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Abstract
In this paper, we propose a new wide-area algorithm to secure the Global Positioning System
(GPS) timing from spoofing attack. To achieve a trusted GPS timing, belief propagation
(BP), recognized as one of the Artificial Intelligence (AI) approaches, and the recurrent
neural network (RNN) are jointly integrated. BP is employed to authenticate each GPS
receiving system in the wide-area network from malicious spoofing attacks and estimate the
corresponding spoofing-induced timing error. To evaluate the spoofing status at each of the
GPS receiving system, RNN is utilized to evaluate similarity in spoofinginduced errors across
the antennas within the GPS receiving system. Having applied a proper training stage,
simulation results show that the proposed joint BP-RNN algorithms can quickly detect the
spoofed receiving system comparing with existing work.
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Abstract. In this paper, we propose a new wide-area algorithm to secure the
Global Positioning System (GPS) timing from spoofing attack. To achieve a
trusted GPS timing, belief propagation (BP), recognized as one of the Artifi-
cial Intelligence (AI) approaches, and the recurrent neural network (RNN) are
jointly integrated. BP is employed to authenticate each GPS receiving system in
the wide-area network from malicious spoofing attacks and estimate the corre-
sponding spoofing-induced timing error. To evaluate the spoofing status at each
of the GPS receiving system, RNN is utilized to evaluate similarity in spoofing-
induced errors across the antennas within the GPS receiving system. Having
applied a proper training stage, simulation results show that the proposed joint
BP-RNN algorithms can quickly detect the spoofed receiving system comparing
with existing work.
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1 Introduction

Now-a-days, Artificial Intelligence (AI) has been emerging as an important tool for rev-
olutionizing different safety-critical infrastructures, such as, banking, electrical grids
and communication networks. In electrical grids, AI offers unique solutions [1] to
improve the overall grid resilience and localize the power disruptions caused by the
increasing complexity of interconnected grids, high power demand and distributed gen-
eration with the usage of renewable sources.

AI techniques are already being incorporated in the power plants to increase the
production and also by grid operators to optimize the energy consumption [2]. Recently,
GE developed an AI related technology [3] for wind turbines in Japan that is expected
to lower the overall maintenance costs by 20% and increase the power output by 5%.
Similarly, Google’s DeepMind is in discussion with the UK’s National Grid to develop
AI solutions [4] that balance the requirements of supply and demand in Britain. Also,
IBM showed an improvement of 30% in solar forecasting while working with the U.S.
Department of Energy SunShot Initiative [5].
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In addition to efficient energy production and consumption, another critical research
area is related to improving the grid resilience against power disruptions that can poten-
tially destabilize the grid [6]. A few notable incidents that occurred in the recent past
are the Northeastern blackout in 2003 [7], which is caused due to the shutdown of a
high-voltage power line and power outrage of Ukraine [8] in 2015, which caused by
the malicious cyber attacks. Recently, there has been a world-wide effort to modernize
the grid, coined as Smart Grid, which refers to a fully automated power network that
monitors and controls every node as well as ensures a steady flow of electricity and
exchange of information [9].

Smart grids utilize the concept of microgrids [10] in power distribution networks,
which possess the capability to function both when connected to a traditional grid as
well as an independent electrical island. However, unlimited power consumption causes
the microgrid to be vulnerable to voltage collapse, which needs to accurately moni-
tored. Therefore, smart grids rely on advanced devices, namely, Phasor Measurement
Units (PMUs), which provide better insights into the state of the smart grid and in turn
help optimize the grid efficiency. PMUs require precise time-keeping sources, such as
GPS, to obtain global timing for synchronization [11]. However, GPS civilian signals
are unencrypted and their power is as low as –160 dBW, which makes them vulnera-
ble to external spoofing attacks [12]. Based on the IEEE C37.118.1-2011 standard for
synchrophasors [13], in this work, we consider 1% TVE equivalent to a timing error of
26.5µs, as a benchmark in our power grid stability analysis.

In this paper we mainly focus on a sophisticated type of spoofing attack, known as
signal-level spoofing [14]. However, our proposed algorithm is also directly applicable
for the detection and mitigation of other spoofing attacks [15,16]. One scenario of a
sophisticated signal-level spoofing is a three-stage attack during which, a spoofer simu-
lates and broadcasts malicious look-alike GPS signals identical to the authentic signals
received at the target receiver and thereafter, increases the power of these malicious sig-
nals. Once the target receiver locks onto the malicious signals, the spoofed manipulates
the receiver time to deviate slowly from its authentic value. Given there are no abrupt
changes in GPS timing, this attack is harder to detect and more dangerous as compared
to other attacks.

AI has immense potential to serve as a automated brain that can analyzes the GNSS
measurements to tackle these malicious spoofing attacks [17,18]. In [19], spoofing
detection has been performed by computing the wavelet transformation coefficients of
both spoofing and authentic signal, which are later fed into support vector machines,
the probabilistic neural networks and the decision tree. In our prior work [20], to isolate
spoofing attacks, we proposed a geographically Distributed Multiple Directional Anten-
nas (DMDA) setup, with each antenna facing a different part of the sky, thereby, each
receiving signals from only a subset of the total visible GPS satellites. In particular,
we designed a Belief Propagation (BP)-based Extended Kalman Filter (EKF) algorithm
for single power substation that utilizes the proposed DMDA setup to detect timing
anomalies caused due to spoofing. Next, in [21], we extended our work to develop a
wide-area-based BP-EKF algorithm that reduces the overall sensitivity of the prior dis-
tribution of timing error at each antenna.
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To improve the resilience of the grid during sophisticated spoofing attacks, we fur-
ther extend our work to develop an innovative wide-area joint BP and Recurrent Neural
Network (RNN) algorithm, which is based on two powerful tools used in the AI com-
munity, namely, BP [22] that isolates the timing errors observed at each antenna and
RNN [23] that adaptively analyzes the timing errors to authenticate the spoofing status
of each power substation in the wide-area network. Using our joint BP-RNN algorithm,
we can not only detect and isolate these malicious attacks but also mitigate the corre-
sponding spoofing-induced timing errors.

2 Joint BP and RNN Algorithm

In this section, we first briefly outline the details of our DMDA setup [20] and later
explain the proposed wide-area communication structure. Next, we describe the algo-
rithm details of our wide-area joint BP-RNN algorithm.

2.1 DMDA Setup

Several advantages of the employed DMDA setup in [20] are summarized as follows:

– During a spoofing attack, an attacked antenna may see more satellites in its section
of the sky than expected, whereas each of the directional antennas in authentic con-
ditions sees the expected number of satellites in its section of the sky.

– Due to a limited height of physical location of a directed attack, all the directional
antennas are not in the line of sight from the attacker. Thus, a geographical diversity
can be achievable from malicious spoofing attacks.

– All the antennas are triggered by the same clock, so that a metric, which distinguish
an authentic condition from a non-authentic spoofing condition, can be developed
(Fig. 1).

Central
processing
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3
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spoofed
authentic

RX RX

RX RX

Fig. 1. Configuration of the DMDA setup [20]. Each directional antenna is provided with
selective visibility by pointing it towards a different section of the sky, such that, not all the
directional antennas can be spoofed simultaneously. Sector of circle represents the field-of-view
of each antenna.
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2.2 Proposed Wide-Area Communication Structure

To perform a wide-area authentication of GPS timing against spoofing attacks, we con-
sider a network of N power substations, as seen in Fig. 2. We assume the system con-
figuration as follows:

– Any ath infrastructure, with ∀a ∈ {1, · · · , N}, is equipped with a single DMDA
based GPS receiving system that includes a common clock and a DMDA setup
composed of Ma antennas. For the ath infrastructure, we define Sa as the set
of neighboring infrastructures. Note that bth infrastructure is included in Sa only
when a communication link, πab, between ath and bth infrastructure exists, that is,
b ∈ Sa, if πab = 1,∀b ∈ {1, · · · , N}, b �= a.

– For any kth antenna in the ath receiving system, with k ∈ {1, · · · ,Ma}, its neigh-
boring antennas Ba

k represents the set of antennas in its infrastructure excluding
itself, as well as the antennas belong to its neighboring infrastructures Sa,

Ba
k =

{
{1, · · · ,Ma} − k

} ⋃
b∈{1,··· ,|Sa|}

{1, · · · ,Mb}.

Fig. 2. Wide-area network of GPS receiving systems, each equipped with a common clock and a
DMDA setup.

The overall framework of the proposed wide-area joint BP-RNN algorithm, illus-
trated Fig. 3, is described as follows:

– Across the infrastructures, pseudoranges are measured at each directional antenna,
in each of the receiving systems. Based on the communication structure, the system
data is exchanged across the receiving systems.
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– At each of the receiving systems, we form Ba
k . Then, we compute the single dif-

ference pseudorange residual vector by considering one satellite visible to the first
antenna and the another satellite visible to the second antenna in Ba

k .
– At each antenna, belief is computed according to the marginal Gaussian distribution
of the antenna-specific timing error.

– Using the BP estimates of antenna-specific timing errors, at each GPS receiving sys-
tem, the pseudoranges are corrected, which are utilized by EKF in the CP unit. The
CP unit provides the trustworthy GPS timing, which is given to the infrastructures
for a time synchronization.

– A Bidirectional LSTM-based RNN [24] utilizes the BP estimates of the antenna-
specific timing errors to compute a test statistic, which authenticates the spoofing
status of each GPS receiving system.

Across the wide-area network, by implementing a distributed architecture, it is possi-
ble to efficiently utilize the already in-place communication platform. Highly computa-
tional extensive calculation of marginal distribution is simplified through the distributed
AI algorithm, namely, BP. BP plays a pivotal role in maintaining accuracy while reduc-
ing the latency involved in spoofing detection, which is critical for timing-related appli-
cations. Our wide-area algorithm can be easily scaled to any number of GPS receiving
systems and any number of directional antennas within the GPS receiving system. Due
to using a larger number of widely-distributed antennas, correlation between errors will
be lower, which in-turn lead to a lower false alarm and missed detection probability.
Unlike single area BP-EKF algorithm, the wide-area setup overcomes the case where
spoofing affects all the antennas in one GPS receiving system. Similarly, by utilizing
a BP-RNN framework, it is possible to adaptively analyze the antenna-specific tim-
ing errors to quickly detect different kinds of spoofing attacks, ranging from easy-to-
execute meaconing to sophisticated signal-level spoofing attack.

Fig. 3. Flowchart of the wide-area joint BP-RNN algorithm.



6 S. Bhamidipati et al.

2.3 Detailed Descriptions of the Proposed Algorithm

By utilizing the GPS signals received at multiple infrastructures geographically dis-
tributed, we describe the proposed wide-area joint BP-RNN algorithm as follows:

Pre-conditioning the GPS Measurements
Considering a wide-area network of N GPS receiving systems, the baseline vectors
between the antennas installed at the ath receiving system are computed as ba

kn, k, n ∈
{1, . . . , Ma}. The three-dimensional (3D) position and 3D velocity of the kth antenna

at tth time are respectively defined as xa
k,t

�
=[x, y, z]k and va

k,t

�
=[ẋ, ẏ, ż]k. At the ath

receiving system, the pseudorange observed at the kth antenna corresponding to the ith
satellite is given by

ρi
k = ||xa

1 − ba
1k − yi|| + (cδtat + αa

k − cδti) + Ii + ωi
k,

= ha
k

(
x1, T a, yi

t

)
+ αa

k,
(1)

where i ∈ Lk,t denotes the ith satellite among the Lk,t visible satellites at the kth
antenna in the ath receiving system. In addition, yi

t and cδti respectively denote the
3D position and clock corrections of the ith visible satellite. Note that since all the
antennas installed at the ath receiving system is triggered by the same clock, the clock
bias, cδtat , is independent of k. The antenna-specific timing errors in pseudorange are
denoted by αa

k. For a proper processing, the antenna, specified by k = 1, is recognized
as the reference antenna. Furthermore, ha

k(·, ·, ·) denotes the measurement model of the
kth antenna of the ath receiving system, which depends on the reference antenna’s 3D
position, xa

1,t, receiver clock bias, cδtat , baseline vector, b
a
1k, and the satellite position,

yi
t. The atmospheric errors Ii

t related to ionosphere and troposphere are estimated using
existing models [25]. The additive Gaussian white noise in the satellite measurements
is represented by ωi

k.

Having utilized the predicted state vector β̂a
t

�
=[x̂1, cδt̂, v̂1, cδ

˙̂t]Tt obtained from the
EKF time update at time t, the known baseline vector, ba

1k, with respect to the refer-
ence antenna, the satellite 3D position, yi

t, and clock corrections, cδt
i, the pseudorange

residuals at tth time can be computed as follows:

Δρi
k,t

�
=ρi

k,t − ||x̂k,t − yi|| − (cδt̂ − cδti) − Ii, (2)

where x̂k,t
�
=x̂1 − ba

1k.

System Data Exchange and Measurement Likelihood
Based on the communication structure of the wide-area network, the system data is
exchanged across different GPS receiving systems. In particular, system data transmit-
ted from the ath receiving system comprises of the following: number of antennas Ma,
pseudorange residuals, Δρi

k,t, and beliefs at the kth antenna of the receiving system,
bt−1(αa

k). At the ath receiving system, we collect the system data from all the receiving
systems that belong to its neighboring system, Sa. Thereafter, we form all the possible
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pairs of antennas, by considering the first antenna, k ∈ {1, · · · ,Ma}, and the second
antenna, n ∈ Ba

k . After then, the single difference pseudorange residuals between the
ith satellite visible to the kth antenna and that of the jth satellite visible to the nth
antenna as follows:

γij
kn,t

�
= Δρi

k,t − Δρj
n,t

= αa
k − αb

n + ωij
kn

=

{
0 k, n ∈ {1, . . . , Ma}, k �= n

ηab k ∈ {1, . . . , Ma}, n ∈ {1, . . . , Mb}, a �= b,
(3)

where in authentic conditions, γij
kn ≈ 0 across any two antennas that belong to the

same receiving system. However, across antennas that belong to two different receiving
systems, that is, a �= b, γij

kn is a non-zero value ηab due to the error in predicted clock
bias estimates and the receiver noise. Thereafter, we calculate the measurement metric

vector, denoted by γkn,t
�
={γij

kn,t, i ∈ Lk,t, j ∈ Ln,t} across all the pairs of antennas
and the corresponding satellites observed at the respective antennas. Across a pair of
antennas, the corresponding measurement likelihood probability is calculated as

p(γkn,t|αa
k, αb

n) =
1√

(2πν2)Lk,tLn,t

exp

{−Lk,tLn,t

2ν2
kn

( 1T γkn,t

Lk,tLn,t
+ (αa

k − αb
n)

)2
}

∀ n ∈ Ba
k , (4)

where ν2
kn denotes the measurement variance of the summation of single difference

residual components which comprises errors observed from pseudoranges, and errors
in satellite ephemeris, predicted position and velocity of the antenna.

Belief Propagation (BP)
To authenticate each receiving system against spoofing attacks and estimate the cor-
responding spoofing-induced timing errors at each antenna, the marginal distribution
using a factor graph-based BP framework is used as an AI approach. BP [22] is a sum-
product message passing algorithm to make inferences on graphical models, such as the
factor graphs. Factor graph is a probabilistic graphical model [26], which consists of
two nodes: variable nodes that represent the unknowns to be estimated and factor nodes
that represent the relationship between different variable nodes. At the ath receiving
system, given the joint posterior distribution, p(α1, . . . , αMa

|γkn), the marginal distri-
bution, g(·), is formulated as follows:

g(αa
k) =

∫

αa
1 ,...,αa

k−1

∫

αa
k+1,...,αa

M

p(αa
1 , . . . , α

a
Ma

|{γkn}k=1,...,Ma,n∈Ba
k
)

dαa
1 . . . dαa

k−1 dαa
k+1 . . . dαa

Ma
, (5)

where Ba
k denotes the neighboring antennas of the kth antenna in the ath receiving

system. With an increased total number of antennas, that is,
∑N

a=1 Ma in the wide-
area network, (5) becomes computationally intractable. Thus, a factor graph-based BP
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is formulated to approximate the marginal distribution in a computationally-efficient
manner, which is termed as belief, bt(αa

k). Belief at the kth antenna, bt(αa
k), is com-

puted as the product of its prior distribution and all the incoming messages from all the
neighboring antennas Ba

k . Given that the attacker transmits counterfeit GPS signals, the
corresponding spoofing-induced timing errors follow a Gaussian distribution N (:, ·, ·).
Therefore, belief can be represented by Gaussian process [27] with mean, μa

k,t, and
variance, (σa

k,t)
2, as follows:

bt(αa
k) = mfa

k →αa
k

∏
n∈Ba

k

mfa
kn→αa

k
(αa

k),

= N
(
αa

k : μa
k,t, (σ

a
k,t)

2
)
,

(6)

where the factor node, fa
kn, connects two variable nodes, αa

k and αb
n, based on the

likelihood probability, p(γkn|αa
k, αb

n), and the other factor node, fa
k , connects to its

corresponding variable node, αa
k, and indicates the prior distribution of αa

k.
As seen from (6), at the kth antenna of the ath receiving system, belief, bt(αa

k), is
updated by computing two kinds of messages, namely, measurement-related messages,
mfa

kn→αa
k
, and prior-related message, mfa

k →αa
k
, as follows:

– The message, mfa
kn→αa

k
, is based on the factor node, fa

kn, and represents the belief
of the nth neighboring antenna, n ∈ Ba

k , on the variable node, α
a
k. From (4) and (6),

we derive the message, mfa
kn→αa

k
, as follows:

mfa
kn→αa

k
(αa

k) =
∫

n∈Ba
k

p(γkn|αa
k, αb

n) bt−1(αb
n)dαb

n,

=
∫

1√
(2πν2)LkLn

exp

{−LkLn

2ν2

(1T γkn,t

LkLn
− (αa

k − αb
n)

)2
}

exp

{−(αb
n − μb

n,t−1)
2

2(σb
n,t−1)2

}
dαb

n,

= N
(
αa

k : μa
kn,t, (σ

a
kn,t)

2
)
, (7)

where μa
kn,t = μb

n,t−1 − 1T γkn,t

Lk,tLn,t
and (σa

kn,t)
2 =

ν2
kn

2Lk,tLn,t
+ (σa

n,t−1)
2.

– The message, mfa
k →αa

k
, represents the prior distribution formulated as a Gaussian;

that is,

mfa
k →αa

k
= p(αa

k)
∫

b(αa
k)dαa

k = p(αa
k) = N

(
αa

k : μa
pk,t, (σ

a
pk,t)

2
)
. (8)

Based on (7) and (8), the updated belief at time instant t is computed as follows:

bt(αa
k) = N

(
αa

k : μa
pk,t, (σ

a
pk,t)

2
) ∏

n∈Ba
k

N
(
αa

k : μa
kn,t, (σ

a
kn,t)

2
)
,

= N
(
αa

k : μa
k,t, (σ

a
k,t)

2
)
,

(9)
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where

(σa
k,t)

2 =

(
1

(σa
pk,t)2

+
∑

n∈Ba
k

1
(σa

kn,t)2

)−1

, and

μa
k,t = (σa

k,t)
2

(
μa

pk,t

(σa
pk,t)2

+
∑

n∈Ba
k

μa
kn,t

(σa
kn,t)2

)
.

(10)

Dependency of Wide-Area BP on Prior Distribution
Note that (8) specifies the prior distribution of the antenna-specific timing error. In our
prior work [20], if the mismatch between the observed and the expected set of satel-
lites is ≥ 2, then we assumed that μa

pk,t = 0 and (σa
pk,t)

2 = ∞, thereby representing
an approximated uniform distribution. However, by utilizing a wide-area network of
antennas, we significantly reduce the dependency of the attack-resilience of the GPS
timing on this prior distribution. To achieve this, among the N widely-dispersed infras-
tructures, we choose the GPS receiving system with the least spoofing risk, that is,

am = arg min
a∈{1,··· ,N}

ra
t ,

where ra
t ,∀a ∈ {1, · · · , N}, is computed later in Sect. 2.3. Except the amth receiving

system, we assign the prior distribution of GPS receiving system, such that, μa
pk,t = 0

and (σa
pk,t)

2 = ∞,∀a ∈ {1, · · · , N} − am. However, for the amth receiving system,
μpk,t and σ2

pk,t are computed from the empirical distribution calculated on-the fly by
considering the most recent W timing errors; that is, αam

k,t−W :t,∀k = {1, · · · ,M}.

RNN-based Authentication of GPS Receiving Systems
Based on the belief estimates of the timing error at each antenna, we design an AI-based
RNN framework to authenticate each GPS receiving system in the wide-area network.
To evaluate the spoofing status at each ath receiving system, we need to monitor the
values of the BP estimates of antenna-specific timing error as well as their similarity
across the antennas within the GPS receiving system. By utilizing the vast amounts
of available GPS data, we initially train a coarse RNN-based framework offline that we
later finely train during the initialization stage, to adaptively estimate the spoofing status
of each ath receiving system, which is denoted by ra

t ∈ {0, 1}, such that, 0 indicates
authentic and 1 indicates spoofed.

The architecture of our RNN framework is such that, at any time instant, the shape

of the input features θa
t

�
=[αa

1 , · · · , αa
Ma

]Tt is a Ma × 1 vector that stacks the estimated
antenna-specific timing errors across all antennas in each ath receiving system. This
captures the spatial similarity in the antenna-specific timing errors. We also consider
multiple time instants of input features as input to our RNN, so as to capture the tem-
poral variations in the absolute values of these input features. In particular, we utilize
Long Short Term Memory (LSTM) [24], a special kind of RNN, for training our data,
given its capability to retain the information learned from long time sequences. This is
especially useful during signal-level spoofing attacks, described in Sect. 1, where the
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Fig. 4. Overall architecture of our Bidirectional-LSTM, which takes the antenna-specific timing
errors of all antennas within the ath GPS receiving system, denoted by θa

t and estimates the
spoofing status, denoted by rat .

rate of change in timing errors are not abrupt but increases gradually over time. The
overall architecture of our multivariate time-series-based Bidirectional-LSTM [28], as
seen in Fig. 4, consists of an input layer, forward layer, backward layer, activation layer
and finally an output layer. In the input layer, we consider W a time instants of input
nodes denoted by θt−Wa:t. In the output layer, we consider one output node at each
instant, which either takes the value 0 or 1, thereby indicating the spoofing status ra

t

of the ath receiving system. The input to the final output layer is obtained by combin-
ing the outputs from the forward and backward layers in a activation layer, which is
governed by a softmax function [29].

The forward and backward layers are comprised of LSTM units, which consists of a
cell that analyzes the dependencies between elements in our multivariate time sequence.
Within each cell, we consider regulators called gates, which control the information that
is passed through the LSTM unit. The equations related to the processing within each
LSTM unit are provided in (11). Our LSTM network utilizes three kinds of gates: an
input gate, an output gate, and a forget gate. The input gate controls the extent to which
a new value flows into the cell, the forget gate controls the extent to which a value
remains in the cell and the output gate controls the extent to which the value in the cell
is used to compute the output activation of the LSTM unit. We implement a logistic
activation function [30], denoted by σg at each gate. The associated unknown weights
and biases at these connections are estimated during the training stage.

ft = σg (Wfθa
t + Ufht−1 + bf ) ,

it = σg (Wiθ
a
t + Uiht−1 + bi) ,

ot = σg (Woθ
a
t + Uoht−1 + bo) , (11)
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ct = ft ◦ ct−1 + it ◦ σc (Wcθ
a
t + Ucht−1 + bc) , and

ht = ot ◦ σh (ct) ,

where θa
t denotes the input feature at tth time instant given as an input to the LSTM net-

work, ht denotes the hidden state vector, and ct denotes the cell state vector. Similarly,
ft, it, ot denotes the activation vector associated with the forget gate, input gate and
output gate, respectively. As mentioned above, Wf , Wi, Wo, Uf , Ui, Uo, bf , bi, bo

represents the weights and biases in different layers indicated by their subscripts, and
are estimated during the training stage.

During our training stage, considering same number of antennas in each GPS receiv-
ing system, we utilize the antenna-specific timing errors obtained from different GPS
receiving systems to train our coarse Bidirectional-LSTM network. Using a GPS sim-
ulator, we generate various cases of authentic and simulated spoofing attacks. There-
after, during an initialization, by processing several minutes of received data, we fur-
ther finely train our Bidirectional-LSTM network to account for the individual GPS
receiving system-based noise distribution related to timing.

Adaptive EKF
According to [20], we summarize the adaptive EKF as follows:

– Define corrected psedoranges: ζa
t

�
=[ρ1c , . . . , ρ

La
c ], ∀a, with ρi

c
�
=ρi

k − αa
k and

La�
=L1 + · · · + LMa

.
– Define required quantities: the measurement noise covariance matrix, Ra

t , measure-
ment model, Ha

t , predicted state vector, β̂a, predicted state covariance matrix, P̂ a
t ,

state transition matrix, F , and static process noise covariance, Qa
t .

– Perform measurement update:

β̄a
t =

(
I8 − KtH

a
t

)
β̂a

t + Ktζ
a
t ,

P̄ a
t =

(
I8 − KtH

a
t

)
P̂ a

t ,

Kt = P̂ a
t (H

a
t )

T
(
Ha

t P̂ a
t (H

a
t )

T + Ra
t

)−1

,

ha
t (βt) =

⎡
⎢⎣

h1,t

(
x1,t, Tt, b1k

)
...

hL,t

(
x1,t, Tt, b1L

)

⎤
⎥⎦ ,

Ht =
∂ha

t (β
a
t )

∂βa
t

∣∣∣∣∣
β̂a

t

,

εt = ζt − ht(β̄a
t ), and

Ra
t+1 = Ra

t d + (εT
t εt + Ha

t P̂ a
t (H

a
t )

T )(1 − d),

(12)

where Kt represents the Kalman gain and I8 denotes the 8 × 8 identity matrix.
According to [31], a forgetting factor fixed by d = 0.3.
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– Perform time update:

β̂a
t+1 = F β̄a

t , and P̂ a
t+1 = F P̄ a

t F T + Qa
t , (13)

where

F =
[

I4 δtI4
04×4 I4

]
,Qa

t = F

[
04×4 δtI4
04×4 κa

]
F T , and κa =

[
03×3 0
0 cτa

]

with τa representing allan deviation of the front-end oscillator, δt representing the
update interval of our adaptive EKF step, I4 denotes the identity matrix of size 4×4
and 04×4 denotes the zero matrix of size 4 × 4.

3 Experiments

In this section, we validate our wide-area joint BP-RNN algorithm via two experimen-
tal scenarios, to detect and mitigate the timing error caused by simulated signal-level
spoofing attacks. We demonstrate the capability of our BP algorithm to accurately esti-
mate the associated timing errors and our RNN-framework to adaptively authenticate
the spoofing status of the GPS receiving systems in the wide-area network.

3.1 Experimental Setup and Implementation Details

As seen in Fig. 5, we consider four GPS receiving systems, such that, the DMDA
setup in each GPS receiving system comprises of three antennas. In our wide-area net-
work, we consider the GPS receiving systems to be located in Austin, Boston, Chicago,
and Pasadena, denoted by A, B, C, and D, respectively. We considered realistic pre-
computed baseline vectors across the antennas in each DMDA setup, marked in the
Fig. 5, to mimic the setup of actual power substations.

For a given stationary configuration of the antenna and an associated ephemeris file,
we simulated the GPS signals received at each antenna and at each receiving system,
using a C++-based software-defined GPS simulator known as GPS-SIM-SDR [32]. We
collected the simulated GPS signals at a sampling rate of 2.5MHz, where each raw
sample is a 16-bit complex. At each DMDA setup, the corresponding antennas are pro-
vided with selective visibility of the sky, such that, the field of view are 150 − 270◦,
270 − 30◦, and 30 − 150◦, respectively, in reference to geographic north.

Utilizing this setup, we simulated the authentic GPS signals received at each antenna
in the three GPS receiving systems, i.e., Austin, Chicago, and Pasadena for the first
experiment and Austin, Boston, and Chicago for the second experiment. Based on the
signal-level spoofing attack explained in Sect. 1, we generated the spoofed GPS signals
at the attacked GPS receiving system, i.e., Boston for the first experiment and Pasadena
for the second experiment, by adding high-powered and simulated malicious samples
to the generated authentic simulated GPS samples. We post-processed the simulated
GPS signals using a MATLAB-based software-defined radio known as SoftGNSS [33].
We utilized the external ephemeris to extract authentic satellite positions, which are
provided as input to the algorithm.
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(a) System A, Austin (b) System B, Boston (c) System C, Chicago

(d) System D, Pasadena (e) Wide-area network and communication links

Fig. 5. The simulated experimental setup consists of four GPS receiving systems in the wide-
area network, with three antenna-based DMDA setup in each. In the first experiment case, the
GPS receiving system in Boston is attacked by simulated signal-level spoofing, such that, the
B1 antenna of the DMDA setup experiences spoofing. In the second experiment case, the GPS
receiving station in Pasadena is attacked by a different simulated signal-level spoofing, during
which the D3 antenna is affected.

Fig. 6. Loss function obtained for training
and validation of Bidirectional-LSTM, which
consists of 50 hidden nodes and a batch size
of 1028.

Table 1. Training and validation accuracy
for different hyper-parameter settings

Hyper-parameters Accuracy (%)

Hidden
nodes

Batch size Iterations Training Validation

50 1028 300 83.4 84.1

100 1028 300 76.9 71.3

50 512 300 72.6 73.7

For training and validating our Bidirectional-LSTM, we considered 1000000 data
samples of input features, that is, antenna specific timing error-based vector θa

t ,∀a,
obtained from different GPS receiving systems. Out of the 1000000 data samples of
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input features considered, 99% of the data is used for training our Bidirectional-LSTM,
while rest is used for validating the neural network at the end of each epoch. The total
considered data samples consists of 65% authentic data, which is obtained from real-
world GPS signals collected using a GPS receiver as well as simulated GPS signals
obtained from a GPS simulator. In addition, rest of the 40% of the training data com-
prises of simulated GPS signals affected by different configurations and types of sim-
ulated spoofing attacks. We executed back propagation by considering the cost func-
tion to be mean squared error and utilized an Adam optimizer [34]. We considered
W a = 60,∀a time instants of the past antenna-specific timing errors at each ath
GPS receiving system to estimate the spoofing status ra

t at each time instant. Based
on the training and validation accuracy for different hyper-parameter settings, as seen
in Table 1, during testing, we utilize our trained RNN that is initialized with 50 hid-
den nodes and a batch size of 1028. The training and validating loss for the chosen
hyper-parameters is seen in Fig. 6.

3.2 Under Simulated Signal-Level Spoofing Attack - Only Timing

In the simulated authentic GPS signals received at the Bth GPS receiving system, during
the time duration t = 25 − 60 s we induced simulated signal-level spoofing that causes
an increasing timing error from 0 − 28µs in a span of 35 s. Due to the DMDA config-
uration at the GPS receiving system, the attacker can only affect B1 antenna, thereby,
causing it to receive malicious GPS signals from 9 satellites instead of the expected
3 satellites. At the B1 antenna, the attacker causes the pseudoranges to show an increas-
ing time error during t = 25 − 60 s. For t ≥ 60 s these errors further continue to grow
due to the destabilization of receiver tracking loops.

Fig. 7. Timing error estimated using our wide-area joint BP-RNN algorithm, indicated by dotted-
solid line, as compared to least-squares, indicated by the dashed line. (Color figure online)
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As seen in Fig. 7, the conventional least-squares approach with one omni-directional
antenna, showed an RMS timing error of 29.8µs as indicated by the red-dashed line.
After the spoofing starts at t = 25 s, we observed that the timing error computed via
least-squares increases with time, even after spoofing ends, thereby, exceeding beyond
26.5µs and violating the IEEE C37.118-1 standards. However, our proposed joint BP
and RNN algorithm, which is executed for t ≥ 12 s, showed steady convergence and
demonstrated significantly lower RMS timing errors of 0.13µs, 0.14µs, 0.13µs and
0.13µs at A, B, C, and D GPS receiving systems, respectively, during the simulated
signal-level spoofing.

Fig. 8. Antenna-specific timing errors μa
k estimated during BP step at all the GPS receiving sys-

tems. The different antennas in the DMDA setup of each receiving system are indicated by red,
blue and magenta lines. (Color figure online)

As seen in Fig. 8, the wide-area BP-RNN algorithm not only isolates the presence of
spoofing attacks to B1 antenna but also accurately estimates the increasing timing error
as αa

k,t -α
a
k,t−1 ≈ 0.4µs/s induced during the spoofing attack, that is, t = 25 − 60 s.

This can be observed by the red solid line at the Bth GPS receiving system whereas the
timing error in other antennas is close to zero.

In addition, we also analyzed the spoofing status associated with each GPS receiv-
ing system, based on the Bidirectional-LSTM. We compared the performance of our
RNN approach, seen in Fig. 9(a) with that of a KL-divergence approach [35], seen in
Fig. 9(b) with pre-determined threshold manually set as Π = 25. When the KL-test
statisticma

KL,t > Π , the KL-based metric ra
KL,t = 1 indicating spoofed GPS receiving

system and ra
KL,t = 0 otherwise, indicating authentic conditions. The KL-test statistics,

ma
KL,t, are calculated as follows:

ma
KL,t =

W∑
ν=0

Ma∑
i=1

Ma∑
j=1,j �=i

(
αa

i,t−ν ln
(

αa
i,t−ν

αa
j,t−ν

))
. (14)
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In Fig. 9, we observed that while demonstrating similar consistency in performance as
that of the KL-divergence-based metric, our RNN-based metric quickly detects that
the Bth receiving system is being spoofed at t = 25.7 s, that is, 0.7 s after the spoof-
ing starts, as compared to the KL-based metric that first detects spoofing at a later
time t = 34.6 s. Therefore, even though the simulated signal-level spoofing does not
cause abrupt changes in the timing errors, by analyzing the multivariate time-series of
antenna-specific timing errors, our trained RNN-based metric quickly as well as accu-
rately detects spoofing attacks at the Bth GPS receiving system.

(a) RNN-based metric (b) KL-based metric

Fig. 9. Spoofing status estimated using (a) RNN-based metric; (b) KL-based metric. RNN-based
metric detects the presence of spoofing at the Bth receiving system 0.7 s after the spoofing starts
at t = 25 s, whereas KL-divergence first detects spoofing 9.6 s after the spoofing starts.

3.3 Under Simulated Signal-Level Spoofing Attack - Both Positioning
and Timing

In the next set of experiments, we generated a simulated signal-level spoofing attack
that induces both a constant change in position of 55m and an increasing timing error
of 33µs in a span of 25 s. During a time duration of t = 25 − 50 s, these simulated
spoofing signals are added to the simulated authentic GPS signals received at the Dth
GPS receiving system are induced with spoofing signals. Due to our DMDA setup,
the attacker only successfully spoofs the satellite signals received at the D3 antenna.
Similar to Sect. 3.2, due to the destabilization of receiver tracking loops caused during
the attack, the pseudorange errors continue to grow unbounded.

Due to unbounded increase in pseudorange errors, the error in both position and
timing obtained via conventional least-squares approach diverged, which is indicated by
the green dashed line in the Fig. 10(a) and (b), respectively. In particular, we observed
that the IEEE C37.118-1 standards related to the timing error obtained via least-squares
approach is violated within 10 s after the start of spoofing attack. However, as seen in
Fig. 10(b), our proposed joint BP and RNN algorithm, which is initialized at t = 12 s,
similar to the Sect. 3.2, showed a convergence trend with RMS timing errors of 0.14µs,
0.16µs, 0.15µs and 0.15µs at A, B, C, and Dth GPS receiving systems respectively.
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(a) Position error

(b) Timing error

Fig. 10. Position and timing errors estimated using the proposed wide-area joint BP-RNN algo-
rithm, indicated by the dotted-solid lines, as compared to the conventional least squares approach,
indicated by the dashed line. In particular, green represents the Dth GPS receiving system. Due to
spoofing, the least squares solution in both position and timing diverged, whereas our wide-area
BP-RNN showed steady convergence. (Color figure online)

(a) RNN-based metric (b) KL-based metric

Fig. 11. Spoofing status estimated using (a) RNN-based metric; (b) KL-based metric. RNN-based
metric detects the presence of spoofing at the Bth receiving system 0.7 s after the spoofing starts
at t = 25 s, whereas KL-divergence first detects spoofing 9.6 s after the spoofing starts.
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Similarly, as seen in Fig. 10(a), the RMS position errors computed using BP-RNN algo-
rithm are 5.11m, 19.28m, 1.38m, 0.77m at A, B, C, and Dth GPS receiving sys-
tems, respectively, whereas least-squares approach showed an RMS position error of
2410.71m.

Based on the Bidirectional LSTM, explained in Sect. 3.1, we analyzed the spoof-
ing status computed using our BP-RNN algorithm, as seen in Fig. 11(a) and compared
its performance with that of the KL-divergence approach, as seen in Fig. 11(b) and
described in (14). The KL-divergence approach detected the spoofing attack for the first
time at t = 31.2 s, whereas our BP-RNN approach quickly detected the spoofing attack
at t = 25.4 s, while simultaneously demonstrating low false alarms and misdetections.
Therefore, we validated the improved performance of the proposed wide-area joint BP
and RNN algorithm even during more sophisticated attacks that involve both position
and timing being spoofed.

4 Conclusions

To summarize, we have proposed a wide-area joint Belief Propagation and Recurrent
Neural Network (BP-RNN) algorithm to detect and mitigate the spoofing attacks as well
as estimate the attack-resilient GPS timing that is given to the geographically distributed
infrastructures, which are monitored by PMUs. By considering a wide-area network of
GPS receiving systems, we have estimated the marginal distribution of the spoofing-
induced timing errors at each antenna using distributed BP algorithm. In addition, based
on the BP-estimated timing errors, we have adaptively evaluated the spoofing status of
each GPS receiving system using an RNN framework.

Table 2. Summarizing the RMS timing errors of the attacked GPS receiving system estimated via
the proposed wide-area BP-RNN and conventional least-squares approach

Spoofing attack RMS timing error of attacked
GPS receiving system

BP-RNN Least-Squares

Timing error of 28µs in a span of 35 s 0.14µs 29.8µs

Position error of 55m and timing error of 33µs in a span of
25 s

0.16µs 37.94µs

We have validated the proposed wide-area BP-RNN using four GPS receiving systems,
with three-antenna-based DMDA setup each and subjecting one GPS receiving sys-
tem to a simulated signal-level spoofing attack. For two cases of simulated spoofing
attacks, the RMS timing errors obtained via the proposed wide-area BP-RNN algo-
rithm and conventional least squares approach are listed in Table 2. While one omni-
directional antenna-based least squares has shown large RMS timing errors that violated
the IEEE-C37.118 standards, the wide-area BP-RNN algorithm has demonstrated low
RMS timing errors of less than 0.16µs. Also, as compared to the existing works, we
have assessed the improved performance of our RNN-based metric, which has shown
a quick detection of spoofing, that is, 0.7 s after the spoofing attack starts in the first
experiment and 0.4 after spoofing attack starts in the second experiment.
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