
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Motion Planning of Autonomous Road Vehicles by Particle
Filtering: Implementation and Validation

Berntorp, K.; Inani, P.; Quirynen, R.; Di Cairano, S.

TR2019-062 July 11, 2019

Abstract
Autonomous driving in urban and highway scenarios involves a set of predefined requirements
that the vehicle should obey, such as lane following, safety distances to surrounding vehicles,
and speed preferences. We have previously shown that by interpreting the motion-planning
problem as a nonlinear non-Gaussian estimation problem, we can leverage particle filtering
to determine suitable vehicle trajectories. In this paper, we validate our proposed motion
planner using scaled vehicles. We show that our motion planner is capable of determining
safe and drivable trajectories for a number of challenging scenarios, and that the trajectories
can be accurately tracked by a lower-level nonlinear model predictive control scheme.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2019
201 Broadway, Cambridge, Massachusetts 02139





Motion Planning of Autonomous Road Vehicles by Particle Filtering:
Implementation and Validation

Karl Berntorp, Pranav Inani, Rien Quirynen, and Stefano Di Cairano

Abstract— Autonomous driving in urban and highway sce-
narios involves a set of predefined requirements that the vehicle
should obey, such as lane following, safety distances to sur-
rounding vehicles, and speed preferences. We have previously
shown that by interpreting the motion-planning problem as a
nonlinear non-Gaussian estimation problem, we can leverage
particle filtering to determine suitable vehicle trajectories. In
this paper, we validate our proposed motion planner using
scaled vehicles. We show that our motion planner is capable
of determining safe and drivable trajectories for a number
of challenging scenarios, and that the trajectories can be
accurately tracked by a lower-level nonlinear model predictive
control scheme.

I. INTRODUCTION

Autonomous vehicles are complex decision-making sys-
tems that integrate interconnected sensing and control com-
ponents. At the highest level a route is planned through the
road network by the route planner, based on a user-defined
destination. The route plan can be given by intermediate
goals Xgoal, for example, represented as possible lanes at
an intersection and/or a particular road after an intersection.

A discrete decision maker is responsible for determining
the local driving goal of the vehicle. A motion planner
determines a desired trajectory that the vehicle should follow
based on the outputs from the sensing and mapping module
and the decision maker. The sensing and mapping module
uses various sensor information, such as radar, lidar, camera,
and global positioning system (GPS) information, together
with prior map information, to estimate the environment.
Important requirements are that the trajectory computed by
the motion planner is collision free, dynamically feasible,
and possible to track by the vehicle controller. The motion-
planning problem in autonomous vehicles share many sim-
ilarities with the standard robotics setup [1]. Exact optimal
solutions are in most cases intractable. Approaches relying
on model predictive control (MPC) have been developed
for specialized scenarios [2]–[4]. However, a typical limiting
factor with these approaches is nonconvexity [2]. This results
in achieving only a locally optimal solution, which may be
significantly far from the globally optimal one, and possibly
in a very large computational load and time, even to find just
a feasible solution. Motion planning in autonomous vehicle
research is often performed using either sampling-based
methods such as rapidly-exploring random trees (RRTs) [1],
[5], [6], graph-search methods [7], [8] such as A* or D* [9],

The authors are with Mitsubishi Electric Research
Laboratories (MERL), 02139 Cambridge, MA, USA,
Email:{karl.o.berntorp,dicairano}@ieee.org,
{anani,quirynen}@merl.com.

[10], or optimal control, possibly using MPC for tracking the
motion plan [11], [12].

We have previously developed a probabilistic method for
integrated decision making and motion planning [13], in
which we pose the combined decision making and motion
planning problem as an estimation problem, and leverage
particle filtering for approximating the involved probability
density functions (PDFs). Particle filtering is a sampling-
based technique for solving the nonlinear filtering problem.
The particle filter (PF) numerically approximates the PDF
of the variables of interest given the measurement history,
by generating random trajectories and assigning a weight to
them according to how well they predict the observations.
The driving requirements, such as staying on the road, right-
hand traffic, and obstacle avoidance, are known ahead of
planning, we formulate the driving requirements as measure-
ments generated by an ideal system.

This paper experimentally validates our approach in dif-
ferent driving scenarios. We have developed a test bench
consisting of small-scale vehicles [14], and recorded hours
worth of driving data for numerous scenarios, such as dif-
ferent types of lane-change, overtaking, collision-avoidance,
and traffic-jam situations. We show a relevant set of these
results, and we point out implementation aspects that are
generally applicable to any autonomous-driving system.

Notation: Throughout, p(x0:k|y0:k) denotes the condi-
tional probability density function of the state trajectory
x ⊂ X ∈ Rnx at time tk ∈ R conditioned on the vari-
able (measurement) y ⊂ Y ∈ Rny from time t0 to time tk,
ym:k := {ym, . . . ,yk}. Given mean vector µ and covariance
matrix Σ, N (µ,Σ) and N (x|µ,Σ) stand for the Gaussian
distribution and PDF, respectively. The notation x ∼ p(·)
means x sampled from p(·) and ∝ reads proportional to.

II. MODELING

We refer to the automated vehicle as the ego vehicle (EV),
whereas other moving vehicles in the region of interest (ROI)
of the EV are designated as other vehicles (OV). Note that
the OVs can be either autonomous or manual vehicles, as we
do not assume any explicit collaboration between different
vehicles. Our method handles general discrete-time nonlinear
vehicle models for describing the time evolution of the EV,

xk+1 = f̄(xk) + ḡ(xk)uk, (1)

with EV state xk ∈ Rnx and EV input uk ∈ Rnu , and k is
the time index corresponding to time tk.

We assume moderate steering and acceleration maneuvers
and use the kinematic single-track model [15], with state



vector x = [pX pY ψ vx δ]
T, where pX , pY are the longi-

tudinal and lateral position in the world frame, respectively,
ψ is the heading (yaw) angle of the EV, ψ̇ is the yaw rate, vx
is the longitudinal velocity of the EV, and δ is the steering
angle of the front wheel. The inputs are the acceleration and
steering rate, to obtain smooth velocity and steering profiles
and to constrain the rate of changes of the velocity and
steering angle, respectively.

We impose various state and input constraints on the
vehicle. The steering angle δ and the steering rate δ̇ and
acceleration v̇x are subject to linear constraints, which can
compactly be written as

U = {uk : umin ≤ uk ≤ umax}. (2)

The road-boundary constraint can be written as

Γ(pX , pY ) ≤ 0, (3)

where Γ is constructed from point-wise road data.
The constraints due to the OVs can take any shape. For

instance, if the motion of the OVs is estimated by means
of Kalman filters, a natural choice is to model the OVs as
(conservative) ellipsoids. The spatial extent of the collision
area of the EV around the o-th OV is denoted with Bo, and
the corresponding OV state is xOV

o = [pOV
X,o p

OV
Y,o ψ

OV
o vOV

x,o]T.
We define the (deterministic or probabilistic) obstacle set
at time step k as Ok(xOV

o,0,Bo), which depends on the
measured/estimated OV state xOV

o,0 at k = 0. Denote the
planning horizon with Tf . The predicted set of the o-th OV
for k ∈ [0, Tf ] is

Sk,o = O0:k(xOV
o,0,Bo). (4)

The area the motion planner should avoid up until time index
k is computed as the union over all OV trajectory sets (4),

Sk =

M⋃
o=1

Sk,o. (5)

A. Discrete Decision Model
Given the route plan, there are behavioral driving decisions

to be determined. If we consider a three-lane road and have
a high-level route coming from a route planner, the possible
modes are either to come to a full stop (S), stay in lane
(SL), change lane left (CLL), or change lane right (CLR).
The decisions can be modeled as a set of modes

M = {S, SL,CLL,CLR} = {m1, . . . ,m4}. (6)

The decision making model is a finite-state Markov process
with transition probabilities. These transition probabilities
can be determined from the driving context perceived from
the sensing and prediction modules, deduced from (5), in
combination with the route commanded by the route planner.
The transition model between any two modes j and i is

mj ∼ p(mj |mi), (7)

which is determined from the transition probabilities. When
there is no a priori information from the sensing and predic-
tion modules, the transition probabilities encoded in (7) can
be set to the same value for all transitions.

B. Driving Requirements

The proposed method is based on that nominal driving
requirements can be determined a priori. These requirements
can be summarized in the vector yk ∈ Rny for each time
step k. We model the driving requirements to maintain a
(possibly time varying) nominal velocity vnom, be positioned
in the middle of the lane corresponding to the driving mode,
that is, to have zero deviation from the middle of the lane,
and ideally keep the distance larger than dmin from the
surrounding vehicles.

Hence, for M obstacles in the ROI of the EV,

yk =
[
vnom,k 0 g1,k · · · gM,k

]T
, (8)

go,k =

{
0 if do,k > dmin,

f(dmin − do,k) if do,k ≤ dmin,
(9)

where do,k is the distance between the EV and the o-th OV
and go,k(·) is a monotonically increasing function.

The resulting trajectory generated by the motion planner
will not exactly track yk, due to, for instance, conflicting re-
quirements, input constraints, the vehicle kinematics limiting
the drivable space, sensing and modeling errors, or limited
computing time. The driving requirements are modeled as
output equations on the vehicle states as

ŷk = h(xk,mj ,Sk,xRD) + ek, (10)

where h is a nonlinear function relating the EV state xk,
mode mj , OV obstacle set Sk (hence also {xOV}Mo=1), and
road information xRD, to the driving requirements. Fur-
thermore, ek ∈ Rne is the slack, which results in the
probabilistic cost, on the driving requirements. We model
ek as a stochastic Gaussian disturbance with covariance Rk

that can be dependent on the vehicle and driving mode. For
the driving requirements in (8), (10) can be written as

h(xk,mj ,Sk,xRD) =
[
vx,k pe,k d1,k · · · dM,k

]
,

(11)
where pe,k is the lateral deviation from the middle of the
lane in the road-aligned frame.

III. DECISION MAKING AND MOTION PLANNING USING
PARTICLE FILTERING

We briefly outline our method for decision making and
motion planning, but refer to [13], [16] for details.

A. Particle Filtering with Discrete and Continuous States

The objective of the motion planner is to determine an
input trajectory and corresponding motion plan over the
planning horizon Tf that navigates the road safely while
satisfying input constraints (2), road constraints (3), and
obstacle constraints (5). In addition, we want to minimize
deviations from the predefined driving requirements (8).

In a Bayesian framework, by adding process noise wk to
the vehicle model (1), (1) and (10) can be formulated as

xk+1 ∼ p(xk+1|xk), (12a)
yk ∼ p(yk|xk,x

RD,Sk,mj), (12b)

where xk+1 and yk are regarded as samples.



Given the vehicle dynamics (1), the goal of the motion-
planning method is to generate an input trajectory uk, k ∈
[0, Tf ] over the planning horizon Tf satisfying the input
constraints (2) such that the resulting trajectory obtained
from (1) obeys (3), avoids the obstacle set (5), and reaches
the goal region, that is, xTf

∈ Xgoal, where goal region Xgoal

is assumed to be given by a higher-level route planner.
The main idea in the approach is that we determine the

state trajectory PDF p(x0:T |y0:T ,mj ,x
RD,ST ), conditioned

on the driving requirements y0:T , the driving mode mj ,
and the global information as a finite weighted sum over
the planning horizon, and then extract the trajectory from
the PDF. By doing this iteratively, we construct a trajectory
x0:Tf

based on the driving requirements and modes. In our
approach, the driving requirements are the equivalent of
sensor measurements in a traditional estimation problem.

The PF approximates the state trajectory PDF by a set of
N particles xi

0:T and their associated importance weights qiT ,

p(x0:T |y0:T ,mj ,x
RD,ST ) ≈

N∑
i=1

qiT δ(x0:T − xi
0:T ), (13)

where qiT in (13) is the importance weight for the ith particle
and δ(·) is the Dirac delta mass. To propagate the particles,
the PF generates N samples xi

k from a proposal density π(·),

xk ∼ π(xk|xk−1,yk,mj ,x
RD,Sk) (14)

by using the particles from the previous time step k−1. After
sampling the state at time index k, which amounts to the
prediction step, the measurement step consists of updating
the weights qik according to

qik ∝
p(yk|xi

k,mj ,x
RD,Sk)p(xi

k|xi
k−1)

π(xi
k|xi

k−1,yk,mj ,xRD,Sk)
qik−1, (15)

The weight update (15) will put low weight to states that are
relatively far from obeying the driving requirements. How-
ever, this only provides statistical guarantees on constraint
satisfaction. Hence, to make sure we do not violate the road
constraints and enter the obstacle set, we use the update

qik =

{
(15) if (3) and (5) are satisfied
0 if (3) or (5) are violated . (16)

Using (16), the road constraints are not violated and obstacle
set is not entered, provided at any time step there is at least
one out of the N particles that satisfies (3) and (5).

IV. IMPLEMENTATION ASPECTS

In this section we provide implementation details that are
important for reliable trajectory planning.

A. Determining the Tree Expansion

It is computationally inefficient to execute the full PF at
each planning step, because old, possibly useful, information
is discarded [17]. Hence, to allow warm-starting the motion
planner, we incrementally expand a tree T in the following
way. Storing the complete representation of the PDF over
the planning horizon is problematic given the limited mem-
ory capabilities of automotive micro-controllers. Instead, we

extract the trajectory and corresponding inputs from (13) by
using the minimum mean-square estimates

x0:T =

N∑
i=1

qiTx
i
0:T , u0:T−1 =

N∑
i=1

qiTu
i
0:T−1. (17)

The tree is extended with the state trajectory in (17) as
vertices V and the input transitions in (17) as edges E . In
the next iteration, we start from a state corresponding to a
vertex in the tree and again execute the PF. Since the time
is incorporated into every vertex in the tree, as long as the
obstacle prediction (5) is reliable the tree can be reused in the
next planning cycle and there is no need for the reevaluation
of nodes, which is computationally heavy when replanning
in dynamic environments [6]. Each vertex also contains a
timestamp and a cost C for reaching that node. The proposed
method not only checks whether an intersection with an
OV occurs, but also at what time. The dynamic collision
avoidance is because the method generates trajectories (i.e.,
the solution has the concept of time at generation). At the
end of the tree expansion, the lowest-cost trajectory in terms
of the cost C is chosen for execution. We sample and connect
the driving modes to nodes corresponding to the same driving
mode, to avoid several driving-mode changes in one planning
phase. In practice we generate the state trajectory in (17)
by first generating control inputs, which are then used to
simulate the system to obtain the state trajectories [13].

B. Receding-Horizon Implementation

We implement the motion planner in a receding-horizon
strategy. The computed trajectory is Tf long but is only
applied for ∆t ≤ Tf , and the maximum allowed (allocated)
computation time for finding the motion plan is δt. We
keep a committed tree, which is the part of the tree that
will be executed. In the beginning of a planning phase, the
measured EV position is obtained, and the EV position over
the allocated computation time δt is predicted, compared,
and matched with a node being the closest node in the tree.
This node becomes the root node of the planning phase, and
the part of the tree that is not a descendant of the end node
is deleted.

C. Algorithm Summary

Algorithm 1 describes the planner and the PF-based explo-
ration is given in Algorithm 2. When the computation time
exceeds δt, the safe trajectory with lowest accumulated cost
C is chosen for execution (Line 15, Algorithm 1).

V. EXPERIMENTAL RESULTS

This section presents results from multiple scenarios us-
ing our scaled vehicle experimental platform. We use the
Hamster platform [18] for testing and verifying our control
stack before deploying on a full-scale vehicle, see Fig. 1.
The Hamster is a 25× 20 cm mobile robot for research and
prototype development. It is equipped with scaled versions of
sensors commonly available on full-scale research vehicles,
such as a 6 m range mechanically rotating 360 deg Lidar,
an inertial measurement unit, GPS receiver, HD camera,



Algorithm 1 Proposed Planning Method
1: Input: State estimate x̂, goal region Xgoal, tree T .
2: Propagate x̂ with the allocated time slot δt.
3: Set root node of T corresponding to x̂.
4: Delete part of T that is not a descendant of the root

node.
5: Update obstacle set (5) and road constraint (3) to com-

pute allowed region Xfree.
6: Set tCPU ← 0
7: while tCPU ≤ δt do
8: Generate driving mode mj from (7).
9: Determine {x0:T ,u0:T−1} using Algorithm 2.

10: if x0:T is obstacle free then
11: Add x0:T as vertices Vnew to T .
12: Add u0:T−1 as edges Enew to T .
13: end if
14: end while
15: Determine lowest-cost safe state trajectory xbest and

corresponding controls ubest.
16: Apply {xbest,ubest} for time ∆t, repeat from Line 1.

Fig. 1. The Ackermann-steered Hamster mobile robot used in the
experiments. The markers (five visible in the figure) are used to track the
robot via an Optitrack motion-capture system (Fig. 2).

and motor encoders. It uses two Raspberry PI3 computing
platforms, each with an ARM Cortex-A53 processor running
Linux Ubuntu for processing. The Hamster has Ackermann
steering and is kinematically equivalent to a full-scale vehi-
cle. Its dynamics, such as the suspension system, resembles
that of a regular vehicle. The Hamster has a low-level
controller with dedicated hardware for power distribution and
monitoring, and it is controlled by setting the desired wheel-
steering angle and longitudinal velocity. The Hamster has
built-in mapping and localization capabilities. The platform
is a good proxy for verifying dynamic feasibility and for
testing the performance of the system in a realistic setting,
with a sensor setup similar to the one expected in full-
scale autonomous vehicles. The Hamster connects to external
algorithms using the robot operating system (ROS).

To evaluate the control and estimation algorithms in terms
of tracking errors and resulting trajectories in a controlled
environment, we use an Optitrack motion-capture system
[19]. The Optitrack system is a camera-based (see Fig. 2)
six degrees-of-freedom tracking system that can be used for
tracking drones, ground, and industrial robots. Depending on
the environment and quality of the calibration, the system
can track the position of the Hamster within 0.9 mm and

Algorithm 2 Particle Filter for Trajectory Generation
Input: Propagated state x̂, driving mode mj , and T .

1: Choose a feasible node in the tree consistent with mj

and extract state x0.
2: Set {xi−1}Ni=1 ← x0, {wi

−1}Ni=1 ← 1/N ,
3: for k ← 0 to T do
4: for i← 1 to N do
5: Generate state xi

k and input ui
k from (14).

6: Update weight q̄ik using (16).
7: end for
8: if

∑N
i=1 q̄

i
k = 0 then

9: Terminate and return to Algorithm 1, Line 7.
10: end if
11: Normalize: qik ← q̄ik/

∑N
j=1 q̄

j
k

12: Set Neff ← 1/(
∑N

i=1(qik)2)
13: if Neff ≤ γN then
14: Resample particles with replacement.
15: Set qik ← 1/N, ∀i ∈ {1, . . . , N}.
16: end if
17: end for
18: Extract trajectory and inputs according to (17).

Return: {x0:T , u0:T−1}

Fig. 2. A camera from the Optitrack motion-capture system used for
verifying our control and estimation algorithms.

with a rotational error of less than 3 deg. The OptiTrack is
connected to the ROS network using the VRPN protocol.

We use three Hamsters in the experimental validation, one
acts as the EV and two act as obstacles. The objective is to
avoid the obstacles while circulating a two-lane closed circuit
in the counter-clockwise direction, with the inner lane as
preferred lane. The trajectory, steering angle, and velocity
computed by the motion planner are sent to an NMPC
using a Real-Time Iteration (RTI) solution scheme (see
[20] for details) that tracks the trajectory using the steering
angle and velocity as feed-forward terms. The obstacles are
commanded to track the middle of either of the lanes, where
the preferred lane and vehicle velocities can be changed
throughout the experiments. The OVs use PID controllers for
tracking the desired lane and velocity. The current position
of the OV is obtained from the Optitrack while the velocity
is estimated. The OV prediction model is based on a simple
lateral controller that approximates the PID controller, and
the OVs are modeled as deterministic and rectangular.

The different parameters in the planner, symmetric input
constraints, and symmetric state constraints are shown in
Table I. Algorithm 1 is implemented in MATLAB, with
Algorithm 2 embedded as C-coded mex-functions. MATLAB
acts as a ROS node executed from a standard Linux desktop
and sends the reference command to the EV NMPC [20]



TABLE I
THE PARAMETER CHOICES FOR THE EXPERIMENTAL STUDY.

Parameter Unit Value Meaning

N - 100 # particles
∆t s 0.6 Execution time
δt s 0.1 Allocated computation time
Ts s 0.3 Sampling period motion planner
Tf s 5 Planning horizon
h ms 25 Sampling period NMPC
T - Tf/Ts Prediction time
δmax deg 15 Maximum steering angle
δ̇max deg/s 10.5 Maximum steering rate
v̇x,max m/s2 0.2 Maximum acceleration

implemented using ACADO [21]. The OV controllers oper-
ate in their respective Raspberry PI3. From Table I we also
see that the vehicle controller tracks the same plan for two
consecutive time steps, when an updated plan arrives.

A. Overtaking with Standstill OVs

In this scenario the two OVs drive with varying speeds
slightly slower than the EV, with occasional braking ma-
neuvers forcing them to standstill. The motion-prediction
module used in the motion planner is only aware of the
estimated position and estimated velocity at the beginning of
each planning phase, but needs to dead-reckon (i.e., predict)
the OV trajectories over the entire prediction horizon. Hence,
these braking maneuvers show the motion planners ability to
react to unexpected behaviors in the environment.

Fig. 3 displays four snapshots of one situation where one
of the OVs suddenly comes to a standstill (t = 164 s). The
planner reacts to the changed situation and and successfully
plans a new trajectory that is subsequently tracked by the
NMPC (t = 165 s). At (t = 175 s), the planner determines
to change back to the inner lane.

B. Traffic-Jam Assist

In this scenario there are two OVs, one in each lane, in
front of the EV initially driving with considerably slower
speed than the EV. The OVs change their respective speeds
at time instants unknown to the EV.

Fig. 4 shows snapshots of a 135 s excerpt of an eight
minutes long data set. First, a trajectory that urges the
vehicle to slow down to satisfy the predefined safety distance
is computed (t = 121 s). The motion planner computes
trajectories for both lanes, but determines that it is better to
stay in the inner lane. Between t = 121 s and t = 160 s, the
OV in the outer lane has increased its speed, which makes
the motion planner to change lane. At t = 199 s the OV
in the inner lane speeds up, which leads to that the motion
planner determines to again change lane. The motion planner
determines that it is safe to overtake the OV in the inner lane
(t = 213 s). Finally the EV moves back to the preferred lane.

Fig. 5 displays steering and velocity profiles, and the
NMPC solution. The measured trajectories closely match
the corresponding planned quantities, which shows that the
motion planner computes dynamically feasible (i.e., drivable)
trajectories. The NMPC profiles mostly match well with the

planner profiles, which indicates that the proposed archi-
tecture provides reliable driving behavior. There are a few
discrepancies, which are mainly due to model differences.
First, the vehicle model in the NMPC uses a first-order
actuator model, which is not captured in the motion planner.
Second, there is a steering offset compensator that affects the
control performance, since it is used as a feedforward term
to the NMPC. However, the lower-level NMPC can reliably
track the trajectories generated by the motion planner.

VI. CONCLUSION

We evaluated our previously proposed [13], [16] PF based
strategy for online decision making and motion planning of
autonomous vehicles. Our experimental evaluation was done
on a small-scale robotics platform. The results show that
the planner provides drivable trajectories that can be tracked
with high accuracy, and that the NMPC and motion planner
predict similar control inputs (Fig. 5). These results reinforce
that the planner is able to provide drivable trajectories for a
number of different scenarios, such as lane following, lane
change, obstacle avoidance, and traffic-jam situations.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge
University Press, 2006.

[2] N. Murgovski and J. Sjöberg, “Predictive cruise control with au-
tonomous overtaking,” in Conf. Decision and Control, Osaka, Japan,
2015.

[3] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision
avoidance and stabilization for autonomous vehicles in emergency
scenarios,” IEEE Trans. Control Syst. Technol., vol. PP, no. 99, pp.
1–13, 2016.

[4] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli,
“Linear model predictive control for lane keeping and obstacle avoid-
ance on low curvature roads,” in Int. Conf. Intell. Transp. Syst., The
Hague, Netherlands, 2013.

[5] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
2011.

[6] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1105–
1118, 2009.

[7] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the Urban challenge,” J. Field R,
vol. 25, no. 8, pp. 425–466, 2008.

[8] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The Stanford entry in the Urban challenge,” J. Field R., vol. 25, no. 9,
pp. 569–597, 2008.

[9] A. Stentz, “The focussed D* algorithm for real-time replanning,” in
Int. Joint Conf. on Artificial Intelligence, Montreal, Quebec, Canada,
1995.

[10] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Trans. Robot., vol. 21, no. 3, pp. 354–363,
2005.

[11] S. Anderson, S. Peters, T. Pilutti, and K. Iagnemma, “An optimal-
control-based framework for trajectory planning, threat assessment,
and semi-autonomous control of passenger vehicles in hazard avoid-
ance scenarios,” Int. J. Vehicle Autonomous Systems, vol. 8, no. 2/3/4,
pp. 190–216, 2010.

[12] K. Berntorp, “Path planning and integrated collision avoidance for
autonomous vehicles,” in Amer. Control Conf., Seattle, WA, May 2017.

[13] K. Berntorp and S. Di Cairano, “Particle filtering for online motion
planning with task specifications,” in Amer. Control Conf., Boston,
MA, Jul. 2016.



−3 −2

1

2

3

4

t = 156 [s]

X [m]

Y [m]

−2.5 −1.5 −0.5

−1

0

1

2

t = 164 [s]

−2.5 −1.5 −0.5

−1

0

1

2

t = 165 [s]

0.5 1.5

−1

0

1

t = 175 [s]

Fig. 3. Four snapshots from a situation where an OV (blue) in front of the EV (red) suddenly comes to a standstill. The EV in red, obstacles in blue,
and particles from the motion planner in green. In every figure, snapshots of the EV and OVs are shown every 0.5 s in increasingly darker colors.

−3 −2

2

3

4

t = 116 [s]

X [m]

Y [m]

−2.5 −1.5 −0.5 0.5

0

1

2

3

t = 121 [s]

1.5 2.5

0

1

2

3

t = 160 [s]

0.5 1.5

3

4

t = 176 [s]

−2.5 −1.5 −0.5

3

4

t = 199 [s]

−2.5 −1.5 −0.5 0.5

0

1

2

3

t = 208 [s]

−3.5 −2.5 −1.5 −0.5

−1

0

1

2

t = 213 [s]

−1.5 −0.5 0.5

3

4

t = 247 [s]

Fig. 4. Eight snapshots from the experimental validation in the traffic-jam scenario. Same notation as in Fig. 3

0 50 100 150 200 250 300
0

0.1
0.2

Time [s]

v x
[m

/s
]

vplanner
vmeas

110 135 160 185

−15

−5

Time [s]

δ
[d

eg
]

110 135 160 185
0

0.1
0.2

Time [s]

v x
[m

/s
]

NMPC
planner

Fig. 5. Steering and velocity references (red) from the motion planner
and the corresponding measured quantities throughout the experiment in the
upper plot, where the portion of the data set in Fig. 4 is indicated by the blue
dashed lines. The two lower plots show the steering and velocity references
from the motion planner and the corresponding predicted quantities from
the NMPC, at every third planning instant.

[14] K. Berntorp, T. Hoang, R. Quirynen, and S. Di Cairano, “Control
architecture design of autonomous vehicles,” in Conf. Control Technol.
and Applications, Copenhagen, Denmark, Aug. 2018, invited paper.

[15] A. Carvalho, S. Lefévre, G. Schildbach, J. Kong, and F. Borrelli,
“Automated driving: The role of forecasts and uncertainty - a control
perspective,” Eur. J. Control, vol. 24, pp. 14–32, 2015.

[16] K. Berntorp and S. Di Cairano, “Joint decision making and motion
planning for road vehicles using particle filtering,” in IFAC Symp.
Advances in Automotive Control, Kolmården, Sweden, Jun. 2016.

[17] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” J. Guidance, Control, and Dynamics,
vol. 25, no. 1, pp. 116–129, 2002.

[18] Cogniteam, “The Hamster,” 2018, [accessed 8-January-2018].
[Online]. Available: www.cogniteam.com/hamster5.html

[19] Optitrack, “Prime 13 motion capture,” 2018, [accessed 23-January-
2018]. [Online]. Available: http://optitrack.com/products/prime-13

[20] R. Quirynen, K. Berntorp, and S. Di Cairano, “Embedded optimization
algorithms for steering in autonomous vehicles based on nonlinear
model predictive control,” in Amer. Control Conf., Milwaukee, WI,
Jun. 2018.

[21] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear MPC: a tutorial using ACADO
integrators,” Optimal Control Applications and Methods, vol. 36, pp.
685–704, 2014.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-062.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


