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Abstract
Adversarial perturbations are noise-like patterns that can subtly change the data, while fail-
ing an otherwise accurate classifier. In this paper, we propose to use such perturbations for
improving the robustness of video representations. To this end, given a well-trained deep-
model for per-frame video recognition, we first generate adversarial noise adapted to this
model. Using the original data features from the full video sequence and their perturbed
counterparts, as two separate bags, we develop a binary classification problem that learns a
set of discriminative hyperplanes - as a subspace - that will separate the two bags from each
other. This subspace is then used as a descriptor for the video, dubbed discriminative sub-
space pooling. As the perturbed features belong to data classes that are likely to be confused
with the original features, the discriminative subspace will characterize parts of the feature
space that are more representative of the original data, and thus may provide robust video
representations. To learn such descriptors, we formulate a subspace learning objective on the
Stiefel manifold and resort to Riemannian optimization methods for solving it efficiently. We
provide experiments on several video datasets and demonstrate state-of-the-art results.
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Abstract. Adversarial perturbations are noise-like patterns that can
subtly change the data, while failing an otherwise accurate classifier. In
this paper, we propose to use such perturbations for improving the ro-
bustness of video representations. To this end, given a well-trained deep
model for per-frame video recognition, we first generate adversarial noise
adapted to this model. Using the original data features from the full video
sequence and their perturbed counterparts, as two separate bags, we de-
velop a binary classification problem that learns a set of discriminative
hyperplanes – as a subspace – that will separate the two bags from each
other. This subspace is then used as a descriptor for the video, dubbed
discriminative subspace pooling. As the perturbed features belong to data
classes that are likely to be confused with the original features, the dis-
criminative subspace will characterize parts of the feature space that are
more representative of the original data, and thus may provide robust
video representations. To learn such descriptors, we formulate a subspace
learning objective on the Stiefel manifold and resort to Riemannian op-
timization methods for solving it efficiently. We provide experiments on
several video datasets and demonstrate state-of-the-art results.

1 Introduction

Deep learning has enabled significant advancements in several areas of com-
puter vision; however, the sub-area of video-based recognition continues to be
elusive. In this paper, we present a novel pooling framework for learning video
representations for action recognition. A robust video representation is one that
can avoid the action classifier from using features (or feature dimensions) that
are sensitive to data perturbations. One way to learn such representations is
to explicitly find out which features are vulnerable and avoid them. The recent
advances in adversarial learning has allowed us to generate such perturbations,
one popular model is the universal adversarial perturbations proposed in [9, 8].
While, these prior works have used these noise-like image patterns for fooling a
well-trained classifier, we propose to use such patterns on videos, and for finding
data parts that are sensitive to mis-classifications; and use these patterns as a
means to robust representation learning.

Assuming we have adversarial patterns generated, we make two bags, one
consisting of the original video features, while the other one consisting of features
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perturbed by noise. Next, we learn a discriminative hyperplane that separates
the bags in a max-margin framework. Such a hyperplane, which in our case is
produced by a primal support vector machine (SVM), finds decision boundaries
that could well-separate the bags; the resulting hyperplane could be a vector
which is a weighted combination of the data points (support vectors) in the
bags. Given that the data features are non-linear, and given that a kernelized
SVM might not scale well with sequence lengths, we propose to instead use mul-
tiple hyperplanes for the classification task, by stacking several such hyperplanes
into a column matrix. We propose to use this matrix as our data representation
for the video sequence. For generalizability of our representation, we assume the
hyperplanes are columns of an orthogonal frame (a tall matrix with orthogo-
nal columns), and propose a non-linear Riemannian optimization on the Stiefel
manifold (which is the mathematical manifold of such orthogonal frames) for
representation learning. Our overall pipeline is illustrated in Figure 1.

Fig. 1. An illustration of our discriminative subspace pooling with adversarial noise.

2 Related work

With the success of deep learning methods, feeding video data as RGB frames,
optical flow subsequences, RGB differences, or 3D skeleton data directly into
CNNs is preferred. One successful such approach is the two-stream model (and
its variants) [11, 6, 5] that use video segments (of a few frames) to train deep
models, the predictions from the segments are fused via average pooling to gen-
erate a video level prediction. The above architectures are usually trained for
improving the classification accuracy, however, do not consider the robustness of
their internal representations – accounting for which may improve their general-
izability to unseen test data. To this end, we explore the vulnerable factors in a
model (via generating adversarial perturbations [8]), and learn representations
that are resilient to such factors in a network-agnostic manner. Our main inspi-
ration comes from the recent work of Moosavi et al. [8] that show the existence
of quasi-imperceptible image perturbations that can fool a well-trained CNN
model. They provide a systematic procedure to learn such perturbations in an
image-agnostic way. In Xie et al. [14], such perturbations are used to improve
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the robustness of an object detection system. Similar ideas have been explored
in [9]. While these schemes share similar motivation as ours, the problem setup
and formulations are entirely different. Our contribution is inspired by the recent
work of Wang et al [13] that proposes using decision boundaries of a support
vector machine classifier that separates data features from independently sam-
pled noise. In this paper, we argue that using data dependent adversarial noise
is significantly more powerful in learning useful representations.

3 Proposed Method
In this section, we detail our main approach. Let us assume X = 〈x1, x2, ..., xn〉
be a sequence of video features, where xi ∈ Rd represents the feature from the
i-th frame. The feature representation xi could be the outputs from intermediate
layers of a CNN. As alluded to in the introduction, our key idea is the following.
We look forward to an effective representation of X that is (i) compact, (ii) pre-
serves characteristics that are beneficial for the downstream task (such as video
dynamics), and (iii) efficient to compute. Recent methods such as generalized
rank pooling [3] have similar motivations and propose a formulation that learns
compact temporal descriptors that are closer to the original data in `2 norm.
However, such a reconstructive objective may also capture noise, thus leading to
sub-optimal performance. Instead, we take a different approach. Specifically, we
assume to have access to some noise features Z = {z1, z2, ..., zm}, each zi ∈ Rd.
Let us call X the positive bag, with a label y = +1 and Z the negative bag with
label y = −1. Our main goal is to find a discriminative hyperplane that separates
the two bags; these hyperplanes can then be used as the representation for the
bags. A problem in this context is how much coverage does the hyperplanes have
to represent a majority of the data points in the positive bag (on their robust
dimensions). We could achieve this by expecting the classification accuracy of
this binary problem to be very high, which happens when overfitting the hyper-
planes to a majority of the data points (assuming the features are non-linear
and the hyperplanes are linear, that is limited representational capacity). There
are two important problems in this context: (i) how to find the noise patterns,
and (ii) finding a good robust representation, which are addressed below.

3.1 Finding Noise Patterns

As alluded to above, having good noise distributions that help us identify the
vulnerable parts of the feature space is important for our scheme to perform
well. To this end, we resort to the recent idea of universal adversarial pertur-
bations (UAP) [8]. This scheme is dataset-agnostic and provides a systematic
and mathematically grounded formulation for generating adversarial noise that
when added to the original features is highly-likely to mis-classify a pre-trained
classifier. Precisely, suppose X denotes our dataset, let h be a CNN trained on X
such that h(x) for x ∈ X is a class label predicted by h. Universal perturbations
are noise vectors ε found by solving the following objective:

min
ε
‖ε‖ s.t. h(x+ ε) 6= h(x),∀x ∈ X , (1)

where ‖ε‖ is a suitable normalization on ε such that its magnitude remains
small, and thus will not change x significantly. In [8], it is argued that this
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norm-bound restricts the optimization problem in (1) to look for the minimal
perturbation ε that will move the data points towards the class boundaries; i.e.,
selecting features that are most vulnerable – which is precisely the type of noise
we need in our representation learning framework.

3.2 Discriminative Subspace Pooling

Once a “challenging” noise distribution is chosen, the next step is to use a
subspace of discriminative directions (as against a single one as in [13]) for
separating the two bags such that frame-level feature xi in the video is classified
by at least one of the hyperplanes to the correct class label. Such a scheme can be
looked upon as an approximation to a non-linear decision boundary by a set of
linear ones, each one separating portions of the data. Mathematically, suppose
W ∈ Rd×p is a matrix with each hyperplane as its columns, then we seek to
optimize:

min
W,ξ

Ω(W ) +
∑

θ∈X∪Z

[
max

(
0, 1−max

(
y(θ)�W>θ

)
− ξθ

)
+ Cξθ

]
, (2)

where y is a vector with the label y repeated p times along its rows. The quan-
tity Ω is a suitable regularization for discriminative subspace W , of which one
possibility is to use Ω(W ) = W>W = Ip, in which case W spans a p dimen-
sional subspace of Rd. The operator � is the element-wise multiplication and
the quantity max(y(θ) �W>θ) captures the maximum value of the element-
wise multiplication, signifying that if at least one hyperplane classifies the input
feature θ correctly, then the hinge-loss will be zero.

There is a further consideration to make given that we are working with
videos, and that the features that we use are temporally-ordered. To include this
criteria in our representation learning, we include additional ordering constraints
on the matrix W and introduce our complete order-constrained discrimina-
tive subspace pooling optimization as:

min
W>W=Ip,
ξ,ζ≥0

∑
θ∈X∪Z

[
max

(
0, 1−max

(
y(θ)�W>θ

)
− ξθ

)]
+C1

∑
θ∈X∪Z

ξθ +C2

∑
i<j

ζij , (3)

∥∥W>xi∥∥2 + 1 ≤
∥∥W>xj∥∥2 + ζij , i < j,∀(i, j) ∈ T (4)

where (4) captures the temporal order, while T is the set of all frames in a
contiguous action cycle (i.e., we include only one action cycle in case of a repeated
action, such as clapping).

As is clear, the above optimization problem is non-linear and looks cum-
bersome. However, the orthogonality constraint on W puts it on the so-called
Stiefel manifold, which is a non-linear manifold, but having efficient optimization
schemes available that could help solve this objective efficiently. We use one pop-
ular such optimization scheme, dubbed Riemannian conjugate gradient descent
(RCG) that takes gradients in conjugate directions on the tangent spaces of this
manifold [3, 1]. The important component to derive the Riemannian gradient for
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this descent is to compute the derivatives of the objective in (3), which is:

min
W∈S(d,p)

g(W ) :=
∑

θ∈X∪Z

[
max

(
0, 1−max

(
y(θ)�W>θ

)
− ξθ

)]
+

1

n(n− 1)

∑
i<j

max(0, 1 +
∥∥W>xi∥∥2 − ∥∥W>xj∥∥2 − ζij), (5)

∂g

∂W
=

∑
θ∈X∪Z

A(W ; θ, y(θ)) +
1

n(n− 1)

∑
i<j

B(W ;xi, xj),where (6)

A(W ; θ, y(θ)) =

{
0, if max(y(θ)�W>θ − ξθ) ≥ 1
− [0d×r−1 y(θ)θ 0d×p−r] , r = arg maxq y(θ)�W>q θ, else

(7)

B(W ;xi, xj) =

{
0, if

∥∥W>xj∥∥2 ≥ 1 +
∥∥W>xi∥∥2 − ζij

2(xix
>
i − xjx>j )W, else.

(8)

In the definition of A(W ), we use W>q to denote the q-th column of W . To
reduce clutter in the derivations, we have avoided including the terms using
T . Assuming the matrices of the form xxT can be computed offline, on careful
scrutiny we see that the cost of gradient computations on each data pair is only
O(d2p) for B(W ) and O(dp) for the discriminative part A(W ). If we include
temporal segmentation with k segments, the complexity for B(W ) is O(d2p/k).
Once the directions W are computed, we use an action classifier using a multi-
layer neural network or a non-linear SVM using an exponential projection metric
kernel. Note that our scheme can be learned end-to-end in a CNN, however
this will need some knowledge on the implicit function theorem and bi-level
optimization [7], which we skip in this paper due to the lack of space.

4 Experiments and Conclusions
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Fig. 2. Analysis of the hyper parameters. All experiments use ResNet-152 features on
HMDB-51 split-1 with a fooling rate of 0.8 in (a) and 6 hyperplanes in (b).

We demonstrate the performance of our discriminative subspace pooling
(DSP) on three benchmarks: HMDB-51 using two-stream ResNet-152 features
from [11], and NTU-RGBD for 3D skeleton based action recognition by using
temporal residual network from [10], and (iii) YUP++ dynamic video texture
understanding using an Inception-ResNet-v2 model. In Figure 2(a) and 2(b), we
analyze the influence of DSP hyperparameters, (i) the number of hyperplanes,
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(ii) the importance of the temporal order, (iii) and the fooling rate for UAP. It
is clear that: 1. UAP shows significant benefit compared with random noise; 2.
temporal ranking constraint will help the discriminative subspace capture the
video dynamics. 3. 6 subspaces and fooling rate of 0.8 could result in better
performance. Finally, we achieve the state-of-the-art performance across three
datasets in the Table 1, including in comparisons on the recent Inflated-3D mod-
els (pre-trained on the large Kinetics dataset) [2].

HMDB-51

Method Accuracy

TS I3D [2] 80.9%
ST-ResNet [4] 66.4%
ST-ResNet+IDT [4] 70.3%
STM Network [5] 68.9%
STM Network+IDT [5] 72.2%
GRP [3] 70.9%
SVMP [13] 71.0%

Ours(TS ResNet) 72.4%
Ours(TS ResNet+IDT) 74.3%
Ours(TS I3D) 81.5%

NTU-RGBD

Method Cross-Subject Cross-View

SVMP [13] 78.5% 86.4%
GRP [3] 76.0% 85.1%
Res-TCN [12] 74.3% 83.1%

Ours 81.6% 88.7%

YUP++

Method Stationary Moving

TRN [6] 92.4% 81.5%
SVMP [13] 92.5% 83.1%
GRP [3] 92.9% 83.6%

Ours 95.1% 88.3%

Table 1. Comparisons to the state-of-the-art on each dataset following their respective
official evaluation protocols. ‘TS’ refers to ‘Two-Stream’.

Conclusions: To conclude, in this paper we investigated the problem of repre-
sentation learning for video sequences by using adversarial perturbations, which
affect vulnerable parts of the features. We propose a discriminative classifier, in
a max-margin setup, via learning a set of hyperplanes as a subspace, that could
separate our synthetic noise from data, which demonstrates state-of-the-art per-
formance on the benchmarks.
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