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Abstract
We develop data-driven high-etendue freeform irradiance tailoring for design problems where
the incident light is known only through a sampling of its rays, and the transport from
freeform to projection is nontrivial.
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1. Embedding freeforms in multi-element optical paths

Freeform irradiance tailoring methods typically begin with zero-étendue assumptions, but practical deployments
require high brightness and compact optical paths, which implies high-étendue light sources. Consequently, we
seek a method to design small freeforms that work with nearby large-die LEDs, possibly augmented by a col-
lection optic such as a TIR collimator. In such optical paths, the light reaching the freeform may have no simple
mathematical characterization, e.g., if the collection optics have multiple surfaces close to an LED, the beam
incident on the freeform can be very complicated, with significant unwanted caustics, skew rays, and stray rays.

When tailoring with such beams, it can be computationally and mathematically advantageous to replace the
source and collection optics with a light-field representation of the flux near the freeform. We use a spatially
extended radiance function `(u,v,θ ,φ) that describes the radiance in direction θ ,φ that passes through a tiny area
element at location u,v on an imagined radiant surface, typically a plane, directly in front of the freeform. We
outline a general method for tailoring from ` in §2 and extend it to light fields represented by a sampling of rays
in §3. This data-driven approach becomes essential in our tailoring example (§4), where working with the entire
optical path is computationally onerous, but working with a light field derived from ray-tracing is quite practical.

2. Tailoring with a positive-étendue light field

We begin by introducing a relation between wavefront and surface curvatures, beam dilations, and intensity dilu-
tions: A wavefront w that is incident on an optical surface z with flux density s is modified at the interface by the
change in refractive index n = ne/ni, and irradiates a projection surface with flux density u. Consider the action of
bundle of rays connecting a tiny neighborhood on the optic to a neighborhood on the projection: If we assume that
no other rays pass through these neighborhoods, then the local dilution of intensity from freeform to projection s/u
equals the dilation of the bundle, which is controlled, to first order, by the local Laplacians of the optical surface
and incident wavefront:

s/u = (1+ r((n−1)∇2z−n∇
2w))/o . (1)

Here r is propagation distance along the optical axis and the obliquity term o absorbs various projective cosines
due to the angles between the ray bundle, the surface normals, and the coordinate system’s propagation axis. The
wavefront and obliquity terms make Eq. (1) a generalization of the collimated-light models in [1, 2].

In positive-étendue settings, the exclusive-neighborhood assumption does not hold, but we can still make use of
the relation in Eq. (1) if we consider spherical ”collecting” wavefronts that emanate from the projection surface
and propagate backward through the optical path. In that view, a ray bundle from a point p on the projection
surface passes through some small area element dA on the optical surface and dilates or converges to cover an area
dBp on the radiant surface, from which it ”collects” suitably directed light from the extended radiance function
`(u,v,θ ,φ). The flux delivered to dT can then be calculated by adapting Eq. (1) for propagation backward along
the bundle (from dBp to dA), and substituting the result into the classical camera equation, modeling continued
propagation from dA to a small neighborhood dT around p on the projection surface. If we integrate this flux
collection over a properly tailored optical surface, the total should equal IpdT , the prescribed irradiance at p
multiplied by the area of dT :

IpdT =
∫ (

`p
op

r2
p
(1− (n−1−1)rp∇

2(c+ z+
n

n−1
wp))dT

)
dA . (2)

Here `p,rp,op are respectively fields of p-destined radiances, optical-axis-parallel propagation distances, and
obliquities, all associated in 1-to-1 correspondence with area elements of the optical surface. Here the obliqui-
ties op absorb the cosine terms from the camera equation as well as from Eq. (1).
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Fig. 1. Left to right: Some of the rays defining the light field; rays through one of the brightest u,v
bins; spherical cap of bins in θ ,φ space for those rays; optical path from ` to projection plane.

Fig. 2. From left to right: Irradiance field Î before tailoring; target irradiance pattern I; height field z
of the freeform after tailoring; irradiance pattern Î after tailoring.

Note we have added a new correction field, c, to surface height field z in Eq. (2). We will assume that the overall
correction is small enough that it changes the pattern of incident light on the freeform negligibly. Then differencing
two instances of Eq. (2) — one for a hypothetical corrected (c 6= 0) surface that provides the desired irradiance Ip
and one for an uncorrected (c = 0) surface that provides the actual irradiance Îp — yields the irradiance error:

Ip− Îp =
n−1

n

∫
Ω

(
`p

op

rp

) (
∇

2c
)

dA . (3)

Eq. (3) tells us that the irradiance error at p is the inner product of two fields: one field describing the light through
z that is destined for p and one field of “curvature corrections” ∇2c. If we partition the optical surface into “facets”
(dA) and the projection surface into “pixels” (dT ), some containing test points {p1,p2,p3, . . .}, then the set of
inner products specified by Eq. (3) can be arranged as a linear system Lvec(∇2c) = vec(I− Î). Therefore we can
tailor as follows: 1) Ray-cast from {p1,p2,p3, . . .} to populate L and calculate Î; 2) solve the linear system for
∇2c; 3) solve for c from ∇2c via FFT; 4) add c to z; and repeat until convergence.

3. Specifying a light field from sampled ray data

In our example, we start with 108 rays sampled from a detailed simulation of an LED die in a high-efficiency
collection optic. Fig. 1 shows a representative subsample. For ` we choose a radiant plane 2.5 mm from the
freeform and adaptively bin the rays, first by their point of intersection with the radiant plane, then by direction.
The fluxes associated with all rays in a bin are summed and normalized by the bin’s volume in R2×S2 to determine
the radiance of the bin. The radiance function `(u,v,θ ,φ) is then provided by bilinearly interpolating to the query
location. Fig. 1 shows the θ ,φ bins associated with a high-flux u,v bin, illustrating a crescent-shaped angular
distribution of radiance associated with this patch of the radiant surface.

4. Example

We tailor a lens, spanning 14 mm by 15 mm, and located 12 mm from a projection plane where the target irradiance
appears. The irradiance target, a short vertical bar with a rounded bottom, is to be projected by subsequent optics
for task lighting. The incident light has far too much étendue for an exact solution to be feasible, thus we seek a
good approximation. Since the linear system is agnostic to how light gets from ”facets” dA on the freeform optic
to ”pixels” dT on the projection surface, we can insert intervening optics, provided their effects on each ray bundle
are incorporated via the camera equation into Eqs. (2)–(3). Here we have added three reflective planes around the
free space between the freeform and projection surface; these provide additional facet-to-pixel paths such that Î is
a superposition of irradiances along multiple paths. Fig. 2 shows this irradiance pre- and post-tailoring.
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