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Abstract
Bean’s critical-state model has been the foundation to compute the heat generated by the
time-varying magnetic field or current in type-II superconductors. Two key features of the
Bean model are (i) the current density is either zero or at the critical value Jc, and (ii)
the change of current distribution begins at the surface. In this work, we apply the circuit
model to simulate the process of charging a type-II superconductor. In addition to the self
and mutual inductances among the basic units, we introduce a current-dependent longitu-
dinal resistance to describe the critical current density, above which the conductor becomes
resistive. By identifying the inductance values, we are able to reproduce the characteristic
behavior of the Bean model. Specifically we consider a superconducting slab, a supercon-
ducting wire composed of straight or twisted filaments, and recover the established analytical
results for these geometries. In terms of the circuit model, the behavior of the Bean model is a
consequence of the geometry-specific structure of inductances and the non-linear resistances.
Besides offering an intuitive explanation of the Bean model, our circuit-model calculations
provide concrete examples to show that it can be used to simulate the complete charging
process of multi-filament superconducting wires.
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Bean’s critical-state model has been the foundation to compute the heat generated by the
time-varying magnetic field or current in type-II superconductors. Two key features of
the Bean model are (i) the current density is either zero or at the critical value Jc, and
(ii) the change of current distribution begins at the surface. In this work, we apply the
circuit model to simulate the process of charging a type-II superconductor. In addition to
the self and mutual inductances among the basic units, we introduce a current-dependent
longitudinal resistance to describe the critical current density, above which the conductor
becomes resistive. By identifying the inductance values, we are able to reproduce the char-
acteristic behavior of the Bean model. Specifically we consider a superconducting slab,
a superconducting wire composed of straight or twisted filaments, and recover the estab-
lished analytical results for these geometries. In terms of the circuit model, the behavior
of the Bean model is a consequence of the geometry-specific structure of inductances and
the non-linear resistances. Besides offering an intuitive explanation of the Bean model,
our circuit-model calculations provide concrete examples to show that it can be used to
simulate the complete charging process of multi-filament superconducting wires.
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I. INTRODUCTION

Superconducting (SC) magnets, which use the type-II superconductors1,2 to carry the SC cur-
rent, are compact equipment that can generate a large magnetic field3,4. Its application ranges from
confining the near speed-of-light charged particles in particle accelerators5,6 to generating a large
and stable magnetic field for Magnetic Resonance Imaging7 and Nuclear Magnetic Resonance8.
According to Bean’s critical-state model 9, the current density inside a type-II superconductor is
either at its critical value Jc or zero; this implies that any small temperature or flux perturbations
are dangerous as these perturbations make the critical-state regions locally resistive, and the re-
sulting Joule heating can potentially quench the whole SC magnets10. The other characteristic
of the Bean model is that the change of the SC current begins at the surface and then gradually
propagates into the superconductor. This feature naturally leads to the hysteresis phenomena and
is verified by the magnetization measurements11,12. Since then, the Bean model has been served
as the starting point to compute the heat generation caused by the changing field or current, based
on which the quench criterion is established.3,4,13–18.

The circuit model, either the distributed parameter version 19,20 or the lumped parameter
version21–23, has been developed to compute the current distributions among SC filaments or
wires24,25, and to study the subtle responses of SC wires/filaments to the changes of the external
magnetic field 19–21. Currently, the use of circuit model mainly focuses on the regime where the
SC current is much smaller than its critical value, where the resistance is practically zero. In this
work, we demonstrate that the circuit model can well describe the phenomena near the critical cur-
rent by introducing a current-dependent resistance. In particular, we show that the circuit model,
when taking the proper limit, reproduces a few established results obtained using the Bean model.
Our calculations not only expand the applicable regime of the circuit model, but also provide an
intuitive explanation of the origin of the Bean model.

The rest of this paper is organized as follows. In Section II we briefly review the circuit model
established in Ref.19,20. We will introduce the non-linear resistance to the dynamical equations
and point out the subtleties of solving them. In Section III we apply the circuit model for charging
a semi-infinite SC slab. In Section IV we apply the circuit model for charging a SC wire composed
of straight SC filaments. The relation between the Bean model and the circuit model is discussed.
In Section V we apply the circuit model for charging a SC wire composed of twisted SC filaments.
For SC geometries considered in Sections III, IV, V, the established analytical expressions are
provided and discussed within the framework of the circuit model. A brief conclusion is given in
Section VI.

II. DISTRIBUTED PARAMETER CIRCUIT MODEL

We recapitulate the dynamical equations (a set of partial differential equations, PDE) based on
the distributed parameter circuit model 19,20. A few subtle points of solving these equations are
pointed out. As we will solve the dynamical equations by discretizing the real space (instead of
the basis function expansion 19,20), the difference between the distributed parameter model and
the lumped parameter model21–23 is a matter of spatial resolution. The non-linear resistance is
introduced and the heat caused by the current injection is computed.
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1st filament

2nd filament

FIG. 1. The distributed parameter circuit model composed of two filaments. The external voltage sources
are neglected. Vn(x)/in(x) is the voltage/current of nth filament at position x. In the numerical simulation,
the mesh points of voltages (V (x)) and those of currents (i(x̄)) are chosen to be alternate in space. x̄ = x+ dx

2
illustrates this mesh choice.

A. The dynamical equations

Following Refs.19,20, we consider a superconducting wire composed of N filaments which are
the building blocks of the circuit model. Over the length dx, the filaments have longitudinal
resistances Ri = ridx (i = 1, ...,N) where ri are the longitudinal resistances per unit length of
filament (zero if the filament is in the SC state). The self inductances of the filaments are denoted
as Lii = lii dx whereas the mutual inductances between filaments Li j = li j dx. The values of the
inductance matrix li j depend on the geometry of interest. It turns out that only differences between
these parameters affect the dynamics [Section II B]. This implies that li j can all be divergent: as
far as li j− l00 for all i, j are well defined, the PDE permits a solution. Finally, each filament can
have an external voltage source V ext

i = vext
i dx which we do not consider in this paper. The circuit

model with two filaments is represented schematically in Fig. 1.
Using the basic electrodynamics, the dynamical equations can be cast as

∂v
∂x

=−ri− l
∂ i
∂ t

+vext , (1a)

∂ i
∂x

= gv, (1b)

with
N

∑
h=1

ih(t) = Itot(t), (1c)

with Itot(t) the total current carried by the SC wire. In Eqs. (1), we have defined the position-
dependent vectors of voltage, current, and external voltage as

v =
[
V1 V2 . . . VN

]T
, (2a)

i =
[
i1 i2 . . . iN

]T
, (2b)

vext =
[
vext

1 vext
2 . . . vext

N
]T

(≡ 0), (2c)

and the position-dependent matrices of longitudinal resistance, inductance, and inter-filament con-

3



ductance as

r = Diag
[
r1 r2 . . . rN

]
, (3a)

l =


l11 l12 . . . l1N
l21 l22 . . . l2N
...

... . . .
...

lN1 lN2 . . . lNN

 , (3b)

g =


−∑

N
k=2,k 6=1 g1k g12 . . . g1N

g21 −∑
N
k=1,k 6=2 g2k . . . g2N

...
... . . .

...
gN1 gN2 . . . −∑

N
k=1,k 6=N gNk

 . (3c)

Each component in Eq. (2) represents a basic unit (or a building block) of the circuit model, which
is a filament in Fig. 1. If we calculate the spatial derivative of Eq. (1a) assuming that the inter-
filament conductances are uniform along the wire axis (i.e., ∂g/∂x = 0), we obtain the following
differential equations for filament currents:

gl
∂ i
∂ t

+
∂ 2i
∂x2 +gri−gvext = 0, (4)

The N equations in Eq. (4) are linearly dependent so the filament currents cannot be uniquely
determined until Eq. (1c) is included. We mention that the following equation

l
∂ i
∂ t

+g−1 ∂ 2i
∂x2 + ri−vext = 0,

obtained by taking g−1 on Eq. (4) is not rigorously correct as g−1 does not exist. The correct
equation will be presented in Section II B (next subsection).

We wish to emphasize that, although the circuit model is conventionally derived and visualized
using filaments as the building blocks, the building block can be more general. In particular, the
building block (or the basic unit) of the circuit model can represent SC regions having the same
spatial symmetry. Based on this observation, we shall apply the circuit model to describe the SC
slab and cylinder (the latter is to model the SC wire).

B. A few remarks on numerics

We now address a few subtleties in solving Eqs. (1). We note that the solution of Eq. (1b) can
be loosely expressed as

v = g−1 di
dx

+ v0(x, t)|e〉. (5)

with |e〉 = [1,1, . . . ,1]T . The unknown filament-independent voltage function v0(x) is needed
because of g|e〉 = 0. Eq. (5) is not rigorous because g has a zero eigenvalue with the eigenvector
|1〉 ≡ ê = 1√

N
(1,1,1...,1) (|1〉 is the normalized |e〉). In the eigenbasis of g, g−1 is

g = 0|1〉〈1|+
N

∑
i=2

λi|i〉〈i| ⇒ g−1 =
1
0
|1〉〈1|+

N

∑
i=2

1
λi
|i〉〈i|. (6)
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It is seen that the divergence of g−1 originates from the eigenvector |1〉. Fortunately, because
Itot =∑

N
k=1 ik(x) is x-independent, ∂ i

∂x has no |1〉 component and only g−1 in the subspace excluding
|1〉 is needed:

g−1→ g̃−1 =
N

∑
i=2

1
λi
|i〉〈i|. (7)

g̃−1 is computed using g̃−1 = [a|1〉〈1|+g]−1−a−1|1〉〈1|, with a being any non-zero real number.
The rigorous form of Eq. (5) becomes

v = g̃−1 di
dx

+ v0(x, t)|e〉. (8)

Substituting Eq. (8) into Eq. (1a) gives

∂v
∂x

=
∂

∂x

[
g̃−1 di

dx
+ v0(x, t)|e〉

]
=−ri− l

∂ i
∂ t

+vext . (9)

v0(x) [or its spatial derivative ∂v0(x, t)/∂x ≡ α(x, t)] is determined by the requirement of current
conservation, i.e., d

dt [∑n in(x, t)] = d
dt [∑n in(x′, t)] for x 6= x′. By explicitly including v0(x) and

current conservation, all components of i are independent variables which significantly facilitates
the code implementation. Eq. (9) is as fundamental as Eqs. (1a) and (1b) combined, and will be
used to understand the dynamical behavior in subsequent sections. We can use Eq. (9) to prove
that adding a constant to the inductance cannot affect the dynamical behavior. If we add a constant
c0 to the inductance matrix, i.e., l→ l̃ = l+c0|e〉〈e|, we find l̃ ∂ i

∂ t = l ∂ i
∂ t +c0

ditot
dt |e〉. As the effect of

c0
ditot
dt |e〉 can be included by redefining α(x, t) but α(x, t) is determined by the total current only,

we conclude that adding a constant to l plays no role in the dynamics.
A few numerical details are now stated. First, we choose mesh points of v(x) and j(x) to be

alternate in space to improve the numerical stability26,27. Second, the boundary conditions can
be specified by (i) the voltages at both ends of each filament, (ii) the current at both ends of
each filament with a consistent total current, and (iii) the total current only. We have tested all
three types of boundary conditions, but only results of type (iii) will be shown. Finally, we use
Runge-Kutta method of order 5 provided in Python Package to implement the time evolution, and
have confirmed the numerical accuracy by comparing the results with the analytical expressions
provided in Ref.19.

C. Critical current and non-linear resistance

The critical current density of a superconductor can be described by introducing a current-
dependent longitudinal resistance

r(i) = r0

(
i
ic

)n

. (10)

This resistance depends on two parameters: the critical current ic and the “index number” n whose
values have to be determined experimentally4. The critical current ic is a function of tempera-
ture, magnetic field, and SC geometry; the typical value of n is about 30-40 for a “high-quality”
superconductor4. When n is large, the resistance r(i) is practically zero when i < ic, but becomes
non-negligible when i is close to ic. When i ∼ ic for a particular filament, the injected current is
expected to flow through other filaments of zero resistance until the resistance of that particular
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filament becomes zero. With Eq. (10), the circuit model can simulate the entire charging process.
For numerical stability, in our simulation we modify Eq. (10) to

r(i) =

{
0 if i≤ ic
r0

(
i
ic

)n
if i > ic

. (11)

Eq. (11) provides a sharp critical current ic below which the resistance is strictly zero. Eq. (11)
is a good approximation of Eq. (10) when the index number is large, which is usually the case
for the low-temperature SC. If the index number is not large, Eq. (10) should be used. It is worth
noting that the rapid increase of r(i) near ic implies that the voltage can vary for a wide range while
keeping the filament current around ic. For this reason, as far as the total current is smaller than
N× ic (assume all filaments have the same ic), the current at each filament is bounded by O(ic).
We will show that the non-linear resistance is crucial in reproducing the characteristic behavior
of the Bean model. Despite the SC has a very non-intuitive microscopic origin28–31 and displays
complicated vortex structures32–34 whose motions are responsible for the non-zero resistivity35–39,
the specific form of non-linear resistance Eq. (10) is all we need to capture the essential features
of Bean’s critical-state model.

D. Heat generation

Within the circuit model, the heat originates from the resistance (Ohm’s law) which has longitu-
dinal and transverse components – the former accounts for the heat generated by the intra-filament
current whereas the latter inter-filament. The longitudinal part of the dissipation power is given by

PL(t) =
N

∑
k=1

∫
dxrk(x) [ik(x, t)]

2 . (12)

If a filament is in the SC state, its longitudinal resistance rk is zero and therefore PL(t) = 0. If
the filament current exceeds the critical value, rk is non-zero and there will be dissipation. The
longitudinal loss is responsible for the self-field effect.

The transverse part of the dissipation power (inter-strand current) is

PT (t) =
1
2

N

∑
i, j=1

∫
dxgi j(x)

[
Vi(x, t)−Vj(x, t)

]2
. (13)

The voltage is computed using v = g̃−1 ∂ i
∂x [see Eq. (7)]. Once obtaining v (and therefore Vi(x)), PT

can be computed using Eq. (13). If the filament current has no spatial dependence, i.e., ik(x, t) =
ik(t),

dik
dx = 0 and v = 0; there is no transverse loss in this case. The transverse loss is usually

smaller than the longitudinal loss and we will neglect its contribution.
Determination of the stability condition requires the knowledge of the total heat40, which can

be obtained by integrating the dissipation power over time. As far as the total current is smaller
than the maximum SC current N× ic which the SC wire can carry, the dissipation power will decay
to zero because the current eventually goes through the filaments of minimum (zero) resistances.

III. SUPERCONDUCTING SLAB

In this section we consider the current injection to a SC slab. The main goal is to see how
the behavior of Bean’s critical-state model is obtained. In particular, we will show that why the
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change of SC current starts at the surface and then gradually propagates deeper into the SC slab,
and why the SC current is always either at its critical value or zero.

  

(a) Slab as sheets (b) Cylinder as concentric shells

B(x)

J(x)
J(r)

x=a; r=R

(c) Current Distribution 
a

R

Sheet index n=1,2, 3,4, 5, 6

Original sweep to J=Jc

J=Jc-ΔJ, with same total current
Jc

I → -I, Jc → -Jc

FIG. 2. (a) A SC slab as a collection of sheets, and the magnetic field distribution. (b) A SC cylinder as a
collection of concentric shells. (c) The current distribution via minimizing the magnetic energy. In (a), red
curve is the “original” magnetic field distribution, with Itot = Jca; the blue dashed curve is the distribution
when Jc → Jc−∆J, with the same total current; green dash-dot curves represent the change of magnetic
field when Itot →−Itot .

A. SC slab as sheets - inductance matrix

A semi-infinite SC slab, with the surface normal defined as x̂, is illustrated in Fig. 2(a). The
magnetic field can be calculated as

B(x) = µ0

∫ x

0
dx′ J(x′) = µ0

∫ a

0
dx′ J(x′)Θ(x− x′). (14)

In this expression, we implicitly use the boundary condition B(x = 0) = 0, i.e., the magnetic field
is zero deep inside the SC. We model the SC slab by a collection of sheets, with different sheets
corresponding to the different distances to the surface defined at x = a. Each sheet serves as a
building block of the circuit model.

Next, we determine their self and mutual inductances based on the magnetic energy. The total
magnetic energy for x < a is given by

EB[J(x)] =
1

2µ0

∫ a

0
dx |B(x)|2 = µ0

2

∫ a

0
dx
[∫ a

0
dx′ J(x′)Θ(x− x′)

]2

=
µ0

2

∫ a

0
dx
∫ a

0
dx′′ J(x′)J(x′′)min(a− x′,a− x′′),

(15)

where we have used
∫ a

0 dxΘ(x− x′)Θ(x− x′′) = a−max(x′,x′′) = min(a− x′,a− x′′). The con-
straint of a constant total current is expressed as

Itot =
∫ a

0
dxJ(x). (16)
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In a discretized description [Fig. 2(a)], we denote the “sheet current” Ii = J(xi)dx with i = 1 to
N (i = 1 is the furthest from the surface; i = N is the closest to the surface), and write the magnetic
energy as

EB[J(x)] =
µ0

2

∫ a

0
dx′

∫ a

0
dx′′

I(x′)
dx

I(x′′)
dx

min(a− x′,a− x′′)

→ 1
2

N

∑
i, j=1

IiL
(slab)
i j I j.

(17)

Identifying
∫ a

0 dx′ I(x
′)

dx →∑
N
i=1

Ii
dxdx=∑i Ii and noting min(a−x′,a−x′′)→∆x ·min(N− i+1,N−

j+1), the N×N inductance matrix L is given by L(slab)
i j = µ0 ∆x ·min(N− i+1,N− j+1). The

inductance matrix in matrix form is

L(slab) = µ0∆x


N N−1 N−2 ... 1

N−1 N−1 N−2 ... 1
N−2 N−2 N−2 ... 1

...
...

... ... 1
1 1 1 ... 1

 . (18)

In deriving the inductance matrix, we only compute the magnetic energy inside the slab (x <
a). The magnetic energy outside the SC slab (x > a) is proportional to I2

tot , and would shift all
components in L by a constant if taken into account. This constant, albeit infinite, can be neglected
and does not affect the final results of Eqs. (1).

Minimizing the magnetic energy with the constraints of a given total current of Itot and |In|< Ic
(sheet current is smaller than some critical current Ic), we find that the SC current fills outer
sheets and penetrates only as far as needed to carry Itot . For example, if Itot = 3.5Ic, the solution is
IN = IN−1 = IN−2 = Ic, IN−3 = 0.5 Ic, and In<N−3 = 0 [see the illustration in Fig. 2(c)]. This current
distribution is consistent with the Bean model, but it is only a static calculation. In particular, it
does not tell how this distribution is reached, and cannot describe the dynamical phenomena such
as the hysteresis and the charging process. The dynamics will be addressed in Section III C.

B. Heat due to the reduction of critical current

For a SC slab composed of N sheets carrying a constant total current, ∑
N
n=1 i̇n = 0. Assuming

each sheet has a resistance ri and r1 = 0 (because the 1st sheet is the furthest from the slab surface),
the dynamical equations [Eq. (9)] can be written as

[
L(slab)

N×N eN×1
et

1×N 0

]
i̇1
i̇2
...

i̇N
−α

=−


0

r2i2
...

rN iN
ditot
dt (= 0)

 . (19)

In Eq. (19), we consider a uniform filament current and denote α = v′0(x). L(slab)
N×N = L(slab) is given

in Eq. (18); the subscripts are used to denote the matrix size. The difference between the first and
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second components in Eq. (19) gives i̇1 = r2i2. Defining an (N−1)× (N−1) matrix L(slab)
sub as

L(slab)
sub = µ0∆x


N−1 N−2 ... 1
N−2 N−2 ... 1

...
... ... 1

1 1 ... 1

 , (20)

Eq. (19) becomes

L(slab)
sub


i̇2
i̇3
...

i̇N

+


N−1
N−2

...
1

 i̇1 =−


r2i2
r3i3

...
rN iN

+ rN iN


1
1
...
1

 . (21)

Using i̇1 = r2i2 and a matrix representation, we get

L(slab)
sub



i̇2
i̇3
i̇4
...

i̇N−1
i̇N

=−



N 0 0 ... 0 −1
N−2 1 0 ... 0 −1
N−3 0 1 ... 0 −1

...
...

... ... 0 −1
2 0 0 ... 1 −1
1 0 0 ... 0 0





r2i2
r3i3
r4i4

...
rN−1iN−1

rN iN

≡−X



r2i2
r3i3
r4i4

...
rN−1iN−1

rN iN

 . (22)

Note X is dimensionless and has no ri dependence. The heat can be computed using Eq. (12) (with
r1 = 0). Defining X−1L(slab)

sub ≡ L̃(slab)
sub ,

Q(slab) =
∫

dt PL(t) =
∫

∞

0
dt
[
i2 i3 ... iN

] r2i2
...

rN iN


=−

∫
∞

0
dt
[
i2 i3 ... iN

]
L̃(slab)

sub

 i̇2
...

i̇N


=−

∫
∞

0
dt

d
dt

[
1
2

N−1

∑
i=1

L̃(slab)
sub,ii i2i+1 +

N−1

∑
i=1

N−1

∑
j=i+1

L̃(slab)
sub,i j ii+1i j+1

]
≡ Q(slab)({i}initial)−Q(slab)({i}final),

(23)

with Q(slab)({i}) = 1
2 ∑

N−1
i=1 L̃(slab)

sub,ii i2i+1 +∑
N−1
i=1 ∑

N−1
j=i+1 L̃(slab)

sub,i j ii+1i j+1. X−1L(slab)
sub = L̃(slab)

sub can be
computed:

L̃(slab)
sub = µ0∆x



1 1 1 ... 1
1 2 2 ... 2
1 2 3 ... 3
...

...
... ...

...
1 2 3 ... N−2
1 2 3 ... N−1

 . (24)
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As an example, for N = 4, L(slab)
sub and L̃(slab)

sub are both 3×3 matrices:

L(slab)
sub (N = 4) = µ0∆x

3 2 1
2 2 1
1 1 1

 , L̃(slab)
sub (N = 4) = µ0∆x

1 1 1
1 2 2
1 2 3

 .
Eq. (23) implies that the total heat depends only on initial and final current distributions, but not
on the longitudinal resistances. The time to change from the initial to the final current distribution
does, however, depend on the longitudinal resistances.

More generally, for an inductance matrix of the “layered structure”, the following relation
holds:

L =


L1 L2 L3 ... LN
L2 L2 L3 ... LN
L3 L3 L3 ... LN
...

...
... ... LN

LN LN LN ... LN

⇒ L̃sub =


L1−LN−1 L1−LN−1 ... L1−LN−1
L1−LN−1 L1−LN−2 ... L1−LN−2

...
... ...

...
L1−LN−1 L1−LN−2 ... L1−LN

 . (25)

We have assumed L1 > L2 > ... > LN . The inductance matrix has to be symmetric, i.e., Li j = L ji,
and the layered structure further imposes Li j = Lkk with k = max(i, j). L(slab) defined in Eq. (18)
has this structure. To specify the matrix of layered structure, only diagonal components are needed.
Eq. (25) indicates that adding a constant to all components of inductance matrix does not change
the amount of generated heat, as it is their differences, L̃sub, that matter [see the discussion in
Section II B].

Now we consider the case where J2 = J3 = J4 = ..= JN = J [Fig. 2(a) and (c)]. With Ii = Ji∆x
and ∆x = a/N, we get

Q(J) = J2
µ0(∆x)3

[
1
2

N−1

∑
n=1

n+
N−1

∑
n=1

n(N−n)

]
→

N→∞
J2

µ0
a3

6
. (26)

The first summation (∆x)3
∑

N−1
n=1 n comes from the diagonal components, and approaches zero in

N → ∞ limit; the second summation (∆x)3 [
∑

N−1
n=1 n(N−n)

]
comes from all off-diagonal compo-

nents, and approaches
∫ a

0 dxx(a− x) = a3/6 in N→ ∞ limit. The total generated heat from Ji = J
to Ji = J−∆J is

Q(J)−Q(J−∆J) = µ0J∆J
a3

3
, (27)

identical to that obtained from a direct slab calculation (see Eq.(7.3) in Ref.3).
Finally, we point out the “layered structure” of inductance matrix [Eq. (25)] implies that the

current injection starts at the Nth filament, and then (N−1)th, ... etc. This can be understood as
follows. When the inter-filament resistance is small (which is usually the case), all filaments tend
to have the same potential drop. When there is no resistance, the dynamical equation is simply
v0|e〉 = L di

dt subject to a current injection rate ditot
dt . By subtracting adjacent components of this

vector equation, we get diN
dt = ditot

dt , indicating only the current of the Nth filament is increasing.
Once the Nth filament reaches its critical current, iN ∼ ic and diN

dt = 0. We can solve the same
v0|e〉= L di

dt but with diN
dt = 0. Following the same procedure we get diN−1

dt = ditot
dt , indicating the only

the current of the (N− 1)th filament is increasing. This process will continue until all filaments
reach their critical currents. We recognize that this is the characteristic behavior of the Bean
model (i.e., the current change starts at the surface) and will show the circuit model simulation in
Section III C (next subsection).
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C. Circuit model simulation of current injection

  (a) (b)

FIG. 3. The charging process of 4 SC filaments, using the inductance matrix of a SC slab composed of
four SC sheets. The change of input current always affects the outermost sheet (i.e., the 4th sheet) first, and
then propagate deeper inside the SC slab. The critical current Ic = 0.1 in this simulation. (a) The current
distribution as a function of time. (b) The sheet voltage, in the unit of µ0, as a function of time: a staircase
behavior is observed.

To simulate the current injection in the circuit model, we consider a given initial current distri-
bution with a constant positive current injection rate İtot ; we then ask the current distribution Ii(t).
To be concrete, we take N = 4 with the inductance matrix:

L = µ0


4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

 . (28)

This inductance matrix models the SC slab as four successive SC sheets. 4 corresponds to the
outermost sheet (i.e., the interface between the SC slab and the vacuum); 1 corresponds to the
deepest sheet (furthest away from the interface) [see Eq. (18)]. In the simulation, the non-linear
resistance is specified by r0 = 10−6, Ic = 0.1, and n= 20 in Eq. (11), and “inter-sheet” conductance
by gi j = 106 for i 6= j for g defined in Eq. (3c). The current injection is given by

dItot

dt
= İtot =


0.4 0 < t < 2
0 2 < t < 4 and t > 6
−0.4 4 < t < 6

. (29)

Current of 0.8 Ic is injected during t = 0 to 2; the same amount of current is removed during t = 4
to 6. The initial condition is I1 = I2 = I3 = I4 =−Ic =−0.1. The current distribution as a function
of time is shown in Fig. 3(a). We see that with this form of inductance matrix, the current of
4th (closest to the surface) sheet changes from −Ic to +Ic first, then the 3rd, then the 2nd, and
finally the 1st. When reversing the current source, the current of the 4th sheet changes from +Ic
to −Ic first, then the 3rd, then the 2nd, and finally the 1st. This order is expected from the Bean
model (i.e., the change starts at the surface) and accounts for the hysteresis behavior. In the circuit
model, this behavior originates from the “layered” structure of induction matrix (see Section III B).
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When there is no resistance (In < Ic for all n), the current change is completely determined by the
inductance and the time derivative of the sheet currents, but has nothing to do with values of sheet
currents. When some of the filaments develop a non-zero resistance, the currents on these sheets
saturate around Ic and the remaining current flows through the sheets whose currents are smaller
than Ic.

Fig. 3(b) shows the voltage distribution (computed by vn(t) = rn · in(t)) as a function of time,
and the staircase behavior can be understood as follows. When there is no resistance, Eq. (9)
implies v(t) =−L di

dt +α(t). During the current injection, di
dt goes through four phases:

di
dt

=


0
0
0

İtot

→


0
0

İtot
0

→


0
İtot
0
0

→


İtot
0
0
0

 . (30)

Each phase lasts a period of 2Ic/İtot(= 2× 0.1/0.4 = 0.5 in this simulation). The corresponding
voltages for these four phases are

v(t) =−µ0


1
1
1
1

 İtot +α1→−µ0


2
2
2
1

 İtot +α2→−µ0


3
3
2
1

 İtot +α3→−µ0


4
3
2
1

 İtot +α4. (31)

αi(t) is determined by requiring the zero voltage in the innermost sheet as the deepest sheet ex-
periences no flux change and thus no voltage. With this input, we get α1 = µ0İtot , α2 = 2µ0İtot ,
α3 = 3µ0İtot , and α4 = 4µ0İtot , from which the voltage sequence turns out to be

v(t) = µ0


0
0
0
0

 İtot → µ0


0
0
0
1

 İtot → µ0


0
0
1
2

 İtot → µ0


0
1
2
3

 İtot . (32)

If we look at the voltage at 4th sheet v4(t), it goes from 0 to µ0İtot to 2µ0İtot to 3µ0İtot , consistent
with Fig. 3(b) which is obtained by directly solving the Eq. (1). We have numerically checked
the plateau values are independent of the resistance r(I). The current at each sheet saturates at
a value slightly larger than Ic, and the exact amount depends on the longitudinal resistance r(I).
For this reason, the heat generation rate, computed by In · vn, in principle depends on r. However,
if rn(I) increases sufficiently fast so that I ∼ Ic can accumulate any voltage, the generated heat
becomes independent of r(I), which is the ideal case considered in the typical continuum medium
calculation3.

We can now consider the heat generated by a constant injection rate İtot . Let us give the heat
generation in a continuum SC slab over the period when Itot changes from Jca to −Jca, as illus-
trated in Fig. 2(c). The total heat is computed by

∆φ(x) =
∫ x

0
dx′∆B(x′) =

∫ x

0
dx′ 2µ0Jcx′ = µ0Jcx2,

Qslab =
∫ a

0
dxJc∆φ(x) =

∫ a

0
dxµ0J2

c x2 = µ0J2
c

a3

3
.

(33)

∆φ(x) is the change of magnetic flux at x, and ∆B(x′) = 2µ0Jcx′ is the change of magnetic field
when the current density goes from +Jc to −Jc as shown in the green curve in Fig. 2(a). Eq. (33)
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(see Eq.(8.5) in Ref.3) shall be reproduced in the circuit model calculation in the infinite-sheet
limit.

In the circuit model, if we (i) identify Jn = In/(∆x), (ii) neglect the transient behavior of vn(t),
and (iii) assume the current density is Jc, the generated heat can be computed as

Qcir = µ02J2
c (∆x)3

N

∑
n=1

[
n

∑
j=1

j

]
= µ02J2

c (∆x)3
N

∑
n=1

n(n+1)
2

→
n∆x=xn

2J2
c µ0(∆x)

N

∑
n=1

x2
n

2
→

N→∞
µ0J2 a3

3
.

(34)

In the N→∞ limit, Qcir =Qslab. In our circuit model simulation, there is still a weak r-dependence
because our choice of r(I) does not increase fast enough when I > Ic.

In this section, we have demonstrated that the circuit model can simulate the current distribution
and heat generation during the current injection. The results are fully consistent with the Bean
model. In fact, the circuit model provides more information – the dynamical or transient behavior
– which the Bean model does not include in the first place. We shall comment on the relation
between the Bean model and the circuit model more in Section IV D. The inductance matrix plays
the crucial role in the dynamics. After all, when the resistance is zero, the inductance completely
determines how currents change in time.

IV. SUPERCONDUCTING CYLINDER OF STRAIGHT FILAMENTS

In this section we consider a SC cylinder composed of straight filaments as illustrated in
Fig. 2(b). Cylinder serves as the idealized geometry of a SC wire. The straight filaments im-
ply that the SC current only flows along the axial direction. We will model the SC wire as a
collection of concentric shells and determine its self and mutual inductances by computing the
magnetic energy. The results obtained in this section will be used in Section V where the filaments
are twisted. The heat generated by (i) reduction of Ic with total current fixed and (ii) the change of
total current will be computed.

A. SC cylinder as concentric shells - inductance matrix

For a SC cylinder of radius R with a current density distribution J(r), the magnetic field inside
the cylinder is given by

B(r)2πr = µ0

∫ r

0
dr′ J(r′)2πr′

⇒ B(r) =
µ0

r

∫ r

0
dr′ J(r′)r′ =

µ0

r

∫ R

0
dr′ J(r′)r′Θ(r− r′).

(35)
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The total magnetic energy for r < R is given by

EB[J(r)] =
1

2µ0

∫ R

0
dr |B(r)|22πr = µ0π

∫ R

0
dr

1
r

[∫ R

0
dr′ J(r′)r′Θ(r− r′)

]2

= µ0π

∫ R

0
dr′

∫ R

0
dr′′ J(r′)J(r′′)r′r′′

[∫ R

0
dr

1
r

Θ(r− r′)Θ(r− r′′)
]

= µ0π

∫ R

0
dr′

∫ R

0
dr′′ J(r′)J(r′′)r′r′′

[∫ R

max(r′,r′′)
dr

1
r

]
= µ0π

∫ R

0
dr′

∫ R

0
dr′′ J(r′)J(r′′)r′r′′ log

[
R

max(r′,r′′)

]
,

(36)

with a total current Itot =
∫ R

0 dr J(r)2πr. The last two expressions are identical; we can choose
either depending on our convenience. The magnetic energy for r > R will be neglected as it only
introduces a (infinite) constant to all components of the inductance matrix.

Now we discretize [Fig. 2(b)] the cylinder of radius R into N concentric shells, so r is defined
at ri = ∆r · i and the function J(r) is parameterized by J1 = J(r1), J2 = J(r2), ..., JN = J(rN). Let us
introduce Ii to be the current between ri−1 and ri (i.e., the current of ith shell) so that Ii = 2πriJi ∆r.
Using the shell current as the variables, the magnetic energy becomes

EB[I(r)] =
µ0

4π

∫ R

0
dr′

∫ R

0
dr′′

I(r′)
∆r

I(r′′)
∆r

log
R

max(r′,r′′)
→ 1

2

N

∑
i j=1

IiL
(cyl)
i j I j, (37)

subject to the constraint ∑
N
i=1 Ii = Itot . L is identified as the inductance matrix (both self and

mutual) between concentric shells. For N = 5, the inductance matrix has the form

L(cyl) =
µ0

2π


log[R/r1] log[R/r2] log[R/r3] log[R/r4] log[R/r5]
log[R/r2] log[R/r2] log[R/r3] log[R/r4] log[R/r5]
log[R/r3] log[R/r3] log[R/r3] log[R/r4] log[R/r5]
log[R/r4] log[R/r4] log[R/r4] log[R/r4] log[R/r5]
log[R/r5] log[R/r5] log[R/r5] log[R/r5] log[R/r5]

 . (38)

This inductance matrix shares the same “layered structure” as Eq. (25).

B. Heat due to the reduction of critical current

The Joule heating can be computed using the same procedure in Section III B, with the induc-
tance matrix replaced by L(cyl). Following the same procedure, the diagonal components of L̃(cyl)

sub
are

L̃(cyl)
sub,diag =

µ0∆r
2π

[
∑

1
i=1

1
ri
, ∑

2
i=1

1
ri
, ... ∑

N−2
i=1

1
ri
, ∑

N−1
i=1

1
ri

]
, (39)

and L̃(cyl)
sub,i j = L̃(cyl)

sub,kk with k =min(i, j). Comparing to the continuum medium, we identify r1 = c
and rN = R over which the SC current flows. For a constant current density, Ii = Jc2πri∆r and we
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obtain

Q(cyl)(Jc) =
µ0∆r
2π

N

∑
n=1

[
n

∑
i=1

1
rn

]
In

[
N

∑
j=n+1

I j

]

=
µ0

2π
(2π)2(∆r)J2

c

N

∑
n=1

[
(∆r)

n

∑
i=1

1
rn

]
rn

[
(∆r)

N

∑
j=n+1

r j

]

(rn→ r)→ 2πµ0J2
c

∫ R

c
dr
[
log

r
c

]
r
[

1
2
(a2− r2)

]
=

πµ0J2
c

2
R4
[
−3

8
+

ε2

2
− ε4

8
− logε

2

]
,

(40)

with ε = c
R . The total heat per unit area is given by

Q(cyl)(Jc)−Q(cyl)(Jc−∆Jc)

πR2 = µ0R2Jc ∆Jc

[
−3

8
+

ε2

2
− ε4

8
− logε

2

]
. (41)

This result is identical to the direct calculation of a SC cylinder (see Eq.(7.11) in Ref.3).

C. Heat due to the changing total current

Now we consider the case where the total current is changing in time. The total heat per unit
cross section is computed by

Q(cyl,2) =
4

πR2

∫ R

c
dr 2πr Jc∆φ(r) =

4µ0J2
c

R2

∫ R

c
dr
[

r3

2
− c2r

2
− c2r log

r
c

]
=

µ0J2
c R2

2
[
(1− ε

2)2−2ε
2(−1+ ε

2−2logε)
]
=

µ0J2
c R2

2
[
1− ε

4 +4ε
2 logε

]
,

(42)

with ε = c
R . We identify B(r) = µ0Jc

2

[
r− c2

r

]
and ∆φ(r) =

∫ r
c dr′B(r′) = µ0Jc

2

[
r2

2 −
c2

2 − c2 log r
c

]
when the current density changes from Jc to zero (see Eq.(8.92) in Ref.3). Eq. (42) will be repro-
duced in the circuit model calculation shortly.

For the circuit model, we consider the problem where the currents change from Ii = 2πriJc∆r
to Ii = 0, for i = 1 to N. Because the building blocks are concentric shells in a SC cylinder and
they have different spatial size, the critical currents of building blocks are different. Following the
discussion in Section III C, we compute the flux change by ∆φ = v∆t =−L(cyl) ·∆Itot +α(t), with
the offset α(t) fixed by requiring that the inner-most shell has no flux change. Let us use N = 4
as a concrete example. Due to the “layered structure” of L(cyl) [Eq. (38) for example], the current
change starts with the 4th shell, then the 3rd, then the 2nd, and finally the 1st (see Section III B).
Because each shell carries a current of 2πriJc∆r = ∆Ii, the corresponding flux change during these

15



four phases is

∆φ =−L(cyl)


0
0
0

2πr4Jc∆r

+α1→−L(cyl)


0
0

2πr3Jc∆r
0

+α2

→−L(cyl)


0

2πr2Jc∆r
0
0

+α3→−L(cyl)


2πr1Jc∆r

0
0
0

+α4.

(43)

Fixing αi by requiring a zero flux change in the innermost shell, we get

∆φ

µ0Jc
=


0
0
0
0

→ (∆r)2


0
0
0

r4
1
r4

→ (∆r)2


0
0

r3
1
r3

r3(
1
r3
+ 1

r4
)

→ (∆r)2


0

r2
1
r2

r2(
1
r3
+ 1

r4
)

r2(
1
r2
+ 1

r3
+ 1

r4
)

 . (44)

For the 4th strand, the flux changes from 0 to µ0Jc(∆r)2r4
1
r4

, to µ0Jc(∆r)2r3(
1
r3
+ 1

r4
), and finally

to µ0Jc(∆r)2r2(
1
r2
+ 1

r3
+ 1

r4
). Generally for nth shell, the voltage is given by

∆φn = µ0Jc(∆r)2
n

∑
m=1

rm

[
n

∑
i=m

1
ri

]
. (45)

The total heat is computed by IT ∆φ . For N = 4, IT = 2πJc∆r(r1,r2,r3,r4). Denoting r1 = c and
rN = R, the total generated heat is ∑

N
n=1 2πJc∆rrn ·∆φn, leading to

Q(cyl,2)
cir = 4× 2πJ2

c µ0

πR2 (∆r)3
N

∑
n=1

rn

n

∑
m=1

rm

[
n

∑
i=m

1
ri

]

identify rm = r′,rn = r, and
n

∑
i=m

1
ri

∆r = log
r
r′

→ 8J2
c µ0

R2

∫ R

c
dr r

∫ r

c
dr′ r′ log

r
r′
=

8J2
c µ0

R2
R4

16
[
1− ε

4 +4ε
2 logε

]
=

J2
c µ0R2

2
[
1− ε

4 +4ε
2 logε

]
.

(46)

Compared to Eq. (42), we find Q(cyl,2)
cir = Q(cyl,2) as it should be.

In this section, we have shown that a SC cylinder can be described by a collection of concentric
shells which are the building blocks of the circuit model. The inductance matrix, obtained by com-
puting the magnetic energy, possesses the same “layered structure” as the SC slab. As discussed
in Section III B, this structure leads to the behavior where the current change starts at the surface.
The heat generated current redistribution, either by reduction of critical current or by changing the
total current, approaches the Bean-model results when the number of shells becomes infinite.
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D. Relation between the Bean model and the circuit model

We close this section by arguing that the circuit model is a more complete description of the
system, and the Bean model can be regarded as a simplified or coarse-grained version of the circuit
model. This argument is based on the following two observations. First, the Bean model is quasi-
static, and cannot describe the time-dependent processes completely. The circuit model, on the
other hand, is dynamical and is able to fully describe the system responses to the time-varying
external perturbations20,41. Second, the Bean model is mainly used to describe a continuum of SC
material of high symmetry, whereas the circuit model allows for the discontinuous SC structure.
Therefore, by taking the proper limit the circuit model can (and should) reproduce the results of
the Bean model, but it is not obvious how the Bean model can be directly applied to system of
composite SC materials42.

To illustrate the validity of the circuit model and that of the Bean model, we consider the
heat generation during the external time-varying perturbation. In Sections III B, III C, IV B, IV C,
the heat generation using the circuit model is computed. To exactly match the heat generation
computed by the Bean model, we need to take the index number n defined in Eq. (10) to be
infinite. Therefore, in terms of heat generation, the Bean model is a good approximation for high-
quality superconductors only, but the circuit model can deal with superconductors of any qualities.
As the amount of heat is crucial for determining the quench condition3, the circuit model can
provide some correction the quench current determined using the Bean model. However, since
one is usually interested in high-quality SC, this correction is usually small.

V. SUPERCONDUCTING WIRE OF TWISTED FILAMENTS

  

(a) Current and magnetic field

(b) Twisted filaments over two pitches

No twist, only BΦ Twist, both Bz and BΦ 

axial z

radial

azimuthal Φ

pitch length p

axial z

FIG. 4. (a) Illustration of the twisted SC filaments that form a SC wire. Without twisting, current only flows
along z and therefore only Bφ is non-zero. Once strands are twisted, both Iz and Iφ components are present,
therefore both Bz and Bφ are non-zero. (b) Two close twisted filaments over two pitch lengths.

Now we consider the SC wire of twisted filaments. In Ref.43, Turck showed that the twisted
filaments can induce a small uniform current inside the SC wire. We see how this is obtained in
the circuit model.
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A. Main results in Ref.43

We recapitulate a few results in Ref.43. The problem is to compute the magnetic field distri-
bution between layers of twisting filaments with pitch length p. The key physics is that the total
magnetic flux between two twisted filaments, over one pitch, is zero, because there is no electric
field inside each SC filament. This requirement determines the magnetic field and the current dis-
tributions. Two ingredients of this calculation are (i) the magnetic field; and (ii) the area enclosed
by two twisted filaments.

Following Ref.43, I(r) is denoted as the total current inside a cylinder of radius r. We consider
the twisted pitch p is much larger than the radius of the cylinder, and get

Jφ

Jz
=

2πr
p
� 1. (47)

Under this condition, the total current density can be approximated Jz and I(r1) =
∫ r1

0 dr 2πrJz(r).
Due to the twisting, the magnetic field has both azimuthal φ̂ and axial ẑ components [Fig. 4(a)].
Using Ampere’s law,

Bφ (r) = µ0
I(r)
2πr

, Bz(r) =
µ0

p
[Itot− I(r)] . (48)

To compute the magnetic flux, we also need the area element between two twisted filaments.
The trajectory of one twisted filament with twisted pitch p is [Fig. 4(b)]

r1(r,φ) = (r cosφ ,r sinφ ,
p

2π
φ). (49)

The x,y go back to the original values while z is changed by the twisted pitch p. The area spanned
by two nearby strands is given by ∂φ r1dφ ∧∂rr1dr, and is computed by

∂φ r1 = (−r sinφ ,r cosφ ,
p

2π
),

∂rr1 = (cosφ ,sinφ ,0),

da = dr dφ
[
∂φ r1∧∂rr1

]
= dr dz

[
φ̂ − 2πr

p
ẑ
]
.

(50)

We have used r̂ = (cosφ ,sinφ ,0), φ̂ = (−sinφ ,cosφ ,0), ẑ = (0,0,1), so that ẑ = r̂× φ̂ . By
requiring the total flux within a pitch is zero, we get∫ r1+e

r1

dr
∫ 2π

0
dφ Bφ

p
2π

+
∫ r1+e

r1

dr
∫ 2π

0
dφ Br× (−r) = 0

⇒
∫ r1+e

r1

dr
I(r)

r
−
(

2π

p

)2 ∫ r1+e

r1

dr r[Itot− I(r)] = 0.
(51)

Eq. (48) has been used. With e being a small quantity, we approximate
∫ r1+e

r1
dr I(r)

r ≈ I(r1)
e
r1

and∫ r1+e
r1

dr r[Itot− I(r)]≈ [Itot− I(r1)]r1e. To the first order of e we get

I(r1)
e
r1
−
(

2π

p

)2

[Itot− I(r1)]r1e = 0

⇒I(r1) =
4π2r2

1
p2 Itot

1
1+4π2r2

1/p2 ≈
4π2r2

1
p2 Itot ,

(52)
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where p� r1 is used. The r2 dependence implies that a constant current density 4π

p2 Itot inside the

SC wire of twisted filaments. This result is given on p.482 of Ref.43.

B. Inductance matrix caused by twisting

To obtain the inductance matrix, we compute the magnetic energy as a functional of current
density distribution J(r) using Eq. (48). The Bφ contribution is already derived in Eq. (38):

L(cyl)
i j =

µ0

2π
log
[

R
max(ri,r j)

]
, (53)

with ri = c+ i ·∆r. We focus on the Bz contribution:

Emag,z[J(r)] =
1

2µ0

∫ R

0
dr 2πr

[
µ0

p
(Itot−

∫ r

0
dr′ 2πr′J(r′))

]2

=
πµ0

p2

{
R2

2
I2
tot−2Itot

∫ R

0
dr r

∫ r

0
dr′ 2πr′J(r′)+

∫ R

0
dr r

[∫ r

0
dr′ 2πr′J(r′)

]2
}
.

(54)

Three terms in Eq. (54) are evaluated. The first term only involves I2
tot . This term can be neglected,

but we keep it to make the final expression [Eq. (58)] simpler. Using Itot =
∫ R

0 dr 2πrJ(r), we write

πµ0

p2
R2

2
I2
tot = µ0

πR2

2p2

[∫ R

0
dr′ 2πr′J(r′)

][∫ R

0
dr′′ 2πr′′J(r′′)

]
= µ0

πR2

2p2

∫ R

0
dr′
∫ R

0
dr′′

I(r′)
∆r

I(r′′)
∆r
→ 1

2

N

∑
i, j=1

L(1)
i j IiI j.

(55)

Here we used Ii = I(ri) = 2πriJ(ri)∆r. In the discretized description,
∫ R

0 dr′ I(r
′)

∆r →∑
N
i=1 In and we

find L(1)
i j = µ0

πR2

p2 . Using
∫ r

0 dr′ 2πr′J(r′) =
∫ R

0 dr′ 2πr′J(r′)Θ(r− r′), the third term in Eq. (54)
can be written as

πµ0

p2

∫ R

0
dr r

[∫ R

0
dr′ 2πr′J(r′)Θ(r− r′)

][∫ R

0
dr′′ 2πr′′J(r′′)Θ(r− r′′)

]
=

πµ0

p2

∫ R

0
dr′
∫ R

0
dr′′

I(r′)
∆r

I(r′′)
∆r

1
2
[
R2− [max(r′,r′′)]2

]
→ 1

2

N

∑
i, j=1

L(3)
i j IiI j.

(56)

L(3)
i j is thus identified as πµ0

p2

[
R2− [max(ri,r j)]

2]. For the second term in Eq. (54),

− πµ0

p2

∫ R

0
dr r

[∫ R

0
dr′ 2πr′J(r′)

∫ R

0
dr′′ 2πr′′J(r′′)Θ(r− r′′)

+
∫ R

0
dr′′ 2πr′′J(r′′)

∫ R

0
dr′ 2πr′J(r′)Θ(r− r′)

]
=−πµ0

p2

∫ R

0
dr′
∫ R

0
dr′′

I(r′)
∆r

I(r′′)
∆r

2R2− (r′2 + r′′2)
2

→ 1
2

N

∑
i, j=1

L(2)
i j IiI j.

(57)

L(2)
i j is identified as −πµ0

p2 (2R2− [r2
i + r2

j ]). Combining all three terms in Eq. (54), we get

L(twist)
i j = L(1)

i j +L(2)
i j +L(3)

i j =+
µ0π

p2

[
min(ri,r j)

]2
. (58)
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C. Currents of inner shells due to twisting

Now we compute the currents of inner shells due to twisting and show that they are consistent
with Eq. (52). Denoting L0 = L(cyl) and L1 = L(twist). The linear equation we want to solve is[

(L0 +L1) e
et 0

][
i̇
−α

]
=

[
0

İtot

]
, (59)

with et = (1,1,1, ...1). Since p� r is assumed [Eq. (47)], L0� L1 and the perturbation expansion
can be used to get the solution. Writing i̇ = i̇(0)+ i̇(1) and α = α(0)+α(1), the 0th order satisfies[

L0 e
et 0

][
i̇(0)

−α(0)

]
=

[
0

İtot

]
. (60)

The solution is i̇(0) = (0,0,0, ..., İtot)
T , i.e., only the last component has a non-zero value of İ. The

first order quantities satisfy

L0i̇(1)+L1i̇(0) = α
(1)e, or L0i̇(1) =−L1i̇(0)+α

(1)e, (61)

subject to ∑
N
n=1 i̇(1)n = 0. We proceed to use N = 4 inductance matrix, but the generalization is

straightforward. For N = 4, we need to solve

µ0

2π


log[R/r1] log[R/r2] log[R/r3] log[R/r4]
log[R/r2] log[R/r2] log[R/r3] log[R/r4]
log[R/r3] log[R/r3] log[R/r3] log[R/r4]
log[R/r4] log[R/r4] log[R/r4] log[R/r4]




i̇(1)1
i̇(1)2
i̇(1)3
i̇(1)4

=

− µ0π

p2


r2

1 r2
1 r2

1 r2
1

r2
1 r2

2 r2
2 r2

2
r2

1 r2
2 r2

3 r2
3

r2
1 r2

2 r2
3 r2

4




i̇(0)1
i̇(0)2
i̇(0)3
i̇(0)4

+


α(1)

α(1)

α(1)

α(1)

 .
(62)

Using i̇(0)1 = i̇(0)2 = i̇(0)3 = 0 and i̇(0)4 = İtot , we get

log[R/r1]i̇
(1)
1 + log[R/r2]i̇

(1)
2 + log[R/r3]i̇

(1)
3 + log[R/r4]i̇

(1)
4 =−2π2

p2 r2
1 İtot +α

(1)

log[R/r2]i̇
(1)
1 + log[R/r2]i̇

(1)
2 + log[R/r3]i̇

(1)
3 + log[R/r4]i̇

(1)
4 =−2π2

p2 r2
2 İtot +α

(1)

log[R/r3]i̇
(1)
1 + log[R/r3]i̇

(1)
2 + log[R/r3]i̇

(1)
3 + log[R/r4]i̇

(1)
4 =−2π2

p2 r2
3 İtot +α

(1)

log[R/r4]i̇
(1)
1 + log[R/r4]i̇

(1)
2 + log[R/r4]i̇

(1)
3 + log[R/r4]i̇

(1)
4 =−2π2

p2 r2
4 İtot +α

(1)

(63)

α(1) can be determined by the last equation and ∑
N
n=1 i̇(1)n = 0, but its value is not important here.

Taking the difference between 1st and 2nd, between 2nd and 3rd, between 3rd and 4th equations,
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we get

log
r2

r1
(i̇(1)1 ) =

2π2

p2 (r2
2− r2

1)İtot ,

log
r3

r2
(i̇(1)1 + i̇(1)2 ) =

2π2

p2 (r2
3− r2

2)İtot ,

log
r4

r3
(i̇(1)1 + i̇(1)2 + i̇(1)3 ) =

2π2

p2 (r2
4− r2

3)İtot .

(64)

These equations give i̇(1)1 and i̇(1)2 and i̇(1)3 ; i̇(1)4 is determined from ∑
N
n=1 i̇(1)n = 0.

For N→ ∞, and for an arbitrary n < N, we get

log
rn+1

rn

[
n

∑
k=1

i̇(1)k

]
=

2π2

p2 (r2
n+1− r2

n)İtot . (65)

Using rn+1 = rn +∆r, we have r2
n+1− r2

n ∼ 2rn∆r and log rn+1
rn
∼ ∆r

rn
. Substituting into the above

equation, we get
n

∑
k=1

i̇(1)k =
4π2

p2 r2
n İtot ⇒

n

∑
k=1

i(1)k =
4π2

p2 r2
nItot . (66)

We have assumed the initial current is zero to obtain the current distribution. As the left-hand side
is the current within rn, this equation is identical to Eq. (52).

VI. CONCLUSION

Bean’s critical-state model has been served as the foundation of determining the current and
field distributions inside a type-II superconductor under a time-varying external current or mag-
netic field. Two characteristic features of the Bean model are (i) the amplitude of the SC current
density is either zero or at the critical value Jc, and (ii) the change of current distribution begins
at the surface and gradually propagates deeper into the superconductor. In this work, we show
that the circuit model including inductances and current-dependent resistances are sufficient to
explain the Bean-model behavior. In particular, feature (ii) originates from the specific “layered
structure” of inductance matrix; feature (i) requires an additional current-dependent resistance that
describes the maximum current (density) a superconductor can sustain. Therefore, one can intu-
itively understand the Bean-model behavior from the interplay between the inductances and the
non-linear resistance identified in the circuit model: the inductances dictate how currents change
in time and the non-linear resistance makes sure that the current stays below its critical value. It
may be worth emphasizing that the circuit model is classical and macroscopic; although peculiar
properties of superconductor require atomic-scale modelings involving quantum mechanics, the
property of type-II superconductor relevant to the Bean-model behavior is entirely encoded in the
macroscopic current-dependent resistance. We have applied the circuit model to a SC slab, a SC
wire composed of straight filaments, and a SC wire composed of twisted filaments, and are able to
obtain the current distribution, the hysteresis behavior and the heat generation computed using the
Bean model. The technical subtleties of solving partial differential equations and the correspond-
ing numerical steps to overcome them are also pointed out. The complete agreement between the
circuit model and the Bean model indicates that the circuit model can be a useful formalism to
simulate the charging process of multi-filament superconducting wires.
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