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I. INTRODUCTION

Time series data generated by sensors in physical systems
and data mining on such data are widely used in applications
of Prognostics and Health Management (PHM). Recently, a
research group from the University of California at Riverside
(UCR) have proposed a powerful tool – the Matrix Profile
(MP) [1] as a primitive to tackle various time series data
mining tasks, including discovery of motifs, discords and
shapelets [2], time series joins [3], visualization [4], semantic
segmentation [5], etc. They have also devised algorithms to
compute MP efficiently [3], making it very scalable.

When only one sensor is used to generate time-dependent
sequence data, we would end up with a Univariate Time
Series (UTS) that contains one single variable. Letting x =
(x(t)); [t = 1, 2, . . .] denote such a UTS, the MP of x is
a data structure that annotates the time series x itself – the
MP at the t-th location of time series x records the distance
of the subsequence (with a predesignated length depending
on domain knowledge and applications) in x, at the t-th
location, to its nearest neighbor in x. Given the MP of x,
relatively high values indicate the subsequence in the original
time series x must be unique in its shape (such areas are
“discords” or anomalies). This intuitive observation enables
us to use the MP for purposes of certain PHM tasks such as
fault detection and classification. However, relatively low MP
values do not necessarily correspond to non-discords; see, e.g.,
the “twin freak” issue discussed in [1]. As a matter of fact,
for fault detection and/or fault classification tasks, the MP is
ideally applicable only for time-stationary physical systems or
processes, because it captures variational information of sensor
data all the way along the time – if the data themselves are
statistically time varying, identifying discords (faults) through
the MP would be difficult.

In practice, it is broadly seen that time series data are
generated from not only multiple sensors but also time-varying
systems or processes that have lots of transients [6]. Thus, it
is inevitable to operate on Multivariate Time Series (MTS)
generated by multiple types of sensors in time-varying systems
or processes. Conceptually, it is not hard to adapt the MP of
a single UTS to that of a UTS joining (i.e., with respect to)
another UTS or multiple UTS, and even to that of a single
MTS or to that of a MTS joining another MTS or multiple
MTS. However, such direct adaptations would still not be
able to resolve the “twin freak” issue in time-varying systems
or processes. Essentially, the MP requires nearest neighbor
searching over all available subsequences involved in the UTS
or MTS, but such exhaustive searching would lead to false
positives and/or false negatives easily, for instance, in a typical
fault detection application for a time-varying system. These
limitations motivate us to introduce a Localized version of
the Matrix Profile (LMP), a new time series primitive which
is applicable in time-varying systems or processes for certain
PHM tasks including fault detection and classification. A direct
brute-force approach computing LMP is inefficient; thus, we
also devise a faster algorithm to compute the LMP.

In this paper, when dealing with PHM tasks such as fault
detection and classification, we focus on investigating window-
based faults that are manifested as subsequences of time series
that are significantly different from the subsequences observed
in normal conditions. For a particular subsequence length,
we can work with a sliding window of that length over the
time series, and analyze how different or similar it is from
windows in normal time series. Window-based approaches are
particularly useful for real-time PHM applications on large-
sized streaming data, which are widely observed in all kinds
of networked systems; e.g., communication networks [7]–[8],
social networks [9], [10], transportation networks [11], [12].
In this work, we propose a fault detector and a fault classifier
based on the LMP. To demonstrate the performance of our
methods, a case study on fault diagnosis for an electrical motor
using simulated sensor data is presented.

The rest of the paper is organized as follows. In Sec. II
we define LMP with sufficient preliminaries including an
adaptation of UCR’s original definition of MP. In Sec. III
we devise algorithms for computing LMP, propose a fault
detector based on the LMP, and propose a fault classifier



based on the LMP. We present the case study in Sec. IV and
conclude in Sec. V. Supplementary materials are contained in
the Appendix.

II. DEFINITIONS

Throughout the paper, we only consider transient systems
(physical devices such as electrical motors) where the runs
are correctly time stamped and synchronized, so that we are
comparing data from the same time/stage in the process. In
particular, we assume that multiple sensors are deployed in
the system to generate time series data characterizing the
properties of the physical process. Thus, for a typical run of
such a system, we end up with a Multivariate Time Series
(MTS). As a foundation of certain PHM tasks such as fault
detection and classification, we need to collect a number of
baseline MTS items corresponding to normal runs of the
system. Then, we investigate test MTS items with respect to
the baseline ones.

Before proceeding, let us introduce some notation. Let
N be the number of variables in the raw MTS data (i.e.,
number of sensors for collecting MTS data); it is assumed
to be the same for all MTS items. Denote by n the variable
(sensor) index, where n = 1, . . . , N . Let T be the number of
time instances recorded by sensors, which is also assumed
to be the same for all MTS items. Denote by t the time
instance index, where t = 1, . . . , T . Let L be the number
of baseline MTS items, l the MTS item index, and denote by
a(l) = (a

(l)
n (t)); [n = 1, . . . , N ; t = 1, . . . , T ], l = 1, . . . , L,

the baseline MTS items, where a(l)n (t) is the value of the n-
th variable (sensor) sampled at the t-th time instance in the
l-th MTS item. Let b = (bn(t)); [n = 1, . . . , N ; t = 1, . . . , T ]
be a testing MTS item. Let M be a parameter denoting the
query length in nearest neighbor searching of subsequences.
The ζ-th subsequence of a(l) with length M is θa(l),ζ =

(a
(l)
n (t)); [n = 1, . . . , N ; t = ζ, . . . , ζ + M − 1], where

ζ = 1, . . . , T −M +1. The ξ-th subsequence of b with length
M is θb,ξ = (bn(t)); [n = 1, . . . , N ; t = ξ, . . . , ξ + M − 1],
where ξ = 1, . . . , T −M + 1. Noting that different variables
(sensors) could contribute differently in fault detection and
classification, we introduce a vector s = (sn); [n = 1, . . . , N ]
representing Variable Importance Scores (VISs), where sn ≥ 0
is the importance score of the n-th variable (sensor).

Remark 1 Without loss of generality, assume b /∈ {a(l); l =
1, . . . , L}; note that in the case where b ∈ {a(l); l = 1, . . . , L}
we could take {a(l); l = 1, . . . , L} \ {b} as the baseline MTS
set.

Remark 2 In this work, for a given physical system, we only
consider a global VIS vector s, and assume it is independent
of l and t. To determine s, we use a scheme based on Principal
Components Analysis (PCA) originally proposed in [13]; see
the Appendix for details.

Before adapting UCR’s original definition of the Matrix
Profile (MP) to our systems settings, we need the following
definition of a generalized version of Euclidean distance:

Definition 1 (Weighted Euclidean Distance)
The Weighted Euclidean Distance (WED) d(·, ·) between
θa(l),ζ and θb,ξ is defined as

d
(
θb,ξ,θa(l),ζ

)
=

N∑
n=1

sn ×

√√√√M−1∑
τ=0

(
bn(ξ + τ)− a(l)n (ζ + τ)

)2
. (1)

Remark 3 Def. 1 generalizes the Euclidean distance used by
[1] in terms of dealing with multivariate data and taking the
variable importance scores into account. However, we do not
z-normalize (i.e., subtract the mean and divide by the stan-
dard deviation) the subsequences θa(l),ζ and θb,ξ beforehand,
because for fault detection/classification, such normalization
would possibly lead to errors; for example, if (0.1, 0.2) is a
subsequence being normal, then (1, 2) would be determined
also as normal if using the z-normalized Euclidean distance
(0), but the latter is actually deviating significantly from the
former, thus being a fault.

We are now in a position to adapt the Matrix Profile (MP)
to our case and introduce the Localized Matrix Profile (LMP).

Definition 2 (Matrix Profile)
The Matrix Profile (MP) of MTS item b joining baseline MTS
set {a(l); l = 1, . . . , L} is a vector g̃ = (g̃1, . . . , g̃T−M+1)
determined by

g̃ξ = min ζ∈{1,...,T−M+1}
l∈{1,...,L}

d
(
θb,ξ,θa(l),ζ

)
,

ξ = 1, . . . , T −M + 1. (2)

Definition 3 (Localized Matrix Profile)
The Localized Matrix Profile (LMP) of MTS item b join-
ing MTS set {a(l); l = 1, . . . , L} is a vector g =
(g1, . . . , gT−M+1) determined by

gξ = min
l∈{1,...,L}

d
(
θb,ξ,θa(l),ξ

)
, ξ = 1, . . . , T −M + 1.

(3)

In other words, the ξ-th entry of the MP of b joining
{a(l); l = 1, . . . , L} is the Weighted Euclidean Distance
(WED) between the ξ-th subsequence of b and its nearest
neighbor over all subsequences of {a(l); l = 1, . . . , L}, no
matter where they start. On the other hand, the ξ-th entry
of the LMP of b joining {a(l); l = 1, . . . , L} is the WED
between the ξ-th subsequence of b and its nearest neighbor
over all subsequences of {a(l); l = 1, . . . , L} with the same
starting time (i.e., the ξ-th time instance).

Remark 4 It is seen that, in order to calculate one single
entry of the MP (resp., LMP) vector g̃ (resp., g), one needs
to conduct O(LT ) (resp., O(L)) queries.



III. ALGORITHMS

Since our focus in this paper is on conducting PHM tasks
such as fault detection and classification based on the LMP,
we will not discuss algorithms for MP computation in detail.
Instead, when devising algorithms for LMP computation, we
will point out connections to those for MP computation,
wherever necessary. In addition, after presenting algorithms
for LMP computation, we will propose a fault detector and a
fault classifier based on the LMP.

A. Algorithms for Computing LMP

By the definition of LMP and direct searching, it is easy to
come up with a brute-force algorithm (see Alg. 1) to obtain
the LMP vector g, whose time complexity is O (MNLT ) and
space complexity is O (NLT ). Note that we use “FLT MAX”
to denote a large enough number and, in Line 4 of Alg. 1, the
distance d

(
θb,ξ,θa(l),ξ

)
is calculated directly by definition;

refer to (1).

Algorithm 1 Brute Force Time Series Localized Matrix Profile
(BFTLMP)

Input: MTS item b with length T ; L baseline MTS items
a(l), l = 1, . . . , L, each with length T ; VIS vector s;
query length M

1: for ξ = 1, . . . , T −M + 1 do
2: gξ ← FLT MAX
3: for l = 1, . . . , L do
4: gξ ← min

{
gξ, d

(
θb,ξ,θa(l),ξ

)}
5: end for
6: end for

Output: g = (gξ; ξ = 1, . . . , T −M + 1)

On the other hand, given l and ξ, by (1) we can write
d
(
θb,ξ,θa(l),ξ

)
=
∑N
n=1 sn ×

√
∆

(n,l)
ξ , where ∆

(n,l)
ξ

def
=∑M−1

τ=0

(
bn(ξ + τ) − a

(l)
n (ξ + τ)

)2
satisfies the following

recursion:

∆
(n,l)
ξ+1 = ∆

(n,l)
ξ +

(
bn(ξ +M)− a(l)n (ξ +M)

)2
−
(
bn(ξ)− a(l)n (ξ)

)2
. (4)

From (4), it is seen that once we have computed ∆
(n,l)
ξ , then

∆
(n,l)
ξ+1 can be obtained in O(1) time. The idea makes use of

the overlap between consecutive subsequences, and leads to
Alg. 2, which has an O (NLT ) time complexity. It is worth
pointing out that (i) the recursion (4) is similar to [3, Eq.
(4)], which paves the way to speed up the computation by a
factor M (the query length; this reduction of time complexity
is significant especially when M is large), and (ii) the name
of Alg. 2 (STOLMP) is partially borrowed from [3], where an
algorithm named STOMP is proposed for MP computation.

To better facilitate parallelism, in Alg. 2 we do not directly
use the recursion (4), but compute all the prefix sums as
an initial scan (see Line 5 of Alg. 2, where we define
h
(l)
n (0) = 0,∀n ∈ {1, . . . , N}, l ∈ {1, . . . , L}), and then

extract the partial sums involved in the distance computation
by an easy subtraction (see Line 12 of Alg. 2). Note that
h
(l)
n (t); [n = 1, . . . , N ; t = 1, . . . , T ], l = 1, . . . , L, are

temporary variables saving intermediate results. It is worth
pointing out that, without much effort, Alg. 2 could be
adapted to a GPU (i.e., Graphics Processing Unit) version
which would further reduce the execution time by use of
the parallel computation mechanism; in an independent paper
we will focus on presenting results from extensive numerical
experiments regarding efficiency of computing the LMP using
GPUs.

Algorithm 2 Scalable Time Series Ordered Localized Matrix
Profile (STOLMP)

Input: MTS item b with length T ; L baseline MTS items
a(l), l = 1, . . . , L, each with length T ; VIS vector s;
query length M

1: for l = 1, . . . , L do
2: for n = 1, . . . , N do
3: for t = 1, . . . , T do
4: h

(l)
n (t)←

(
bn(t)− a(l)n (t)

)2
5: h

(l)
n (t)← h

(l)
n (t) + h

(l)
n (t− 1) . h

(l)
n (0)

def
= 0

6: end for
7: end for
8: end for
9: for ξ = 1, . . . , T −M + 1 do

10: gξ ← FLT MAX
11: for l = 1, . . . , L do
12: d←

∑N
n=1 sn×

√
h
(l)
n (ξ +M − 1)− h(l)n (ξ − 1)

13: gξ ← min(gξ, d)
14: end for
15: end for
Output: g = (gξ; ξ = 1, . . . , T −M + 1)

In the next subsection, we describe a fault detector using
the LMP. The basic idea is similar to the MP-based discord
discovery in [1]. However, it is worth emphasizing that our
LMP-based approach would naturally avoid the “twin freak”
issue mentioned earlier.

B. LMP-based Fault Detector
We devise a fault detector based on the LMP, whose

structure is shown in Fig. 1, where we propose a semi-
supervised approach, i.e., only normal MTS items are used for
training. For ease of presentation, we use a(l) = (a

(l)
n (t)); [n =

1, . . . , N ; t = 1, . . . , T ], l = 1, . . . , L, to denote the normal
training MTS items, and let b = (bn(t)); [n = 1, . . . , N ; t =
1, . . . , T ] denote a MTS item for testing. Henceforth, we
use 〈c, {a(l); l = 1, . . . , L}〉LMP to denote the Localized
Matrix Profile of any given MTS item c joining MTS set
{a(l); l = 1, . . . , L}.

We list the stages involved in the detector as follows:
1) Load the normal training MTS items a(l) =

(a
(l)
n (t)); [n = 1, . . . , N ; t = 1, . . . , T ], l = 1, . . . , L,

into memory.



2) Using Alg. 2, we compute the following LMP vectors:
• 〈a(k), {a(l); l = 1, . . . , L} \ {a(k)}〉LMP, k =

1, . . . , L. Note that these are LMP of the normal
training MTS items themselves, which would imply
time-dependent ranges of tolerable variations among
the normal runs of the system or process and,
in turn, provide a guidance for setting the LMP
thresholds. Note also that these computations could
be done offline.

• 〈b, {a(l); l = 1, . . . , L}〉LMP.
3) For any given ξ ∈ {1, . . . , T − M + 1}, take the

maximum of the ξ-th entry in the baseline LMP vectors
〈a(k), {a(l); l = 1, . . . , L} \ {a(k)}〉LMP, k = 1, . . . , L,
as a rough threshold g∗ξ .

4) For any given ξ ∈ {1, . . . , T−M+1}, if and only if the
ξ-th entry of 〈b, {a(l); l = 1, . . . , L}〉LMP is greater than
λ × g∗ξ , we report a fault at time instance ξ for testing
MTS item b. Here, λ ≥ 0 is a parameter (default value
is 1) which could be tuned, for example, by means of
cross-validation.

Fig. 1: The structure of the LMP-based fault detector.

In the next subsection, we propose a fault classifier based
on the LMP.

C. LMP-based Fault Classifier

From the discussion above, we have seen that the LMPs of
original MTS items contain rich variational information which
could be utilized for fault detection (discord discovery). In
this subsection, we further investigate the possibility of using
LMPs to classify faults. As a matter of fact, given a physical
system, different types of faulty operation or different degrees
of deterioration of certain parts of a device would lead to their
own unique LMP values. Based on this intuition, we propose
a fault classifier as depicted in Fig. 2.

For convenience, let us denote by {ã(l); l = 1, . . . , L0}
the normal baseline MTS items, and by {b(l); l = 1, . . . , L1}
(resp., {b̂(l); l = 1, . . . , L2}) the MTS items for training (resp.,
testing). We list the stages involved in the classifier as follows:

1) Load the normal baseline MTS items {ã(l); l =
1, . . . , L0} into memory.

Fig. 2: The structure of the LMP-based fault classifier.

2) Using Alg. 2, we compute the LMP vectors of training
MTS items, i.e., 〈b(k), {ã(l); l = 1, . . . , L0}〉LMP, k =
1, . . . , L1. Note that each and every LMP vector has a
label indicating the ground-truth fault type. Note also
that the computations for these LMP vectors could be
done offline.

3) Build a classifier upon the LMP vectors 〈b(k), {ã(l); l =
1, . . . , L0}〉LMP, k = 1, . . . , L1. Note that such a classi-
fier could be any general multi-label classifier; e.g., the
SVM-based classifier [14], the shapelet based classifier
[15], etc.

4) Using Alg. 2, we compute the LMP vectors of testing
MTS items, i.e., 〈b̂(k), {ã(l); l = 1, . . . , L0}〉LMP, k =
1, . . . , L2.

5) Apply the classifier to predict the labels of the
LMP vectors of testing MTS items 〈b̂(k), {ã(l); l =
1, . . . , L0}〉LMP, k = 1, . . . , L2, thus obtaining predicted
fault types of the original testing MTS items.

IV. A CASE STUDY

In this section, we present numerical results of a case study
using synthetic sensor data generated from a physical model
(built with Modelica [16]) that simulates an electrical motor.
For LMP computation, we conduct additional experiments to
numerically evaluate the performance of STOLMP (Alg. 2)
compared to the brute force counterpart (Alg. 1). We run the
code on a desktop machine with an Intel(R) Core(TM) i7-
4770 CPU and 16 GB of system memory. Unless otherwise
specified, we implement all the algorithms in Python.

A. Data Format

We generate simulation data corresponding to the afore-
mentioned electrical motor’s operation with different levels of
deterioration for a certain component of the motor. There are
6 levels of deterioration in total, and we generate 600 MTS
items (indexed by 1, . . . , 600) for each level, where each MTS
item contains 4900 time instances (the sampling frequency is
1000 Hz) and 5 physical variables denoted by vn, n = 1, . . . , 5
respectively. Note that the lower the deterioration level, the



healthier the motor’s status is. Note that the level 0 data are
“normal,” and the data whose level exceeds 1 are “faulty;” the
data with level 1 are in an “in-between” status. To remove
effects of the units of physical variables, we preprocess each
and every MTS item by z-normalizing the time series of each
and every variable. Henceforth, whenever we mention MTS
items in the case study, we mean the preprocessed ones.

B. VIS Computation

To compute the VIS vector s, we use the MTS items indexed
1, . . . , 200 for each and every level; thus, we use 200 ×
6 = 1200 MTS items in total. After obtaining the variable
importance scores by applying the algorithms mentioned in
the Appendix, we normalize the VIS vector (i.e., s← s/‖s‖1)
and end up with s = (0.2323, 0.2306, 0.2316, 0.0879, 0.2176).

C. Fault Detection

To conduct fault detection, we only use data with levels
among {0, 2, 3, 4, 5}; recall that the level 1 data are in an
“in-between” status. We take the query length M = 300
in LMP computations; this number is determined by a few
trials. To obtain the baseline LMPs, we use the MTS items
indexed 201, . . . , 400 with level 0. The MTS items indexed
401, . . . , 600 are used for testing. For economy of space, we
only show results for data with level 2; the results for data
with levels 3, 4, 5 are similar and omitted.

In the top subfigure of Fig. 3, the values of a selected
variable (i.e., v1 – the variable with the highest importance
score) in the MTS items used for computation of baseline
LMPs are plotted as dashed lines; for economy of space,
we omit the plots for variables v2 through v5. In the bottom
subfigure of Fig. 3, we show the values of the baseline LMPs
as dashed lines. In each and every subfigure of Fig. 3, we
superimpose the corresponding values of the variable or LMP
of the testing MTS item indexed 401 with ground-truth level
2 (faulty) as a red solid line. In Fig. 4, we show the LMP
values of the same testing item and the thresholds determined
by the computed baseline LMPs; we take the factor λ = 1.
It is seen from Fig. 3 that the values of the selected variable
in the original baseline MTS items are very close, and they
are also close to those of the testing MTS item, while, at
certain time instances, the values of the LMP of the testing
item are deviating significantly from the baseline LMPs; these
deviations indicate faulty windows (i.e., subsequences) (see
Fig. 4 for the red curve between time instances 1071 and
1698). This demonstrates the effectiveness of the LMP-based
anomaly detector on one single testing item.

To further see the performance of the proposed fault de-
tector, we compare it with a widely used alternative, which is
based on One-Class Support Vector Machines (OCSVM) [17],
and plot their Receiver Operating Characteristic (ROC) [18]
curves as shown in Fig. 5. The True Positive Rate (TPR) and
False Positive Rate (FPR) are obtained as follows. The testing
MTS items include 200 level 0 (Negative; i.e., “normal”) ones
and 200 level 2 (Positive; i.e., “faulty”) ones. Each MTS item
contains T − M + 1 = 4900 − 300 + 1 = 4601 windows.

For any of the 200 level 0 testing items, if there exists one or
more windows (among the 4601 windows) which are detected
as faulty, we report a False Positive (FP) for that item. For
any of the 200 level 2 testing items, if there exists one or
more windows which are detected as faulty, we report a
True Positive (TP) for that item. After obtaining the total
FPs and TPs, we divide them by 200, thus obtaining FPR
and TPR, respectively. For the LMP-based fault detector, we
let the threshold factor λ vary among {0, 0.2, 0.4, . . . , 19.8},
and attain 100 pairs of (TPR, FPR), which enable us to
draw the entire ROC curve as the blue line in Fig. 5. For
the OCSVM-based one, we derived (TPR, FPR) pairs by
extracting values of the decision functions and varying the
binary classification thresholds accordingly. Note that for each
and every detection window, we build an OCSVM classifier
(with parameter ν = 0.01 and Radial Basis Function (RBF)
kernel; refer to [19]) upon the corresponding subsequences of
the training MTS items, thus obtaining a decision function.
The resulting ROC curve of the OCSVM-based fault detector
is shown as the red line in Fig. 5. In our experiments, the Area
Under the ROC Curve (AUC) of the LMP-based fault detector
is 1.0, while the AUC of the OCSVM-based alternative is
0.975. Thus, in this case study, the LMP-based fault detector
is more accurate than its OCSVM-based counterpart.

When comparing the LMP-based and the OCSVM-based
fault detectors in our case study, we also record the execution
times of the core modules respectively. For the LMP-based
one, we record the execution time tlmp of computing the
LMPs of the testing MTS items. For the OCSVM-based one,
we record the execution time tocsvm of fitting the OCSVM
classifiers (the implementations are based on LIBSVM [20], a
highly optimized library) upon windows of training MTS items
and calculating the values of decision functions for windows
of testing MTS items. It turns out that tlmp = 10.277 seconds,
and tocsvm = 81.676 seconds. Thus, in this case study, the
LMP-based fault detector runs about 8 times faster than its
OCSVM-based counterpart. It can be foreseen that the larger
the query length M , the more significant the advantage of the
running time of the former over the latter would be. This is
to be expected, since the former makes use of the overlaps
between consecutive detection windows while the latter does
not.

Fig. 3: The values of a selected variable (v1) in MTS items
and LMPs; the red solid curves correspond to a faulty testing
item.



Fig. 4: The LMP values of a faulty testing item and the
thresholds determined by baseline LMPs; the green dashed
line indicates thresholds, the blue dotted line indicates normal
windows in the testing item, and the red solid line indicates
faulty windows in the testing item.

Fig. 5: The ROC curves of the LMP-based and the OCSVM-
based anomaly detectors.

D. Fault Classification

To conduct fault classification, we use the MTS items
indexed 201, . . . , 400 with level 0 as normal baseline MTS
items (see Fig. 2). The MTS items indexed 401, . . . , 500 (resp.,
501, . . . , 600) with all 6 levels are used for training (resp.,
testing). The query length is also taken as M = 300. We
compute LMPs of all the training and testing MTS items with
respect to the 200 baseline MTS items. Thus, we end up with
600 training LMPs (100 for each level) and 600 testing LMPs
(100 for each level). Then, we build a shapelet-based multi-
label classifier [15] (we use the C++ code downloaded from
[21]) upon the 600 training LMPs and apply it to predict the
level of each and every testing LMP. The results (wrapped up
as a Confusion Matrix) are shown in Tab. I. It is seen that,
for items with ground-truth levels greater than or equal to 2,
the classification is highly accurate; only one level 5 item is
misclassified as level 4. The testing items with ground-truth
level 0 are also classified with a high accuracy (96%); only
4 items are misclassified as level 1. On the other hand, the
data with ground-truth level 1 are easy to be misclassified as
level 0; this is due to the fact that, in an “in-between” status,
the original data of level 1 are actually very close to those of
level 0.

E. Notes on LMP Computation

We note that, in our fault detector and classifier, the LMP
computation submodule is the most costly; we implement
STOLMP (Alg. 2) in C++ and make it callable by Python.
In our case study, possibly due to the not too large data size
(the total size of the raw MTS data is 6.3 GB), we do not en-

TABLE I: The Confusion Matrix of the LMP-based classifier.

prediction
ground-truth

0 1 2 3 4 5

0 96 96 0 0 0 0
1 4 4 0 0 0 0
2 0 0 100 0 0 0
3 0 0 0 100 0 0
4 0 0 0 0 100 1
5 0 0 0 0 0 99

counter challenging computational issues in both CPU speeds
and memory occupation. Excluding offline computations (i.e.,
data preprocessing, computations for LMPs of baseline items
and training items, and results saving), running all the fault
detection/classification experiments involved in the case study
takes about 45 minutes.

To explicitly evaluate the speed of STOLMP, we compute
the LMP of a randomly generated Univariate Time Series
(UTS) joining 3000 randomly generated UTS, and measure
how many comparisons (each comparison ends up with a
distance value; refer to (1)) can be completed per millisecond.
Each UTS has 20000 time instances. The VIS vector s is
set to a scalar of 1. Our implementation is in C++. Table II
lists the average numbers of comparisons for STOLMP and
the brute force alternative BFTLMP (Alg. 1) corresponding
to different query lengths. It is seen that STOLMP is 20–60
times faster than the brute force algorithm, and the speedup
is more apparent when the query length increases. This is
to be expected, since the time complexity of STOLMP is
independent of the query length. It is worth pointing out that,
due to subtractions involved (see Line 12 of Alg. 2), it is safer
to implement STOLMP in double precision so as to retain
numerical accuracy.

V. CONCLUSIONS

In this paper, we introduce the Localized Matrix Profile
(LMP), a new primitive for time series data mining. We devise
fast algorithms for LMP computation, and propose a fault
detector and a fault classifier based on the LMP. To show the
effectiveness and efficiency of our approach, we provide a case
study using synthetic sensor data generated from a physical
model of an electrical motor.

As a reminder for practitioners, we point out that our
method is more applicable for cases where memory occupation
is not an issue. Though LMPs of baseline data and training
data could be computed offline, we still need to store the old
(baseline) data in memory for the computations of LMPs of
new (testing) data.

APPENDIX: CALCULATION OF THE VIS VECTOR

We refer to [13] about how to calculate the VIS vector s.
The idea is based on Common Principal Component Analysis
(CPCA). In particular, we use an unsupervised method (i.e.,
for the purpose of calculating the VIS vector, no labels for
the MTS items are needed) which utilizes the properties of
the Principal Components (PCs) and the Descriptive Common



TABLE II: Average numbers of comparisons per millisecond for BFTLMP and STOLMP with different query lengths.

algorithm
number of comparisons per millisecond query length

250 500 1000

BFTLMP (single precision) 2127 1197 626
STOLMP (double precision) 43472 39211 37875

Principal Components (DCPCs) to preserve the correlation
information among variables. The VISs of variables are calcu-
lated according to their contribution to the common principal
components. The module for calculating the VIS vector is
structured as shown in Fig. 6; for details, see [13, Algorithms
1 and 2]. A minor modification is that when applying [13, Alg.
2] (using [13, Alg. 1] as a subroutine), we do not need the
input “the number of variables to select” and only [13, Lines
1 through 5, Alg. 2] are executed.

Fig. 6: The structure of the module for VIS calculation
modified from [13].
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