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Abstract
The vehicle steering-control behavior is highly dependent on the road surface. However, the
road surface conditions are typically unknown a priori, and control actions that are safe to
perform on asphalt may therefore lead to vehicle instability on low-friction surfaces. It is
therefore important that the road surface is estimated, or at least detected, online, and that
the vehicle dynamics control algorithms are adapted to the changing conditions. In this
paper, we propose a nonlinear model-predictive control (NMPC) scheme that adapts its tire
parameters in response to the estimated road surface. We show how estimating the initial
slope of the tire-force curve can be used to change the full nonlinear tire-curve used by the
NMPC and validate the method in simulation.
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Abstract— The vehicle steering-control behavior is highly
dependent on the road surface. However, the road surface
conditions are typically unknown a priori, and control actions
that are safe to perform on asphalt may therefore lead to vehicle
instability on low-friction surfaces. It is therefore important that
the road surface is estimated, or at least detected, online, and
that the vehicle dynamics control algorithms are adapted to
the changing conditions. In this paper, we propose a nonlinear
model-predictive control (NMPC) scheme that adapts its tire
parameters in response to the estimated road surface. We show
how estimating the initial slope of the tire-force curve can be
used to change the full nonlinear tire-curve used by the NMPC
and validate the method in simulation.

I. INTRODUCTION

Advanced driver-assistance systems (ADAS), such as ve-
hicle steering control, mainly actuate the vehicle through
the tire–road contact. Knowledge of the tire–road relation
is therefore of high importance in ADAS. The interaction
between tire and road is highly nonlinear, and the parame-
ters describing the nonlinear relation vary heavily between
different surfaces and depend on several factors [1], [2].

Fig. 1 shows examples of the tire-force variation with
the wheel slip. The force-slip relation is approximately
linear for small slip values, which are typical when driving
in normal conditions. However, when driving close to the
adhesion limits, the nonlinear characteristics need to be taken
into account. There is a dependence between the linear
slope and the peak road-friction coefficient [2], but the tire
stiffness is highly dependent on several other factors, for
example, tire and air temperature, tire pressure, and material
and smoothness of the surface, which implies that the tire
stiffness changes with time. Knowledge of the tire stiffness
can be used directly in ADAS [3], [4], and even partial
knowledge of the tire stiffness can be used to classify surface
types for road-condition monitoring [2], [5]. Unfortunately,
the vehicle states involved in the tire-stiffness estimation are
not directly measured in production vehicles.

This paper leverages the aforementioned dependence be-
tween the initial slope (tire stiffness) of the tire-force curve
and the peak friction coefficient for proposing a nonlinear
model-predictive control (NMPC) scheme that adapts to the
estimated road surface. We use a bank of precomputed tire
models for different road surfaces and switch between the
tire models based on the estimated road surface. We employ
a recently developed tire-stiffness estimator [6] to detect
the surface on which we are traveling. The tire-stiffness
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Fig. 1. Examples of normalized lateral force as a function of slip angle
α for asphalt, loose snow, and ice. Even though it is not always the case,
in this plot, the force increases monotonically with increasing slip on snow.
This may be due to a build up of snow in front of the wheel.

estimator operates under normal driving conditions, when
the slip values are close to zero. A key feature with our
approach is that the current estimates of the linear part of
the tire-force curve gives information about the nonlinear
part, which can be used to control the vehicle, both in the
linear and nonlinear regions of the tire-force curve.

MPC has shown to be effective in automotive steering-
control applications [4], [7]–[9]. When driving close to the
adhesion limits, NMPC involves solving a nonlinear and
nonconvex optimal control problem (OCP) at each sampling
time instant under stringent timing requirements. Tailored
continuation-based online algorithms have been developed
for solving these nonlinear optimal control problems [10]. A
popular approach to efficiently implement NMPC is based
on the real-time iteration (RTI) scheme [11], which typically
combines a direct multiple shooting type optimal control dis-
cretization [12] with an online variant of sequential quadratic
programming (SQP). For an overview of explicit and implicit
integration schemes with sensitivity analysis based on algo-
rithmic differentiation (AD) for embedded NMPC, see [13].

In SQP-based NMPC, a tailored convex solver is needed to
solve the optimal control structured quadratic programs (QP).
In [8], we used a new sparse solver called PRESAS [14].
We showed that the solver can be used in combination with
nonlinear vehicle and tire models [15] to solve the NMPC
problem in real-time on an embedded platform. In [8] we
also showed that it is crucial to have a well-informed guess
about the road surface on which the car is driving. While
all the involved parameters need not be exactly known, at
least knowing the typical shape of the particular tire-force
relation can be crucial for achieving safe driving. This work
extends [8] in that we adapt the NMPC in response to the
estimated tire stiffness.



II. VEHICLE MODELING

We use a single-track chassis model that includes the
longitudinal velocity vX , lateral velocity vY , and yaw rate
ψ̇ as states. As previous studies have shown, a single-track
model is sufficiently accurate for purposes where the tire
forces reach the nonlinear region but the maneuvers are not
aggressive enough to result in large roll angles [8], [15]. The
single-track model lumps together the left and right wheel on
each axle, and roll and pitch dynamics are neglected. Thus,
the model has two translational and one rotational degrees
of freedom. The model dynamics are [16]

v̇X − vY ψ̇ =
1

m
(F xf cos(δ) + F xr − F

y
f sin(δ)),

v̇Y + vX ψ̇ =
1

m
(Fy,f cos(δ) + F yr + F xf sin(δ)),

Izzψ̈ = lfF
y
f cos(δ)− lrF yr + lfF

x
f sin(δ),

(1)

where F x, F y are the longitudinal/lateral tire forces and the
subscripts f, r stand for front and rear, respectively, m is the
vehicle mass, Izz is the vehicle inertia about the vertical axis,
and δ is the front-wheel steering angle. The normal force F z

resting on each front/rear wheel is

F zf = mg
lr
l
, F zr = mg

lf
l
, (2)

where the wheel base is l = lf + lr.
The slip angles αi and slip ratios λi are defined as in [17],

α̇i
σ

vx,i
+ αi = − arctan

(
vy,i
vx,i

)
, (3)

λi =
Rwωi − vx,i

vx,i
, i ∈ {f, r}, (4)

where σ is the relaxation length, Rw is the wheel radius, ωi
is the wheel angular velocity for wheel i, and vx,i and vy,i
are the longitudinal and lateral wheel velocities for wheel i
with respect to an inertial system, expressed in the coordinate
system of the wheel. The wheel dynamics are given by

Ti − Iwω̇i − F xi Rw = 0 , i ∈ {f, r}, (5)

where Ti is the torque for wheel i and Iw is the wheel inertia.
The nominal tire forces F x0 and F y0 —that is, the forces

under pure slip conditions—are computed with the Magic
Formula model [17],
Fx
0,i = µxi F

z
i sin (Cx

i arctan(Bx
i (1− Ex

i )λi + Ex
i arctan(Bx

i λi))) ,

F y
0,i = µyi F

z
i sin

(
Cy

i arctan(By
i (1− Ey

i )αi + Ey
i arctan(By

i αi))
)
,

(6)
where µxi and µyi are the friction coefficients and Bhi , Chi and
Ehi , h ∈ {x, y}, are the stiffness, shape, and curvature factor,
respectively. In the following, we use the short-hand notation
θ = {µhi , Bhi , Chi , Ehi }

h=x,y
i=f,r to denote the set of unknown

tire parameters. Pacejka’s magic formula (6) exhibits the
typical saturation behavior in the tire forces as illustrated
also in Fig. 1. However, the shape of the saturation and at
what slip value the peak is attained, if at all, differs between
surfaces and between tires.

Under combined slip conditions, i.e., when both λ and α
are nonzero, it is important to model the coupling between

longitudinal and lateral tire forces. The simplest modeling
of these combined tire forces is based on the friction el-
lipse (FE), which reads as

F yi = F y0,i

√
1−

(
F x0,i
µxi F

z
i

)2

, i ∈ {f, r}. (7)

In (7), the longitudinal force does not explicitly depend on
the lateral slip, and it is possible to use more accurate models
to represent the combined slip [16], [17].

III. NONLINEAR MPC PROBLEM FORMULATION

We introduce the following tracking-type optimal control
problem formulation in continuous time,

min
x(·),u(·)

∫ T

0

‖F (x(t),u(t))− yref(t)‖2W dt (8a)

s.t. 0 = x(0)− x̂0, (8b)
ẋ(t) = fθ∗(x(t),u(t)), ∀t ∈ [0, T ], (8c)
0 ≥ h(x(t),u(t)), ∀t ∈ [0, T ], (8d)
0 ≥ r(x(T )), (8e)

where x(t) ∈ Rnx denotes the differential states and u(t) ∈
Rnu are the control inputs for t ∈ [0, T ]. The objective in (8a)
consists of a nonlinear least-squares type Lagrange term. For
simplicity, T denotes both the control and prediction horizon
length and we do not consider a terminal cost term. Note that
the NMPC problem depends on the current state estimate x̂
through Eq. (8b). The function fθ∗ in (8c) represents the
vehicle dynamics (1)–(7), which are parametrized by the set
of estimated tire parameters θ∗ according to (6), where θ∗

is estimated as described in Sec. IV and is kept constant for
the entire horizon T . Eqs. (8d) and (8e) denote the path and
terminal inequality constraints, respectively.

A. Objective Function and Inequality Constraints

The path constraints in the NMPC problem formulation
consist of geometric and physical limitations of the system,
such as constraints on the longitudinal and lateral vehicle
position. In practice, it is important to reformulate these
requirements as soft constraints since otherwise the prob-
lem may become infeasible, for instance due to unknown
disturbances and modeling errors. In this paper, we define
a simple quadratic penalty on a slack variable to ensure
feasibility. This can be replaced with an L1 penalty akin
to [7]. In addition, hard bound constraints are imposed on
the steering angle, steering rate, and wheel torque values.

The integrand in (8a) allows us to formulate any stan-
dard tracking-type objective. In this paper, we reformulate
the trajectory tracking by introducing a cubic polynomial,
parametrized in time, as an approximation of the planned
path. The time dependence leads to decreased degrees of
freedom for the NMPC, since it restricts the NMPC to
the planned trajectory such that accelerations/decelerations
are kept to a minimum. To this end, we define a path
parameter s and introduce an additional constraint in the
NMPC formulation, (see, e.g., [18]) which allows the NMPC
to accelerate/decelerate along the path.



B. Implementation Aspects

The nonlinear, nonconvex problem (8) renders analytical
solutions intractable. Instead, we transform the infinite di-
mensional OCP (8) into a nonlinear program (NLP) by a
control and state parameterization. A popular approach is
based on the direct multiple shooting method from [12].
We formulate an equidistant grid over the control horizon
consisting of the collection of time points ti, where ti+1 −
ti = T

N =: Ts for i = 0, . . . , N−1. Additionally, we consider
a piecewise constant control parametrization u(τ) = ui for
τ ∈ [ti, ti+1). The time discretization for the state variables
can then be obtained by simulating the system dynamics
using a numerical integration scheme. This corresponds to
solving the following initial value problem

ẋ(τ) = fθ∗(x(τ),ui), τ ∈ [ti, ti+1], x(ti) = xi. (9)

We employ a tailored implementation using the open-
source ACADO Toolkit [19]. The nonlinear optimal con-
trol solver in this toolkit uses an online variant of SQP,
known as the RTI scheme [11]. Under some reasonable
assumptions, the stability of the closed-loop system based
on the RTI scheme can be guaranteed also in presence of
inaccuracies and external disturbances [11]. ACADO Toolkit
exports efficient, standalone C-code implementing the RTI
scheme for fast optimal control. It supports exploiting spe-
cific model structures as detailed in [19]. Specifically, we
use the recently proposed PRESAS solver [8], [14], which
applies block structured factorization techniques with low-
rank updates to preconditioning of an iterative solver within
a primal active-set algorithm. This results in an efficient
solver suitable for embedded automotive applications. For
real-time applications, a primal active-set approach has the
advantage of providing a feasible, even though suboptimal,
solution when being terminated early.

We compensate for timing delays due to actuator com-
mands and communication by letting the NMPC use the pre-
dicted state values instead of the most recent state estimate,
using a buffer of the past few control values. This time-
delay compensation is important for ensuring that the NMPC
does not use old information in the feedback control, which
otherwise may lead to sluggish performance and instability.

IV. FRICTION-ADAPTIVE NMPC

In this section we present our proposed method for
adjusting the tire parameters in the NMPC. The NMPC
formulation and subsequent problem solution depend on the
tire parameters in the Pacejka model through (8c), which
includes (6). As the results using a double lane-change
maneuver in [8] show, the knowledge of the road surface
is crucial for ensuring vehicle stability.

A. Tire-Stiffness Estimator

The tire-stiffness estimator is based on a recently devel-
oped adaptive particle-filter approach, see [6]. An important
feature of the estimator is that it only relies on sensors
commonly available in production vehicles.

The method employs the single-track vehicle model (1)
and a linear approximation of the front and rear tire forces,

F x ≈ Cxs λ, F y ≈ Cysα, (10)

where Cxs and Cys are the longitudinal and lateral stiffness,
respectively. The slip ratios are defined as in (4), but un-
like (3) the slip angles are assumed to be small such that
they can be approximated by

αf ≈ δ −
vY + lf ψ̇

vX
, αr ≈

lrψ̇ − vY

vX
. (11)

The small-angle approximations (11) are not necessary for
the functionality of the estimator, but (11) is valid when the
slip angles are small.

The stiffness values in (10) are decomposed into one
nominal part and one unknown part,

Cxs = Cxs,n + ∆Cxs , Cys = Cys,n + ∆Cys , (12)

where Cs,n is the nominal value of the stiffness, for example,
a priori determined on a nominal surface, and ∆Cs is a
time-varying, unknown part. We incorporate the unknown
stiffness components into wk ∈ Rnw , which is modeled as
random process noise acting on the otherwise deterministic
system. The noise term wk is assumed Gaussian distributed
according to wk ∼ N (Ĉk,Σk), where Ĉk and Σk are
the unknown, usually time varying, mean and covariance.
Inserting (10)–(12) into (1) and discretizing with sampling
period Ts gives the discrete-time dynamics as

xk+1 = f(xk,uk) + g(xk,uk)wk. (13)

The estimator uses the (lateral and optionally longitudinal)
acceleration and yaw-rate measurements and models the bias
bk of the inertial measurements as a random walk, which
results in the measurement model

yk = h(xk,uk) + bk + d(xk,uk)wk + ek. (14)

The output of the estimator, in addition to the state vector,
is the estimated mean value Ĉk of the tire stiffness and the
corresponding covariance estimate Σk. Note that because of
the inertial sensor measurements, the stiffness components
enter both in the vehicle model and the measurement model
through wk, which implies that the estimation model has a
dependence between the process and measurement noise.

Remark 1: Because of the approximation (10), the tire-
stiffness estimator performs under the assumption of mod-
erate steering angles and sufficiently small driving/braking
torques. Thus, in the implementation the estimator is acti-
vated only when the estimated slip angles are such that (11)
holds within some predefined threshold.

B. Tire-Parameter Selection Based on Tire-Stiffness Estimate

Our approach assumes M sets {θj}Mj=1 of predetermined
tire parameters defining the tire model (6). For instance, the
tire parameters can be determined using a testbench or from
field tests [1], [16]. In general there are several different
parameter sets for the same surface that lead to similar tire-
force curves. Furthermore, the correspondence between the



tire stiffness and peak friction is not one-to-one, as there
are experimental data indicating that wet asphalt can have
a larger initial slope but a smaller peak friction coefficient,
due to that the peak is obtained at smaller slip values [2].
The important thing is to have a nominal parameter set
that distinguishes between surfaces, which experimental data
indicate can be differentiated by the tire stiffness [2]. For
instance, the optimal vehicle behavior can fundamentally
differ between snow and asphalt, but it typically is less
important whether the asphalt is dry or wet [15], [16].

In this paper, for simplicity we have M = 3 sets of tire
parameters defining asphalt, snow, and ice conditions. We
use the estimates Ĉx,y of the tire stiffness in the following
way. From a linearization of the Pacejka tire model (6), we
get for the lateral tire force

F y ≈ µyi F
z
i C

y
i B

y
i αi, (15)

and similarly for the longitudinal direction. We set (10) equal
to (15), which results in

µyi F
z
i C

y
i B

y
i = Ĉys,i. (16)

The vertical force in (16) is obtained from (2) and the right-
hand side is given by the estimated mean value from the
stiffness estimator. To select the tire parameter set θj to be
used in the NMPC, we determine the set of parameters that
fits best to the estimated stiffness value. The straightforward
optimization criterion corresponding to

θ∗ = arg min
j∈{1,M}

|µyi,jF
z
i C

y
i,jB

y
i,j − Ĉ

y
s,i| (17)

does not take into account the uncertainty of the estimate and
would also lead to a symmetry between snow and asphalt.
However, in terms of vehicle stability, it is typically worse
to overestimate the available friction than to underestimate
it. In determining the parameter set θ∗, we therefore propose
two alternative approaches.

In the first approach, we start with the parameters cor-
responding to the lowest-friction surface, θ1. We use the
normalized residual,

εk = Σ
−1/2
k (µyi,1F

z
i C

y
i,1B

y
i,1 − Ĉ

y
s,i) ∼ N (0, I) (18)

and the test statistic

T (µyi,1F
z
i C

y
i,1B

y
i,1) =

(µyi,1F
z
i C

y
i,1B

y
i,1 − Ĉ

y
s,i)

2

Σi,k
, (19)

where Σi,k is the ith diagonal element of Σk corresponding
to the front or rear lateral stiffness. Then, approximately,

T (µyi,1F
z
i C

y
i,1B

y
i,1) ∼ χ2

η(1) (20)

where χ2
η(1) is the Chi-squared distribution with one degree

of freedom. We choose the parameters θ1 corresponding to
the lowest-friction surface as the parameters if

T (µyi,1F
z
i C

y
i,1B

y
i,1) > χ2

η(1) (21)

for some significance level η. Otherwise, we proceed in order
of increasing peak friction until a parameter set is found.

The selection (21) based on outlier detection will always
choose the parameter set corresponding to the lower-friction
surface. An approach that is not so heavily biased is to
modify (17) to take into account the respective covariance
estimates in the minimization, that is, to maximize the
likelihood. This results in the selection criteria

θ∗ = arg max
j∈{1,M}

N (µyi,jF
z
i C

y
i,jB

y
i,j |Ck,Σk). (22)

Algorithm 1 summarizes the proposed control strategy.

Algorithm 1 Proposed NMPC with Friction Adaptation
1: for k ← 0 to T do
2: Estimate state vector x̂k, tire stiffness mean Ĉk

and covariance Σk using Alg. 1 in [6].
3: Determine parameter set θ∗ using (17), (21), or (22).
4: Solve NMPC problem (8) and apply uk.
5: end for

Remark 2: We focus on the lateral forces for determining
the parameter set, but the case for the longitudinal forces
is analogous. However, usually the lateral vehicle dynamics,
hence the parameters associated with the lateral forces, are
of most importance for vehicle stability and ADAS.

V. SIMULATION RESULTS

This simulation study is based on double lane-change ma-
neuvers similar to the standardized ISO 3888-2 double lane-
change maneuver, developed for vehicle stability evaluation.

The vehicle parameters are from a mid-size SUV, and the
tire parameters for the different surfaces are taken from [16].
The NMPC uses a nonlinear single-track model with the
Pacejka tire model (6) and the FE (7) modeling the combined
slip, and the stiffness estimator uses a linear single-track
model with the linear force approximation (10). The simu-
lation model, however, uses a nonlinear double-track model
[15], [20] that accounts for roll and pitch dynamics, including
load transfer across the four wheels. Also, measurement
noise is added and steering bias is included and estimated
by an extended Kalman filter (see [21]). For simplicity,
the longitudinal velocity reference is set to 10 m/s in all
simulations and only the lateral parameters are considered.

The tire-stiffness estimator uses N = 100 particles and
the inertial sensor measurement noise values are taken from
those of a low-cost inertial measurement unit common in au-
tomotive applications. The initial estimates and the different
tuning parameters in the estimator are generic and the same
as in [6]. For all the results, Algorithm 1 is used with (22)
as the parameter set selection criterion.

A. Multiple Surface Changes

Fig. 2 shows the tire-stiffness estimates for a scenario
of multiple double lane-change maneuvers at small steering
amplitudes such that the slip angles are in the linear region.
At first the vehicle drives on asphalt. At t = 70 s the surface
abruptly changes to snow, which is followed by a surface
change back to asphalt at t = 140 s. The stiffness estimator
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plots, front and right, respectively) and surface changes (lowest plot). The
estimates are normalized to the largest estimated value due to confidentiality.
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Fig. 3. Stiffness estimates for aggressive driving with same notation as
in Fig. 2. Note that the linear-slope assumption is violated at times (see
Fig. 4), which results in slightly worse performance than in Fig. 2.

finds the correct stiffness values with high certainty, indicated
by the decreasing standard deviations in green.

Fig. 3 displays the stiffness estimates with aggressive
steering maneuvers such that the tire forces reach the nonlin-
ear region. The corresponding force-slip diagrams showing
the resulting normalized tire forces are in Fig. 4. The surface
changes are accurately detected, even though the stiffness
estimates are slightly biased because the forces enter the non-
linear region. The bias can be avoided, or at least suppressed,
by setting the deactivation threshold for the estimator tighter.
However, the detection of the road surface conditions is
insensitive to small errors in the stiffness estimates.

The closed-loop simulation results are shown in Fig. 5,
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Fig. 4. Resulting normalized tire forces for the friction-adaptive NMPC
closed-loop simulation results with multiple double lane-change maneuvers
corresponding to Fig. 3.

which demonstrate that the friction-adaptive NMPC scheme
handles the multiple double lane-change maneuvers with
relative ease, and the trajectory is tracked well.

B. Comparison with Nonadaptive NMPC

To illustrate the importance of knowing the road condi-
tions, Fig. 6 shows the closed-loop simulation results with an
NMPC that assumes the parameters corresponding to asphalt.
On asphalt the vehicle behaves as before. However, as the
vehicle enters the snow-covered part of the road, the vehicle
loses stability. This can be seen both in the Y -plot but also in
the slip angles that grow over time, indicating heavy vehicle
skidding.

VI. CONCLUDING DISCUSSION

We presented a method for NMPC that adapts the em-
ployed tire parameters to the estimated road surface. We
showed how the estimation of the initial slope of the tire-
force curve (i.e., the linear region) can be used to switch
between tire parameters of the full force curve, such that the
NMPC can accurately control the vehicle also in aggressive
maneuvering scenarios. The results showed the validity of
the approach, and also demonstrated the potential vehicle
instability if the tire parameters are not adapted to the
changing road conditions.

The method assumes a set of tire parameters for the sur-
faces of interest. However, we stress that it is not imperative
to have the correct tire parameters for the particular vehicle
setup currently employed. Rather, the key is that the tire
model captures the important characteristics, such as the peak
friction coefficient. The simulation results validate this.

The results in this paper are based on simulation, but
the stiffness estimator has been extensively tested using
experimental data in several scenarios and surfaces [6].
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