unnoticeable visual
quality distortion. The DIP consists of DCNNs to find linear
and nonlinear effects for reconstructing clean images even
when a lot of bits are embedded into the images. To embed
many bits into high-quality images, the proposed scheme
learns the weights of the encoding and decoding networks
based on loss gradients obtained from the original images
and transmission bits, whose datasets were synthetically gener-
ated from watermark simulations offline. The trained DCNN
weights are later used by the receiver to decode bits from
newly bit-embedded images. There was no study addressing
the impact of the DCNN-based approach in simultaneous
screen-to-camera and screen-to-eye communications, to the
best of authors’ knowledge.

Evaluation results show that the proposed scheme reliably
sends 98.6% of data bits from the bit-embedded image with
the visual quality of 0.96 in terms of structural similarity
(SSIM). In addition, we discuss the impacts of parameter
regularization in the loss function and number of learning
epochs on achievable throughput and visual quality of the
proposed scheme.

II. DCNN-BASED CONCURRENT SCREEN-TO-CAMERA
AND SCREEN-TO-EYE COMMUNICATIONS

A. Overview

The purpose of our study is to simultaneously provide many
digital bits for camera devices and clean visual information for
human eyes from the same bit-embedded images. Fig. 1 shows
the schematic of our proposed scheme. We use a pair of screen
and camera as the sender and receiver. Note that there are three
major differences between RF wireless communications. First,
input values for the screen, i.e., pixel luminance values, should
not be complex-valued numbers. Second, the input values are
two dimensional (2D) in the spatial domain. Third, the pixel
luminance values typically range over finite non-negative floats
between 0 and 1.

The sender first watermarks H×W data bits into the images
with the resolution of H×W pixels with three color channels
by using the proposed DCNN-based watermark encoder. The
proposed DCNN-based watermark encoder generates the bit-
embedded images to display them on the screen. At the
receiver, the displayed images are captured by camera sensors
and human eyes. The displayed images provide data bits for
camera sensors while visual information for human eyes. We
then feed the images captured by the camera sensors into
the proposed DCNN-based watermark decoder to decode the
data bits from the captured images. This framework is known
as end-to-end learning, which jointly optimizes encoder and
decoder DCNNs.

B. Watermark Embedding Networks

The proposed watermark encoder embeds data bits to im-
ages and then generates high-quality bit-embedded images
by using DIP-based image reconstruction [22]. The proposed
watermark decoder then decodes the transmission bits from the
captured and bit-embedded images. Specifically, the proposed
watermark encoder consists of convolutional neural networks
with skip connections as shown in the left side of Fig. 2,
where the ith original image pi ∈ R3×W×H and ith data bits
bi ∈ {0, 1}W×H are fed into the encoder to generate the bit-
embedded image fθe(pi, bi) ∈ R3×W×H with θe being the
weights of the encoding networks. The proposed watermark
decoder also consists of convolutional neural networks as
shown in the right side of Fig. 2, where the bit-embedded
image fθe(pi, bi) = p̂i ∈ R3×W×H is fed into the decoder
to retrieve the transmission bit gθd(p̂i) ∈ {0, 1}W×H with θd
being the weights of the decoding networks. Both watermark
encoding and decoding networks have three functionalities
for embedding many bits without visual quality degradation:
feature encoding, skip-connections, and feature decoding [22].

The feature encoding can be divided into two parts: the
first part contains convolution, down-sampling, batch normal-
ization, and leaky rectified linear unit (ReLU) layers while
the second part contains convolution, batch normalization, and
leaky ReLU layers. The convolutional layers reduce the spatial
resolution of the feature maps. For the down-sampling, we use
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Fig. 2. Proposed DIP-based watermark encoder and decoder networks.

the striding function implemented within convolution modules.
The batch normalization standardizes the input values to
balance the values in order to reduce the effect of outliers.
The leaky ReLU is used for tuning the nonlinearity.

The skip connection is used to propagate the loss gra-
dients due to the watermark from the output to the input
to quickly reach the optimal allocation of all the network
weights likewise residual networks. Specifically, this part uses
convolution, batch normalization, and leaky ReLU layers to
predict residuals, which has been verified to be more robust.

The feature decoding has two parts: the first part con-
tains batch normalization, convolution, batch normalization,
and leaky ReLU layers while the second part has batch
normalization, convolution, and leaky ReLU layers. Finally,
the decoding part takes up-sampling operation based on the
bilinear upsampling to increase the spatial resolution for the
reconstruction of the bit-embedded image/transmission bits.

C. Weight Learning

The proposed watermark encoder networks can embed many
bits into an image with high visual quality while the proposed
watermark decoder networks decode many data bits from the
image based on the weights between the network components.
To learn better weights for high-performance watermark en-
coding and decoding, image and transmission bit datasets are
generated offline via Monte–Carlo simulations. Specifically, all
potential distortions due to bit embedding and decoding are
synthetically analyzed by both proposed watermark encoder
and decoder in the off-line learning phase. By using synthetic
datasets for the pairs of original image and data bits, the
proposed scheme can learn better network weights of the
watermark encoder and decoder at the same time for high-
quality bit-embedded image and reliable data communication.

We note that the proposed watermark encoder and decoder
need to account for two adversarial objective functions si-
multaneously; i) minimizing visual quality distortion by the
encoder networks, and ii) maximizing the reliability of digital
bit retrieval at the decoder networks. To this end, we utilize a
parameter regularizer, which is an additional term in the loss
function of image quality, for our loss function. Specifically,
our loss function `total with a regularizer is defined as:

`total = `ssim + λ `binary, (1)

where `ssim is the perceptual loss function of image quality in
terms of SSIM, `binary is a regularization term that imposes
a restriction on data communication reliability, i.e., cross-
entropy, and λ is an adjustable parameter. The loss function
of SSIM is defined as:

`ssim = −ssim
(
fθe(pi, bi), pi

)
, (2)

where pi denotes the ith pair of original image patch and
fθe(pi, b) denotes the bit-embedded image patch obtained from
the proposed watermark encoder with the DCNN weight set
of θe. It is known that the SSIM metric is more relevant for
perceptual image quality than the conventional mean-square-
error loss function. On the other hand, the regularization term
`binary can be considered to achieve high-reliable data retrieval
in a binary classification problem. We define the loss function
`binary by using the following binary cross-entropy:

`binary = − 1

WH

WH∑
j=1

(bj log2(b̂j)+(1−bj) log2(1−b̂j)), (3)

where b̂j = σ(gθd(p̂j)) is the soft-decision decoder output for
the jth bit and σ(·) is the sigmoid function:

σ(x) =
1

1 + exp(−x)
. (4)

By training both encoding and decoding network weights θe
and θd using the loss function of SSIM [23] and binary
cross entropy, the proposed scheme can generate clean bit-
embedded images while many bits can be transmitted from
the images. We use a stochastic gradient descent algorithm
based on adaptive momentum (Adam) optimizer [24] for
weight learning in the proposed watermark encoding/decoding
networks.

III. PERFORMANCE EVALUATION

A. Simulation Settings

Metric: We evaluate the performance of the proposed scheme
in terms of SSIM and throughput. SSIM can predict the
perceived quality of the bit-embedded image. Larger values of
SSIM close to 1 indicates higher perceptual similarity between
original and bit-embedded images. In view of throughput, we
define the achievable throughput as follows.

R =WH · I(bi; b̂i), (5)
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Fig. 3. SSIM index and throughput performance of the single-end DIP and
proposed end-to-end schemes.

where R denotes throughput (bits/image), WH is the total
number of transmitted bits in one bit-embedded image, and
I(bi; b̂i) is an empirical mutual information between trans-
mission data bits bi and decoded data bits b̂i. Here, the lower
bound of the mutual information is calculated directly from
the DCNN outputs via cross-entropy loss as follows:

I(bi; b̂i) = 1− `binary. (6)

Test Images: We use the benchmark dataset, namely, CIFAR-
100 [25] for evaluations. CIFAR-100 consists of multiple
training images and testing images with the resolution of
32×32 pixels and 100 classes. The training images are used for
learning the network weights while the testing images are used
for comparison in terms of achievable throughput and visual
quality. We consider 50,000 training images and 100 testing
images for evaluations of the proposed watermark method.

B. Baseline Performance

We first evaluate the throughput and visual quality of
reference schemes to discuss the baseline performance of the
proposed scheme. In order to demonstrate the benefit of end-
to-end learning, we consider a single-end learning method to
compare; specifically, DIP-based decoder is trained to retrieve
digital bits under a conventional superposition watermarking.
This scheme, namely, single DIP, linearly embeds data bits
into a plain image using a small perturbation parameter ε as
follows:

p̂i = pi + ε bi, (7)

Specifically, the sender transmits the superposition image and
the receiver takes DIP-based watermark decoder to reconstruct
data bits from the superposition image.

Fig. 3 shows the throughput and visual quality of the single
DIP and proposed schemes at the epochs of 24. The results
give us the following key observations:

• The proposed scheme simultaneously achieves better vi-
sual quality in bit-embedded images and higher achiev-
able throughput compared with the single DIP schemes
irrespective of ε values.

(a) Original (b) Conv. (ε = 0.01)
SSIM: 0.998
Throughput: 152.1

(c) Conv. (ε = 0.1)
SSIM: 0.881
Throughput: 491.3

(d) Conv. (ε = 0.5)
SSIM: 0.466
Throughput: 681.8

(e) Proposed
(λ = 0.5, ite = 24)
SSIM: 0.984
Throughput: 1017.7

(f) Proposed
(λ = 0.5, ite = 40)
SSIM: 0.991
Throughput: 1022.8

Fig. 4. Snapshots of CIFAR-100 in conventional and proposed watermarking
schemes, having the best visual quality.

(a) Original (b) Conv. (ε = 0.01)
SSIM: 0.999
Throughput: 8.0

(c) Conv. (ε = 0.1)
SSIM: 0.930
Throughput: 95.2

(d) Conv. (ε = 0.5)
SSIM: 0.440
Throughput: 420.1

(e) Proposed
(λ = 0.5, ite = 24)
SSIM: 0.799
Throughput: 1001.9

(f) Proposed
(λ = 0.5, ite = 40)
SSIM: 0.824
Throughput: 1015.0

Fig. 5. Snapshots of CIFAR-100 in conventional and proposed watermarking
schemes, having the worst visual quality.

• The single DIP scheme improves the throughput as the
value of ε increases by superposing many data bits into
original images while it significantly degrades the visual
quality in return.

• The proposed scheme prevents visual quality degradation
even with high throughput by using DIP-based image
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Fig. 6. SSIM index and throughput performance of the proposed scheme
under the different adjustable parameters λ.

reconstruction for end-to-end learning in both watermark
encoding and decoding.

For example, the proposed scheme with λ = 0.5 achieves
1.54 and 2.41 times higher throughput than the single DIP
schemes with ε of 0.5 and 0.1, respectively. At the same
time, the proposed scheme improves visual quality up to
0.607 and 0.083 in SSIM index compared with the single DIP
scheme with ε of 0.5 and 0.1, respectively. When we compare
with a quadratic regression envelope of single DIP across
variable ε, the proposed method achieves greater than three-
fold improvement in throughput at the same visual quality.

Figs. 4 and 5 show snapshots of the single DIP and proposed
schemes with different λ and ε values to discuss visual quality
of bit-embedded image across the reference schemes. Here,
we consider two cases of the proposed schemes at a different
learning epoch of 24 and 40. Fig. 4 shows the snapshots of
a CIFAR-100 image, whose visual quality was best in the
proposed scheme while Fig. 5 depicts the snapshots of another
image whose quality was worst among the test datasets.

In Figs. 4(c) and (d), the color information of the bit-
embedded image in the single DIP scheme is severely distorted
to superpose data bits into the image. In Fig. 4(e), the proposed
scheme with a small number of epochs degrades the color
information in the background. On the other hand, as shown in
Fig. 4(f), the proposed scheme with a large number of epochs
realizes improved visual quality closer to the original image
shown in Fig. 4(a).

In Figs. 5(c) and (d), the color information of the bit-
embedded images in the single-end DIP schemes is also
highly distorted due to linear-superposition watermarking of
data bits. In addition, the proposed schemes with small and
large numbers of learning epochs do not reconstruct the color
information of the flower. Nonetheless, the proposed method
can embed higher amount of data bits while a moderate
SSIM index is maintained. We left how to reconstruct color
information irrespective of the bit-embedded image structure
as the future work.
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Fig. 7. SSIM index and throughput of the proposed scheme under different
number of learning epochs.

C. Effect of Parameter Regularization

The visual quality and throughput of the proposed scheme
depend on the value of parameter regularization, i.e., λ. In this
section, we discuss the impact of parameter regularization in
more details.

Fig. 6 shows the visual quality and throughput performance
of the proposed scheme with the different values of λ. We can
see that the proposed schemes with a large λ value can reliably
send data bits using the bit-embedded image. Specifically, the
maximum throughput from a single bit-embedded image is
1024 bits while the achievable throughput of the proposed
scheme with λ values of 1.0 and 0.8 is 906.8 bits/image and
1021.3 bits/image, respectively. On the other hand, the visual
quality of the bit-embedded image is lower than the proposed
scheme with a small value of λ. When the value of λ is
from 0 to 0.4, the visual quality of the bit-embedded images
was nearly identical to the original images. For these cases,
the achievable throughput was nearly zero. To achieve higher
throughput and visual quality simultaneously, it was found that
the proposed scheme should use intermediate λ value, e.g., 0.6,
for the parameter regularization.



D. Effect of Learning Epochs

To find better weights of watermark encoding and decoding
networks, the stochastic gradient optimization is taken place
over training datasets along a certain number of epoch itera-
tions. In this section, we discuss the impact of learning epochs
on the performance of the proposed scheme.

Figs. 7(a) and 7(b) show the throughput and visual quality of
the proposed scheme at λ values of 0.5 and 1.0, respectively,
under the different number of epochs. When the number of
epochs is less than 22 and 24 at λ values of 0.5 and 1.0,
respectively, bit-embedded images obtained from the proposed
scheme have high visual quality while they suffer from low
throughput. After the number of epochs of 22 and 24 at λ
values of 0.5 and 1.0, the visual quality of the bit-embedded
images becomes lower. At the same time, the proposed scheme
improves the throughput from the images because the wa-
termarking encoder and decoder may find better weights for
reliable communications. Finally, at the number of epochs
of 26 and 28 in the λ values of 0.5 and 1.0, the average
throughput and visual quality performance of the proposed
scheme are better than those of the proposed scheme at the
number of epochs of 24 and 26, respectively.

IV. CONCLUSION

In this paper, we proposed a novel scheme for simultaneous
screen-to-camera and screen-to-eye communications by ex-
ploiting an adversarial autoencoder framework for end-to-end
deep learning. The proposed scheme uses DCNN-based wa-
termark encoder and decoder networks to embed high amount
of bits into an image without causing perceptual distortion
and to reliably deliver data bits from the bit-embedded image
at the same time. Specifically, the proposed scheme uses a
loss function with parameter regularizer to account for two
objective functions; to minimize the perceptual loss for high
visual quality and to maximize data throughput. Evaluation
results showed that the proposed watermark networks can
generate high-quality bit-embedded images to send many bits.
While we focused on CIFAR-100 datasets for proof-of-concept
analysis in this paper, more rigorous validation over high-
resolution images and videos remains as a future study.

ACKNOWLEDGMENT

This work was partly supported by JSPS KAKENHI Grant
Number 17K12672 and The Telecommunications Advance-
ment Foundation.

REFERENCES

[1] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas,
“VLC: Beyond point-to-point communication,” IEEE Communications
Magazine, vol. 52, no. 7, pp. 98–105, 2014.

[2] E. Curry, D. Borah, and J. M. Hinojo, “Optimal symbol set design
for generalized spatial modulations in MIMO VLC systems,” in IEEE
GLOBECOM, 2016, pp. 1–7.

[3] A. Wang, Z. Li, C. Peng, G. Fang, and B. Zeng, “InFrame++: Achieve
simultaneous screen-human viewing and hidden screen-camera commu-
nication,” in ACM MobiSys, 2015, pp. 181–195.

[4] V. Nguyen, Y. Tang, A. Ashok, M. Gruteser, K. Dana, W. Hu, and
E. Wengrowski, “High-rate flicker-free screen-camera communication
with spatially adaptive embedding,” in IEEE INFOCOM, 2016, pp. 1–9.

[5] M. Izz, Z. Li, H. Liu, Y. Chen, and F. Li, “Uber-in-light: Unobtrusive
visible light communication leveraging complementary color channel,”
in IEEE INFOCOM, 2016, pp. 1–9.

[6] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. Orlik, “Nonlinear
equalization with deep learning for multi-purpose visual MIMO com-
munications,” in IEEE ICC, 2018, pp. 1–6.

[7] T. Yamazato, I. Takai, H. Okasa, T. Fujii, T. Yendo, S. Arai, M. Andoh,
T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-
based visible light communication for automotive applications,” IEEE
Communication Magazine, vol. 52, no. 7, pp. 88–97, 2014.

[8] A. Wang, S. Ma, C. Hu, J. Huai, C. Peng, and G. Shen, “Enhancing
reliability to boost the throughput over screen-camera links,” in ACM
Annual International Conference on Mobile Computing and Networking,
2014, pp. 41–52.

[9] W. Hu, H. Gu, and Q. Pu, “Lightsync: Unsynchronized visual com-
munication over screen-camera links,” in ACM Annual International
Conference on Mobile Computing and Networking, 2013, pp. 15–26.

[10] T. W. Kan, C. H. Teng, and W. S. Chou, “Applying QR code in
augmented reality applications,” in ACM International Conference on
Virtual Reality Continuum and its Applications in Industry, 2009, pp.
253–257.

[11] S. Perli, N. Ahmad, and D. Katabi, “PixNet: Interference-free wireless
links using LCD-camera pairs,” in ACM Annual International Confer-
ence on Mobile Computing and Networking, 2010, pp. 137–148.

[12] R. Boubezari, H. L. Minh, Z. Ghasemlooy, and A. Bouridane, “Smart-
phone camera based visible light communication,” Journal of Lightwave
Technology, vol. 34, no. 17, pp. 4120–4126, 2016.

[13] T. Hao, R. Zhou, and G. Xing, “COBRA: Color barcode streaming
for smartphone systems,” in ACM International Conference on Mobile
Systems, Applications, and Services, 2012, pp. 85–98.

[14] T. Li, C. An, X. Xiao, A. T. Campbell, and X. Zhou, “Real-time screen-
camera communication bihind any scene,” in ACM MobiSys, 2015, pp.
1–15.

[15] M. Izz, Z. Li, H. Liu, Y. Chen, and F. Li, “Uber-in-light: Unobtrusive
visible light communication leveraging complementary color channel,”
in IEEE International Conference on Computer Communications, 2016,
pp. 1–9.

[16] S. Shi, L. Chen, W. Hu, and M. Gruteser, “Reading between lines: High-
rate, non-intrusive visual codes within regular videos via implicitcode,”
in ACM International Joint Conference on Pervasive and Ubiquitous
Computing, 2015, pp. 157–168.

[17] V. Nguyen, Y. Tang, A. Ashok, M. Gruteser, K. Dana, W. Hu, E. Wen-
growski, and N. Mandayam, “High–rate flicker–free screen–camera
communication with spatially adaptive embedding,” in IEEE Interna-
tional Conference on Computer Communications, 2016, pp. 1–9.

[18] K. Zhang, C. Wu, C. Yang, Y. Zhao, K. Huang, C. Peng, Y. Liu, and
Z. Yang, “ChromaCode: A fully imperceptible screen-camera commu-
nication system,” in ACM Annual International Conference on Mobile
Computing and Networking, 2018, pp. 575–590.

[19] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155,
2017.

[20] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1256–
1272, 2017.

[21] Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory
network for image restoration,” in IEEE International Conference on
Computer Vision (ICCV), 2018, pp. 4549–4557.

[22] U. Dmitry, A. Vedaldi, and V. Lempitsky, “Deep image prior,” 2017.
[23] P.-H. Su, 2017. [Online]. Available: https://github.com/Po-Hsun-

Su/pytorch-ssim
[24] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[25] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-100

(canadian institute for advanced research).” [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-132.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


