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Abstract
We propose a deep neural network model that instantaneously predicts the optical response of
nanopatterned silicon photonic power splitter topologies, and inversely approximates compact
(2.6 x 2.6 um2) and efficient (above 92%) power splitters for target splitting ratios.
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1. Introduction

Subwavelength nanopatterned devices can be used to control incident electromagnetic fields into specific transmitted
and reflected wavefronts [1–4]. However, optimization of such nanostructures, with a large design space is compu-
tationally costly. For example, computing the electromagnetic field profile via finite-difference time-domain (FDTD)
methods may require long simulation time, several minutes to hours depending on the area of photonic device. To
resolve the issue, we previously developed an artificial intelligence integrated optimization process using neural net-
works (NN) that can accelerate optimization by reducing the required number of numerical simulations [5, 6].

To design a photonic power splitter with arbitrary power ratios, photonic designers often begin with an overall
structure based on intuition or analytical models, and fine tune the structure using a parameter sweep in numerical
simulations [7, 8]. We demonstrate an alternative approach that uses deep learning methods to learn the large design
space of a broadband integrated photonic power splitter in a compact deep neural network (DNN) model. To achieve
this, we 1) investigate how to construct and train a DNN (8 layers), 2) apply an inverse design method to instanta-
neously obtain desirable performance, and 3) show that it is possible to design power splitters with multiple splitting
ratios from the same trained DNN.

Fig. 1: By optimizing binary sequence of position of etch holes (white circles in the left figure) it is possible to
manipulate light propagation towards either of ports. The DNN can take device topology as input and spectral response
of the metadevice as label or vice versa.

2. Forward Prediction and Inverse Design

The goal of a nanostructured integrated photonics power splitter is to organize optical interaction events, such that the
collective effect of the ensemble of scattering events guides the beam to a target port within target power intensity.
To design the power ratio splitter using DNN we chose a simple three port structure on a standard fully etched SOI
platform with a 220 nm-thick silicon layer. One input and two output 0.5µm waveguides are connected using an



adiabatic taper to the 2.6µm wide square power splitter design region with a connection width of 1.3µm (Fig. 1).
We use transverse electric (TE) mode as an input, and its conversion to transverse magnetic (TM) mode is minimal
(< 10−5).

To solve both forward and inverse design problems, we develop an eight layer deep and 100 neurons wide residual
neural network (ResNet) [9]. The forward problem is approached as a regression problem while the inverse problem
is solved as a classification problem, where we predict a binary vector representing the hole locations. A Gaussian
log-likelihood function is used to train the DNN modeling the forward design problem. A Bernoulli log-likelihood
classifier is used as the loss function for training the inverse problem. The Adam algorithm [10] is used for a training
parameter optimization.

We then generated nearly 20,000 3D-FDTD simulation data. Some data are randomly generated in parallel, while
others are generated sequentially through optimization algorithms such as Direct Binary Search. Each input data
consists of 20×20 hole vectors (HV), each labeled by its spectral transmission response (SPEC) at port 1 and 2 and
reflection from the input port. Each pixel is a circle with a radius of 45 nm and can have a binary state of 1 for etched
(n = nSilicon) and 0 for not etched (n = nSilica). We split the data into 80 % for the training, and 20 % for testing. The
training typically takes several hours using a desktop PC with a GPU board.

First we test the forward computation of the network to see prediction of spectral response of a topology data that the
network is not trained on (Fig. 2 (a)). Interestingly, the network could predict transmission with above 99 % correlation
coefficient (Fig. 2 (b)). This is a significant improvement from our previous results with only three layers [5]. Note
that a conventional fully connected NN does not improve the performance beyond four layers, while the use of ResNet
enabled us to increase the number of layers up to eight.

Fig. 2: (a) Spectral response of non-optimized nano-patterned power splitters, simulated by FDTD (solid lines) and
predicted by DNN (dashed lines) at each output port for two device topologies, and (b) correlation between the target
values (FDTD simulation) and the predicted values by DNN. Gray circle symbol size is proportional to gradient
uncertainty.

Next, we test the inverse modeling on the same data as above by using SPECs as data and HVs as label and reversing
and optimizing the inverse network. To test the generalization capabilities of the network, we investigate the network’s
inverse design performance on arbitrary and unfamiliar cases. To do this, we generate a reference table containing
broadband constant transmission values for each port and use them as the input data batch for the Inverse Design DNN
model. The predicted HVs can take any value from 0 to 1 from a Bernoulli distribution classifier. The classification
converges to 0 or 1 as the loss reduces by increasing the number of training epochs. The predicted binary sequence is
then fed back into the FTDT solver to confirm the validity of the response (Fig. 3). This inverse design process takes
less than a second. The simulated total transmission efficiency is 96 %, 92 %, and 92 % for the splitting ratio of 1:1,
1:2, and 1:3, respectively. The spectral response is very flat for the whole wavelength range of 1450−1650 nm. The
reflection is below 20 dB for most of the wavelength range.



Fig. 3: Demonstration of inverse design using DNN with splitting ratios of 1:1, 1:2, and 1:3. Spectral response for
transmission at port 1, 2, and reflection to the input port. FDTD-simulated values for predicted hole vectors on the
right match the target values well.

3. Conclusion

DNNs can use device structure data (shape, depth, and refractive indices) as an input to predict the optical response
of the nanostructure (forward network). In this case DNN can be used as a method for fast approximation of the
optical response instead of using computationally heavy numerical methods. Another way to use DNNs, which is not
available in the numerical method, is taking an optical response and providing the user with an approximate solution
of nanostructure (inverse design). We demonstrate the application of DNNs in design of nanostuctured integrated
photonic components. Although the design space for this problem is very large (2400 possible combinations), by
training DNN with nearly 16,000 simulation data, we created a network that can approximate the spectral response of
the an arbitrary hole vector within this design space. In addition, we could use the inverse network to design a nearly
optimized power splitter topology for any user specific spectral responses, achieving > 92 % transmission efficiency
and typically < 20 dB reflection for 1450−1650 nm.
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