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Abstract

Mapping techniques for probabilistic amplitude shaping are reviewed. We focus on energy considerations, classification of meth-
ods and systems, and implementation aspects. A numerical study of required block lengths is carried out for two short-blocklength
applications, namely achieving half of the maximum shaping gains and enabling rate adaptivity.

1 Introduction
Constellation shaping describes the optimization of a modu-
lation format with equidistant and equiprobable signal points
towards some shape that is tailored to the transmission channel
[1]. Geometric shaping, on the one hand, optimizes the loca-
tion of constellation points. While this approach offers large
shaping gains for symbol-wise forward error correction (FEC)
decoding, the shaped constellation often does not have Gray
mapping any more, which can make it challenging to realise
shaping gains in bit-interleaved coded modulation (BICM) sys-
tems with binary FEC [2]. Probabilistic shaping (PS), on the
other hand, modifies the probability of the constellation sym-
bols, which remain on a square grid. Classic PS schemes
are for example based on many-to-one mappings [3], trellis
shaping [4], and shell mapping [5].

PS has been applied in fibre optics as early as 2012 using
trellis shaping [6] and shell mapping [7]. More work on PS
has been published afterwards, such as [8, 9], but a widespread
interest of the fibre-optic community in the topic of PS sparked
in 2015 with the proposal of probabilistic amplitude shaping
(PAS) [10]. The first demonstrations [11–13] were published
the same year.

Since its proposal, the PAS architecture has become some-
what ubiquitous for shaped communication systems by offering
a low-complexity and flexible integration into existing BICM
settings with only minor modifications to the coded modula-
tion structure. Compared to conventional uniform quadrature
amplitude modulation (QAM), it is mainly two benefits that
make PAS highly attractive for optical systems. Firstly, a shap-
ing gain of approximately 1 dB signal-to-noise ratio (SNR) can
be achieved for high-order QAM [13], which can be a signif-
icant improvement especially for highly optimized fibre-optic
links such as submarine systems. Maybe even more appealing
to a broader market is the feature of rate adaptivity. The net
throughput can be adapted seamlessly to the channel without
modifying other system parameters such as symbol rate, QAM
order, and FEC overhead [14], which allows to fill the spec-
tral efficiency gaps of square QAM. An alternative approach to
realise variable rates is time-hybrid modulation [15].

A key component in the PAS framework is the distribution
matcher (DM), which is the main focus of this work. A DM can
be considered the PAS workhorse as it carries out the mapping
from uniformly distributed bits to shaped amplitudes, which
are then combined with uniform bits (coming either from data
or the FEC parity bits) to generate shaped QAM symbols. Var-
ious types of fixed-to-fixed-length DMs and mapping schemes
(which, strictly speaking, do not match a distribution) for PAS
exist. This paper aims at providing an overview of some of
these schemes and provides insight into their internal structure
and short-length performance. We also comment on complexity
considerations for the investigated schemes.

2 Principles of Mapping Techniques
2.1 General Aspects

A DM, or in general any mapping for PAS, solves the index-
ing problem of mapping each of the 2k binary inputs (having
length k) to exactly one out of Mn shaped sequences, where M
denotes the number of shaped amplitudes. Note that this map-
ping is usually injective, i.e., some output sequences will never
be addressed and thus, never be transmitted. An important fig-
ure of merit to consider is rate loss, which is the difference
of the DM rate, k/n, to the entropy of the amplitudes. The
rate loss is to be minimized for efficient DM operation and
decreases with block length n, see Sec. 4 for a detailed dis-
cussion. Lookup tables for long blocks are prohibitively large,
which is why constructive methods are required.

2.2 Mapping System and Method

Different mapping systems can be differentiated based on the
properties of their output sequences. For a particular system,
various methods can be used to implement the actual mapping.
As an example, all output sequences of a CCDM system have
identical composition (and therefore identical energy) and dif-
fer only in the order of the occurring amplitudes. A possible
method for implementing such a CCDM system is arithmetic
coding [16, Sec. IV]. We will further use this classification of
method and system in Sec. 2.4.
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2.3 Advanced Mapping Systems and Methods for PAS

Improving upon CCDM, advanced shaping systems produce
output sequences of varying compositions. Multiset-partition
distribution matching (MPDM) [17, 18] uses various CCDM-
like sequences that are addressed in a Huffman tree. This yields
lower rate loss than CCDM and has the additional benefit
that it leverages any progress that is made for CCDM meth-
ods, such as more efficient implementations. Shell mapping
(SM) [5, 19] and enumerative sphere shaping (ESS) [20] are
closely related mapping systems that in principle use every
sequence up to a certain maximum energy. While this is the
most energy-efficient way of constructing a shaped output, the
implementation complexity can be challenging, in particular
for shell mapping [20, Sec. IV-D].∗ Other DM approaches use
framing of variable-length coding in order to achieve fixed-
to-fixed length mapping [21]. For CCDM systems, bit-level
transformations have been proposed [22–24] which modify the
DM mapping method such that DM instances can be run in
parallel in order to increase the throughput.

Recently, advanced methods that improve upon the
arithmetic-coding method for CCDM have been proposed.
Limited to binary-output alphabets, subset ranking [24] estab-
lishes a different mapping that has fewer serial operations and
thus, allows low-latency DM operation. A similar technique for
binary CCDM has also been proposed in [25].

2.4 Energy Considerations

Figure 1 shows an illustration of the three different shaping
systems CCDM, MPDM, and ESS (highlighted by colour) for
a fixed n and a fixed distribution. The binary input space on
the left contains all Bernoulli- 1

2
distributed sequences of length

2kCCDM , 2kMPDM , and 2kESS , which can be mapped by the respec-
tive scheme. In general, CCDM has the smallest input size for a
fixed n, while ESS has the largest. Each of the binary inputs is
to be mapped to exactly one out of Mn output sequences, and
how this injective mapping is established relates to the mapping
method. For instance, a conventional arithmetic-coding CCDM
and a parallel-amplitude CCDM with subset ranking address
sequences with the same properties, yet the actual output and
how the mapping is performed is different.

On the right of Fig. 1, the output signal space is depicted.
The entire signal space containing Mn sequences is delimited
by the black solid ellipse. Its bottom part corresponds to low-
energy sequences and the top to those with high energy. CCDM
uses sequences with fixed composition and thus occupies a line
of fixed energy in the output space. Note that other composi-
tions can have the same energy, so CCDM does not span an
entire energy level. MPDM by contrast uses various energy
levels, including the CCDM one. ESS by design is the most
energy-efficient of these techniques and utilises all sequences
up to a certain maximum energy level. Setting implementation

∗SM and ESS differ in which sequences are ignored due to the output

space not having 2x sequences. SM discards sequences of the highest-

energy shells, while ESS is marginally less energy-efficient by not using some

low-energy sequences (unless modifications are made as in [20, Sec. IV-D]).
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E
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ofoutputsequences

Fig. 1 Mapping from binary input sequences (left) to shaped
output sequences (right) for CCDM (blue), MPDM (red), and
ESS (green), for a fixed block length n and distribution.

aspects aside (more on this in Sec. 4), energy-efficient mapping
systems are designed to occupy as much of the bottom of the
output signal space as possible.

3 Numerical Analysis
In the following, we evaluate the performance of the previ-
ously discussed shaping schemes as a function of the block
length n. The focus is put on achieving some shaping gain
that is deliberately smaller than the maximum. The following
results are obtained by computing the achievable information
rate (AIR) for bit-metric decoding and the additive white Gaus-
sian noise (AWGN) channel [26]. We subtract from this AIR,
which is achievable only for infinite-length DM, the rate loss of
the shaping schemes, see [17, Appendix] for details. Maxwell-
Boltzmann distributions are used as target compositions for
CCDM and MPDM at each SNR. For ESS, the target rate,
and thereby the distribution, is varied as to maximize the finite-
length AIR. This AIR-based evaluation allows to study a wide
range of SNRs without the need to implement FEC and to carry
out time-consuming Monte Carlo simulations.

3.1 Obtaining Shaping Gain

We first study the required block length to achieve a cer-
tain shaping gain. The targeted SNR savings over uniform
signalling are set to 0.2 dB, 0.5 dB, and 0.6 dB for QAM
of order {16, 64, 256}, respectively, which is approximately
equal to 50% of the maximum achievable shaping gain for
each format. Figure 2 shows for this setting the required block
length n in amplitude symbols as a function of SNR of the
AWGN channel. The block length was varied with a granu-
larity of 5 symbols for CCDM (dotted), MPDM (solid), and
ESS (dashed). As expected from the discussion in Sec. 2.4,
we observe that an efficient usage of the available signal space
corresponds to a small required block length. Hence, CCDM
requires in all cases the longest blocks of more than 100
amplitude symbols. MPDM obtains the target gain with signifi-
cantly shorter blocks than CCDM, in particular for 64QAM and
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Fig. 2 Minimum block length n to achieve {0.2, 0.5, 0.6} dB
shaping gain for {16, 64, 256}-QAM, respectively.

256QAM. ESS performs best among the considered schemes
and achieves significant shaping gains for as little as n = 15
with 256QAM. Furthermore, we observe that all schemes tend
to require larger n in order to achieve the targeted shaping
gain at high SNR. The reason for this is that at high SNR,
the absolute SNR shaping gain is small, which translates into
a more stringent requirement on having low rate loss and thus,
demands longer blocks lengths.

3.2 Enabling Rate Adaptivity

In Fig. 3, we evaluate the minimum block length n that is
required to achieve the same throughput as uniform QAM.
The motivation behind this is to investigate the length require-
ment for realising rate adaptivity. The three considered QAM
formats are 16QAM (black), 64QAM (red), and 256QAM
(blue). Similar to Fig. 2, we observe for all considered cases
that CCDM requires the longest blocklength, while very short
blocks of only a few symbols are sufficient for ESS. In fact,
ESS performs best at these short lengths because in this case,
it is extremely important to utilise the limited signal space as
efficiently as possible. By using all points inside an n-sphere,
ESS obtains the lowest required block length to match uniform
performance and thus, to enable rate adaptivity. For 256QAM,
ESS requires only n = 5 symbols, and the corresponding input
length is k = 15. To realise this mapping, an alternative method
to the trellis structure (which ESS uses internally) could be a
lookup table whose size is 215 · 5 · log2

(√
256/2

)
≈ 492 kbit.

4 Implementation Aspects
In the preceding section, we followed the conventional
approach of comparing different schemes by studying the block
length that is required for a certain shaping gain. While this
is certainly a natural choice for analysing and comparing
shaped systems, it comes with the caveat that this approach
inherently assumes that shorter blocks are always better, for
instance because they have advantages for implementation.
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Fig. 3 Minimum block length n required to achieve the perfor-
mance of uniform QAM versus SNR in dB.

In the following, we comment on this aspect by consider-
ing computational complexity, i.e., the number of additions or
multiplications, latency, and storage requirements.

An example where slightly longer block lengths can be ben-
eficial is the parallel-amplitude architecture [24]. By allowing
a small additional rate loss, the throughput is increased sig-
nificantly by using M − 1 DMs in parallel. Furthermore, the
serialism (and thus, the latency) of the subset-ranking method
is smaller than arithmetic-coding CCDM. It can thus be bene-
ficial to make the blocks slightly larger than for conventional
CCDM in order to facilitate implementation. An example for
reduced storage requirements is the tree structure of MPDM
[17, Sec. III-C], which can introduce some rate loss but allows
to use existing CCDM methods for a variable-composition
mapping problem that otherwise might only be solvable with
huge lookup tables. Approximate ESS [27] has slightly smaller
rate than conventional ESS, yet significantly reduced storage
requirements. Finally, we note that analysing computational
complexity by counting additions and multiplications might
give an approximate indication of complexity, but it omits
many practical considerations concerning real-time operation.

5 Conclusion
We have reviewed mapping schemes for probabilistic ampli-
tude shaping. All considered schemes solve a similar indexing
problem, yet they differ greatly in how their mapping meth-
ods operate and which shaped output sequences are addressed.
Energy considerations suggest that two advanced systems, ESS
and MPDM, significantly outperform CCDM. This is con-
firmed in numerical simulations for the cases of i) achieving
approximately 50% of the maximum shaping gain for high-
order QAM formats, and ii) having performance similar to
uniform signalling, which enables rate adaptivity. Finally, we
have discussed and presented examples that comparing shap-
ing schemes only by considering block length does not tell
the whole story when implementation aspects are taken into
account.
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