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Abstract
Deep learning methods for person identification based on electroencephalographic (EEG)
brain activity encounters the problem of exploiting the temporally correlated structures or
recording session specific variability within EEG. Furthermore, recent methods have mostly
trained and evaluated based on single session EEG data. We address this problem from an
invariant representation learning perspective. We propose an adversarial inference approach
to extend such deep learning models to learn session-invariant person-discriminative repre-
sentations that can provide robustness in terms of longitudinal usability. Using adversarial
learning within a deep convolutional network, we empirically assess and show improvements
with our approach based on longitudinally collected EEG data for person identification from
half-second EEG epochs.
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Adversarial Deep Learning in EEG Biometrics
Ozan Özdenizci, Ye Wang, Toshiaki Koike-Akino, and Deniz Erdoğmuş

Abstract—Deep learning methods for person identification
based on electroencephalographic (EEG) brain activity en-
counters the problem of exploiting the temporally correlated
structures or recording session specific variability within EEG.
Furthermore, recent methods have mostly trained and evaluated
based on single session EEG data. We address this problem from
an invariant representation learning perspective. We propose an
adversarial inference approach to extend such deep learning
models to learn session-invariant person-discriminative repre-
sentations that can provide robustness in terms of longitudinal
usability. Using adversarial learning within a deep convolutional
network, we empirically assess and show improvements with our
approach based on longitudinally collected EEG data for person
identification from half-second EEG epochs.

Index Terms—person identification, biometrics, EEG, adver-
sarial learning, invariant representation, convolutional networks

I. INTRODUCTION

Non-invasively recorded electroencephalographic (EEG) hu-
man brain activity has gained interest as an alternative person-
discriminative biometric due to its continuous accessibility,
privacy compliancy, and relatively harder forgeability, in com-
parison to today’s most prevalent biometric identification ap-
proach of fingerprint recognition. A significant amount of work
within the field of statistical EEG signal processing proposed
novel methodologies to explicitly access person-discriminative
neural sources from EEG. This problem was successfully
tackled both in the context of person identification, where an
individual is assigned to a label (class) within a specific set of
people that an identification model is trained on [1], as well
as for person authentication, where a one-to-one matching
in decision making for person recognition is performed [2].
Longitudinal studies also confirm the feasibility of EEG as
an alternative means of biometrics [3–5]. However, one recent
study demonstrates different affective mental states potentially
influencing stability of EEG as a tool for user identification
[6]. As such, discriminative EEG biometric feature extractor
models that can filter out specific nuisance variables are
likely to enhance usability of generated invariant features for
biometric identification. Similarly, this idea can extend to
filtering out recording session related confounders from the
feature learning process for longitudinal model robustness.

Recent progress in EEG deep learning has capabilities to
tackle this problem. However importantly, current deep learn-
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ing models for EEG biometric identification are vastly evalu-
ated by within-session (i.e., within-recording) cross-validation
protocols [7–10]. Due to their deep and complex nature, these
models are particularly prone to capturing recording-specific
variability rather than individual neural biomarkers. Going
further, such models rely on the hypothesis that the deep archi-
tectures will internally learn invariant, generalizable features.
This assumption is naturally constrained with the amount of
available person-representative EEG data. Here, we highlight
the need to extend EEG neural network models to explicitly
learn invariant features against longitudinal variabilities.

In this study, we present an adversarial inference approach
to extend deep learning based EEG biometric identification
models, to learn session-invariant person-discriminative fea-
tures (representations). We evaluated our approach based on
EEG data recorded from ten healthy subjects participating in
rapid serial visual presentation (RSVP) based brain-computer
interface (BCI) experiments, which are identically performed
on three separate sessions (i.e., days) for each participant. Em-
pirical evaluations revealed a significant improvement with ad-
versarial session-invariant feature learning for across-sessions
person identification compared to conventional methods.

II. PRIOR WORK

A. EEG-Based Biometric Identification

Pioneering neural signatures in EEG biometrics were con-
sidered to be visually evoked potentials (VEPs) [1]. Several
pieces of work investigated spatio-temporal dynamics of EEG
during visual stimuli perception for person identification [11–
15]. Going further, since VEP-based experiment designs would
require high physical and mental user attention, various studies
extended this interest to different settings. Some examples
include EEG recordings during silently reading texts [16],
thorough EEG time-frequency domain explorations during
emotion elicitation, resting-state, or motor imagery/execution
tasks [17], fully task-independent designs where data are
collected during various kind of auditory stimuli that does not
require particular attention [18], or imagined speech [19]. An
alternative approach is multitask learning in EEG biometrics,
which was addressed in a study where person identification
and motor task prediction was performed simultaneously
through a shared representation to take advantage of latent
task-specific informations [20]. Overall, these methods were
mostly explored by data set specific traditional EEG process-
ing methods that uses time-domain features [11–14], spectral
decompositions [15–18] or autoregressive coefficients [19].

Motivated by its rapid progress, deep neural networks have
recently gained significant interest as generic spatio-temporal
EEG feature extractors. Mainly structured with convolutional
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architectures, deep neural networks were introduced for P300
detection [21], steady-state visually evoked potential detection
[22], rhythm perception during auditory stimuli [23], decoding
of motor imagery [24], as well as recently for non-task-
specific discriminative EEG feature extraction [25], [26]. Such
convolutional neural networks (CNNs) were also extended to
recurrent-CNNs [27], as well as deep convolutional autoen-
coders [28]. However, minimal progress was recently made
in using these generic EEG feature extractors for biometrics.
Some examples explore CNNs on resting-state [7] and motor
imagery EEG [29], recurrent neural networks (RNNs) [9],
as well as a combination of CNNs and RNNs for person-
discriminative feature extraction under different mental states
[10]. Similarly, a recent task-independent approach applies
deep networks to EEG data recorded during driving [8].

Although resting-state EEG or recordings under different
mental states [6] may prove a baseline for task-independence,
models that can filter out any underlying cued states to
learn invariant features would be useful in EEG biometrics.
Furthermore, given that deep learning models can easily
capture recording-specific artifacts rather than individual EEG
biomarkers, feature invariance across recording sessions would
be of particular interest for longitudinal usability. To this end,
existing studies rely on deep capabilities of the networks to
learn invariant and robust biometric EEG features when a large
pool of data is used. This assumption can be constrained with
the amount of person-representative EEG data. Going further,
recent works mostly evaluate their methods based on within-
session model learning and testing [7–10]. Hence, explicitly
learning session-invariant biometric representations with deep
learning remained as an open question for exploration.

B. Adversarial Invariant Representation Learning
Adversarial learning has been successfully applied in many

deep learning applications to date, mainly popularized within
generative model approaches for image data augmentation
[30]. Adversarial training within generative models (e.g.,
variational autoencoder (VAE)) were also used for invariant
latent representation learning, to disentangle specific attributes
(e.g., nuisance variables) from the representations [31–33].
These architectures rely on training a generative model ob-
jective (e.g., evidence lower bound for VAE [34]), alongside
a competing adversary with an antagonistic feedback on the
overall optimization objective to enforce the invariance. Such
attribute-invariant latent representations can then be used to
manipulate these attributes in data augmentation [33].

In our interest, there exists significant work on learning
discriminative, attribute-invariant encoder models that do not
require a generative decoder counterpart. In a discriminative
context, features are learned through an encoder during an
adversarial training game, by maximizing label prediction
certainty from learned features, while minimizing the certainty
of inferring the attribute (e.g., nuisance) variables from these
features [35], [36]. To date, these advancements in invariant
feature learning have not been considered in EEG biometrics.
In the light of these works, we hypothesize that adversarial
discriminative inference can be useful in terms of session-
invariant deep EEG feature learning for biometrics.

III. ADVERSARIAL CONVOLUTIONAL NETWORK

A. Adversarial Model Learning

Let {(Xi, si, ri)}ni=1 denote a model training data set, with
Xi ∈ RC×T the raw EEG data at epoch i recorded from
C channels for T discretized time samples, si ∈ {1, . . . , S}
the subject identification (ID) number for the person that the
EEG is collected from, and ri ∈ {1, 2, . . . , R} the recording
session ID (i.e., day) that the EEG data of the subject is
collected at. EEG data generation process is assumed to be
jointly dependent on subject and recording session IDs (i.e.,
X ∼ p(X|s, r)). In our decoding problem, the class labels
from the discriminative perspective are the subject IDs, and
we aim to learn person identification models over a specified
number of subjects S in our training data set.

In the proposed adversarial discriminative model learning
framework, we train a deterministic convolutional encoder
g(X; θ) with parameters θ, that will ideally output represen-
tations which are predictive of s as recovered by an identifier
network parameterized by γ, but not predictive of r as con-
cealed from an adversary network parameterized by φ which
tries to recover r. Here, the parametric identifier models the
likelihood qγ(s|g(X; θ)), whereas the parametric adversary
models the likelihood qφ(r|g(X; θ)). While the adversary
is trained to maximize qφ(r|g(X; θ)), the encoder conceals
information regarding r from the learned representations by
minimizing this likelihood, as well as also retaining person-
discriminative information by maximizing qγ(s|g(X; θ)). This
results in jointly training the networks towards the objective:

min
θ,γ

max
φ

E[− log qγ(s|g(X; θ)) + λ log qφ(r|g(X; θ))], (1)

with λ > 0 denoting the adversarial loss weight to enforce
stronger invariance and trading-off with identification perfor-
mance. Optimization is performed by using stochastic gradi-
ent descent alternatingly for the adversary, and the encoder-
identifier networks to optimize Eq. 1. An overview of the
adversarial training framework is illustrated in Figure 1.

B. Convolutional Network Architecture

Our EEG feature encoder consists of four convolutional
blocks (c.f. Table I), mainly structured by field-leading works
[25], [26]. Sequentially, we perform temporal convolutions
resembling to frequency filtering, depthwise convolutions [37]
as spatial filtering of frequency-specific activity, and two more
2D convolution blocks for spatio-temporal feature aggregation.
After convolutions we use batch normalizations (BatchNorm)
[38], and rectified linear unit (ReLU) activations. We use
ReLU activations since they typically learn faster in networks
with many layers [39], and were successfully used in EEG
deep learning [27]. We did not observe performance increases
by using exponential linear units [26]. Deep convolution kernel
sizes are mostly guided by [25], since we observed training
set overfitting and overall lack of generalization with shal-
lower layers. Beyond architectural design choices, in fact, our
adversarial inference approach is applicable to any EEG neural
network model by simply modifying the training objective.

Representations learned by the encoder were used by the
identifier and adversary for linear classifications of subject
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θ

Fig. 1. Adversarial discriminative model training framework. Encoder, iden-
tifier and adversary networks are simultaneously trained towards the objective
in Eq. 1, as illustrated by the loss functions in the dashed boxes.

and session IDs. Both networks consisted of a fully-connected
layer with S or R softmax units, respectively for the identi-
fier and adversary, to obtain the normalized log-probabilities
represented in the loss functions as shown in Figure 1.

IV. EXPERIMENTAL STUDY

A. Study Design and Experimental Data

Ten healthy subjects participated in the experiments at three
identical sessions performed on different days. The average
interval between two consecutive recording sessions for the
same person was 7.85 ± 14.34 days, with a minimum of
1 and a maximum of 65 days between sessions across all
experiments. Before the experiments, all participants gave their
informed consent in accordance with the guidelines set by the
research ethics committee of Northeastern University.

During each session, EEG data were recorded from par-
ticipants while they were using the RSVP Keyboard™, an
EEG-based BCI speller that relies on the RSVP paradigm to
visually evoke event-related brain responses for user intent
detection [40]. EEG data were recorded from 16 channels (as
described and also used in previous work [41], [42]), sampled
at 256 Hz, using active electrodes and a g.USBamp biosignal
amplifier (g.tec medical engineering GmbH, Austria).

Participants were using the RSVP Keyboard™ in offline cal-
ibration mode, attending to pre-specified letters while random
sequences of visual letter stimuli are presented to them. EEG
data were epoched at [0-0.5] seconds post-stimuli intervals to
construct each subjects’ specific session data set. We pooled
all epochs within a recording session irregardless of their
attended versus non-attended stimuli labels. The complete data
set consisted of 41,400 epochs of 16 channel EEG data for 128
samples. Epochs were equally distributed across subjects and
sessions (i.e., 1,380 epochs per subject per session).

B. Data Analysis and Implementation

We performed both within-session person identification
analyses to illustrate conventional evaluation methods, as well
as across-sessions analyses to demonstrate the impact of
session-invariant feature learning. In within-session analyses,
all subjects’ data were pooled per session ID and three distinct

TABLE I
CONVOLUTIONAL ENCODER NETWORK SPECIFICATIONS

Layer Operation Output Dim.

Encoder Input Reshape (1, C, T )

Convolutional
Block 1

20× Conv (1, T/2) (20, C, T/2)
BatchNorm (20, C, T/2)

Convolutional
Block 2

20× DepthwiseConv (C, 1) (400, 1, T/2)
BatchNorm + ReLU + Reshape (1, 400, T/2)

Convolutional
Block 3

200× Conv (400, T/4) (200, 1, T/4)
BatchNorm + ReLU + Reshape (1, 200, T/4)

Convolutional
Block 4

100× Conv (200, T/8) (100, 1, T/8)
BatchNorm + ReLU (100, 1, T/8)

Encoder Output Flatten 100 ∗ T/8

within-session models were trained. Training, validation and
test data sets were randomly constructed as 70%, 10% and
20% portions of the within-session data pools. Here, we ignore
the adversary network and train the encoder-identifier as a
regular CNN. Across-sessions analyses were performed by
a leave-one-session-out approach, where the left-out session
constituted the test set, and the training and validation sets
were constructed as 80% and 20% random splits of the other
two sessions’ pooled data. Here, the adversary was jointly
trained to recover session IDs from the encoder outputs.

We further compare the deep CNN-based models with two
baseline methods. First approach uses power spectrum features
[15–18]. We concatenated channel log-bandpowers computed
in θ- (4-8 Hz), α- (8-15 Hz), β- (15-20 Hz, 20-25 Hz, 25-30
Hz) and γ- (30-45 Hz, 45-60 Hz, 60-75 Hz) bands through
FFT using the Welch’s method and Hanning windows, into
a feature vector. We used a quadratic discriminant analysis
(QDA) classifier as the identifier, since it performed better than
linear classifiers in our analyses. Second method uses principal
component analysis (PCA) projection on the 2048 dimensional
(16 times 128) vectorized EEG data, and a QDA classifier
[13], [14]. PCA projection dimensionality was determined as
the minimum number of components that accounted for 90%
of total variance, which varied between 168 and 174.

All EEG data were normalized to have zero mean and scaled
to [-1,1] range by dividing with the absolute maximum value at
each epoch and channel individually. No channel selection or
offline artifact removal was performed. Input dimensionality of
the CNN networks is C=16 channels by T=128 samples. The
identifier network has a 10-dimensional output as a S=10 class
classifier across the subjects, whereas the adversary is a binary
classifier across R=2 sessions. It is important to note that the
binary session ID is not a shared variable across subjects,
but simply indicates variability with its label in conjunction
with the subject IDs. Ideally, alternating the session ID labels
should not have a significant impact on the learned models.

Networks were trained with 100 epochs per batch, with 500
repeated training set passes. Early stopping was performed
based on validation set loss of the identifier network. Parame-
ters were updated once per batch with Adam [43]. We used the
Chainer deep learning framework for implementations [44].
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TABLE II
LEAVE-ONE-SESSION-OUT PERSON IDENTIFICATION ACCURACIES (%). TEST COLUMNS SHOW THE IDENTIFIER ACCURACIES FOR THE LEFT-OUT

SESSION. FIRST TWO ROWS DENOTE THE BASELINE METHODS. NON-ADVERSARIAL MODEL DENOTES A REGULAR DEEP CNN. ADVERSARIAL MODELS
LEARN INVARIANT FEATURES ACROSS TWO TRAINING SESSIONS. PARENTHESES DENOTE THE STANDARD DEVIATIONS ACROSS 10 REPETITIONS.

Learning on Session 2 and 3 Learning on Session 1 and 3 Learning on Session 1 and 2

Validation Set Test
Session 1

Validation Set Test
Session 2

Validation Set Test
Session 3Identifier Adversary Identifier Adversary Identifier Adversary

Spectral Powers + QDA 80.5 (.005) – 44.9 (.001) 81.4 (.004) – 52.1 (.001) 83.6 (.004) – 49.5 (.002)

PCA + QDA 85.6 (.006) – 57.6 (.002) 85.1 (.006) – 58.9 (.001) 88.1 (.002) – 64.1 (.002)

Non-Adversarial λ = 0 91.6 (.008) 76.0 (.02) 62.3 (.02) 97.9 (.006) 78.9 (.03) 63.2 (.02) 97.9 (.001) 76.9 (.05) 69.2 (.02)

Adversarial λ = 0.005 91.2 (.01) 65.2 (.01) 65.1 (.01) 98.4 (.005) 63.7 (.03) 69.1 (.01) 98.2 (.006) 60.4 (.03) 71.6 (.02)

Adversarial λ = 0.01 90.7 (.01) 60.8 (.02) 66.6 (.02) 98.4 (.002) 58.7 (.02) 69.2 (.02) 98.4 (.003) 58.5 (.03) 71.3 (.01)

Adversarial λ = 0.02 91.1 (.01) 57.2 (.04) 65.3 (.01) 98.1 (.003) 56.0 (.03) 68.7 (.03) 98.2 (.003) 54.9 (.04) 71.2 (.01)

Adversarial λ = 0.05 91.0 (.009) 53.4 (.05) 65.4 (.02) 97.8 (.005) 53.5 (.03) 67.6 (.02) 98.2 (.003) 54.0 (.03) 71.1 (.02)

Adversarial λ = 0.2 91.8 (.005) 54.5 (.03) 64.1 (.02) 97.1 (.006) 53.1 (.04) 66.4 (.02) 97.4 (.004) 53.5 (.03) 71.1 (.03)
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Fig. 2. Adversarial (λ > 0) and non-adversarial (λ = 0) model evaluations
with identifier and adversary validation accuracies for the leave-Session 2-
out learning case. Center marks denote the means across ten repetitions and
widths denote ±1 standard deviation intervals in both dimensions.

C. Within-Session Person Identification

Models were learned using the training and validation splits
of single session pooled data. Our CNN model was able to dis-
criminate 10 subjects with 98.7%±0.005, 99.3%±0.003, and
98.6%±0.006 accuracies for Sessions 1, 2, and 3 respectively,
over 2,760 half-second epochs (i.e., 20% test split).

D. Across-Sessions Person Identification

Since within-session learning and evaluation from EEG can
overperform due to its highly correlated temporal structure,
across-sessions analyses would better demonstrate model gen-
eralizability. Spectral power and time-domain representation
based methods present a baseline with reasonable validation
set performances, which do not generalize across-sessions well
(c.f. Table II). In non-adversarial models, we observe the
amount of exploited session-discriminative leakage through
the adversary we train alongside the CNN, without adversarial
loss feedback (λ = 0). We observed that regular CNNs exploit
features that can also discriminate the two days (75–80%).

Adversarial models suppress session-variant information
from the encoded features. As observed from the adversary
accuracies, increasing λ censors the encoder, enforces stronger
session-invariance, and converges to the 50% chance level.
An intuitive way of choosing λ is by cross-validating the
learning process. We train our models with varying λ, and

favor decreases in adversary performance on the validation
set with increasing λ, while maintaining a similar identifier
performance compared to the non-adversarial case. Figure 2
depicts (for the leave-Session 2-out case) that strong λ values
can force the encoder to lose person-discriminative informa-
tion. Hence, we can choose λ in a range where identifier does
not start to perform poorly and adversary accuracy is low (e.g.,
λ = 0.01 or 0.02). When tested on an independent session,
we observe up to 72% 10-class person identification accuracies
based on 13,800 half-second epochs, with up to 6% gains via
adversarial learning based on two sessions’ invariance.

V. DISCUSSION

We propose an adversarial inference approach to extend
deep learning based EEG biometric identification models, to
learn session-invariant person-discriminative representations.
We empirically assessed our approach based on half-second
EEG epochs recorded from ten subjects during BCI exper-
iments on three different sessions. Our results demonstrate
significant contribution of adversarial learning in developing
across-days EEG-based person identification models.

Within-recording deep model learning and evaluation pro-
tocols are expected to perform significantly better when tem-
porally correlated signals (e.g., EEG) are considered. Recently
expanding work in EEG biometrics are mainly evaluated by
these frameworks [7–10]. Yet, one recent study that evaluates
CNNs in longitudinal usability yielded significant insights to
this problem [29]. We address this in a similar way, while
introducing adversarial learning for deep person-discriminative
models to exploit session-invariant features. Overall, our ap-
proach is applicable to any EEG neural network model.

Our model currently relies on the assumption that changing
sessions and days is one specific source of variability in
the data distribution. This idea could well extend to task-
invariant feature learning, where subjects can ideally perform
any unspecified task that representations should be invariant
to (e.g., naturalistic physical movements [45]). An ideal EEG
person identification model would have no possibility to be
calibrated or finetuned prior to use at an arbitrary time. Hence,
in the light of recent progress in deep learning, we propose
adversarial inference for longitudinal model robustness.
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