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Abstract
Faces appear in low-resolution video sequences in various domains such as surveillance. The
information accumulated over multiple frames can help super-resolution for high magnification
factors. We present a method to super-resolve a face image using the consecutive frames of
the face in the same sequence. Our method is based on a novel multi-input-single-output
framework with a Siamese deep network architecture that fuses multiple frames into a single
face image. Contrary to existing work on video super-resolution, it is model free and does
not depend on facial landmark detection that might be difficult to handle for very low-
resolution faces. The experiments show that the use of multiple frames as input improves the
performance compared to single-inputsingle-output systems.
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Abstract

Faces appear in low-resolution video sequences in various domains such as surveil-
lance. The information accumulated over multiple frames can help super-resolution for
high magnification factors. We present a method to super-resolve a face image using
the consecutive frames of the face in the same sequence. Our method is based on a
novel multi-input-single-output framework with a Siamese deep network architecture
that fuses multiple frames into a single face image. Contrary to existing work on video
super-resolution, it is model free and does not depend on facial landmark detection that
might be difficult to handle for very low-resolution faces. The experiments show that
the use of multiple frames as input improves the performance compared to single-input-
single-output systems.

1 Introduction
Face images appear in various platforms and are vital for many applications ranging from
forensics to health monitoring. In most cases, these images are low-resolution, making
face identification difficult. Therefore, upsampling low-resolution face images is crucial.
In this paper, we present a method to generate a super-resolved face image from a given
low-resolution (LR) face video sequence.

The use of multiple frames for super-resolution is well studied. However, previous work
mostly focuses on images of general scenes and the magnification factor does not go beyond
4×. Moreover, most of these algorithms rely on motion estimation between frames, which is
hard when the target object in the image is very low-resolution. There are a few studies ad-
dressing the problem of face super-resolution using videos [8, 9, 28, 29]. These methods are
either model-based [8, 9] or registration-based [28, 29]. Therefore, the magnification factor
is small since the model fitting and registration stages highly depend on landmark detection
or texture, respectively. In order to address these limitations, we present a model-free multi-
frame face super-resolution technique designed for very low-resolution face images. The LR
faces we target in this work are tiny with a facial area of around 6× 6 pixels that are diffi-
cult to identify even by humans. Our method uses a deep network architecture consisting of
two subnetworks. The first subnetwork is trained to super-resolve each frame independently,
while the second subnetwork generates weights to fuse super-resolved images of all frames.

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Thus, the fusion network uses the information accumulated over multiple images in order to
generate a single super-resolved image.

Our main contributions are three fold: (i) We present a novel method for multi-frame
super-resolution of very tiny face images with a magnification factor of 8 times. (ii) The
presented method is model free and requires only rough alignment instead of pixelwise reg-
istration such as many previous multi-frame super-resolution algorithms depend on. (iii)
Our technique involves a novel multi-input-single-output (MISO) framework with a Siamese
deep network architecture that fuses multiple frames into a single face image. Instead of re-
lying on a prior motion estimation stage that is challenging for very LR face images, our
fusion network implicitly uses the motion among frames in order to generate the final image.

1.1 Related Work
The use of multiple frames to super-resolve a single image is well studied in the litera-
ture [18]. There are a wide range of techniques including, iterative [6, 10], direct [5, 21]
and probabilistic [1, 20, 32] approaches for performing multi-input-single-output (MISO)
super-resolution. The early methods [6, 10] focused on iterative back projection in order to
estimate the forward imaging model given low-resolution sequences. Most of these methods
deal with frames with known transformations between them making it hard to apply to real
scenarios. In the category of direct methods, registration among frames is estimated and
utilized for producing a single output [5, 21]. Since registration plays an important role in
the super-resolution process, these methods are not capable of handling high magnification
factors, especially if the target object appears very small in the input image. Probabilistic
approaches [1, 20, 32] utilize different regularization terms depending on the sufficiency of
the given low-resolution images and the magnification factor. Designing the noise model and
tuning regularization parameters are challenging due to the fact that the problem is ill-posed.

With the rise in deep learning algorithms, recently there have been attempts to improve
super-resolution using neural networks. Some methods considered the registration among
frames. Liao et al. [14] presented a method that first generates super-resolution draft ensem-
ble by using an existing motion estimation method and then reconstructing the final result
through a CNN deconvolving the draft ensemble. Tao et al. [22] introduces a subpixel mo-
tion compensation layer in order to handle inter-frame motion. Ma et al. [17] presents a
motion de-blurring method based on an expectation-maximization framework for estimating
least blur and reconstruction parameters. Kappeler et al. [12] experiments with various CNN
architectures for video super-resolution by incorporating neighboring frames alignment. All
of these methods are for general video SR and they only aim for at most 4× magnification.

There has been a tremendous amount of work for single-image super-resolution of faces [2,
4, 13, 15, 16, 24]. Recently, a few papers have used convolutional neural networks (CNNs) or
generative adversarial networks (GANs) for face-specific super-resolution. These methods
better handle uncontrolled input faces with variations in lighting, pose and expression and
only rough alignment. Zhou et al. [34]’s bi-channel approach used a CNN to extract features
from the low-resolution input face and then mapped these using fully connected network
layers to an intermediate upsampled face image, which is linearly combined with a bicu-
bicly interpolated upsampling of the input face image to create a final high-resolution output
face. In other work, Yu and Porikli [30, 31] used GANs for 8 times super-resolution of face
images. Cao et al. [3] presented a deep reinforcement learning approach that sequentially
discovers attended patches followed by facial part enhancement. Zhu et al. [35] proposed a
bi-network architecture to solve super-resolution in a cascaded way. Each of these methods
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uses a single image of the person to produce the final super-resolved image. Therefore, they
do not make use of the information coming from multiple frames.

Multiple frames for face super-resolution have been used in early studies in the field.
However, the datasets were generated with simple motion translation with alignment and
the faces were captured under controlled environment. Baker et al. [1] followed a Bayesian
formulation of the problem and presented a solution based on reconstruction and recognition
losses. Their technique makes use of multiple frames that are generated by simple shifting
transformations. Recently, Huber et al. [8, 9] introduced a video-based super-resolution
algorithm that makes use of the Surrey face model. The technique fuses intensities coming
from all frames in a 2D isomap representation of the face-model. It highly depends on
landmark detection, thus it is not possible to apply to very low-resolution faces such as the
ones used in this study. Two other related studies [28, 29] focus on the problem of face
registration for MISO face super-resolution. Yu et al. [29] presented a method to perform
global transformation and local deformation for 3× upsampling of faces with expression
changes. Similarly, Yoshida et al. [28] employs free-form deformation method to warp all
frames into a reference frame followed by fusion of warped images. In both studies, the
facial area in input low-resolution images is large (i.e. greater than 30× 20 pixels), which
enables an accurate registration.

2 Method

2.1 Problem Statement and notation
Given a sequence of N low-resolution W ×H face images, SL = {I1

L,I2
L, · · · ,IN

L }, our goal is
to predict a corresponding high-resolution (HR) face image Î with a size dW × dH where
d ∈ N is a non-zero magnification factor. Each frame in the sequence is a LR version of the
face in different poses and expressions. Thus

Ik
L = g(fk(Î)) = DHfk(Î) (1)

where fk : RdW×dH → RdW×dH denotes a deformation function that takes a face and trans-
forms it to another pose and expression and g :RdW×dH→RW×H is the function representing
the LR image capturing process, which is composed of a blurring matrix H that represents
point spread function and a downsampling matrix D.

2.2 Framework
During training, we are also provided corresponding HR image sequence SH = {Î1

H , Î2
H , · · · , ÎN

H}.
We are interested in finding inverse of both fk and g functions in order to obtain an estimate
for Î. Considering the sequential nature of the process, we follow a two-step approach. At
the first step, we learn a generator to estimate HR version Îk

H of each image in the sequence.
Second, we estimate Î from super-resolved images by learning a fusion function that repre-
sents f−1

1 , f−1
2 , · · · , f−1

N .
Let G : RW×H → RdW×dH be a generator function that creates super-resolved images

given LR images. We learn G by minimizing the following cost function:

Lgen =
1

T N ∑
<SL,SH>

N

∑
i
D(G(Ii

L), Î
i
H) (2)
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where T is the number of sequences in the training set and D is a distance measure between
two images.

The fusion function is parametrized by a sequence of weight maps, which produces a
weighted sum of all the super-resolved images

F(SL,G) =
N

∑
i

Fi(I1
L, · · · ,IN

L ,G(I1
L), · · · ,G(IN

L ))⊗G(Ii
L) (3)

where Fi : (N×RW×H)+ (N×RdW×dH)→ RdW×dH denotes a function that returns pixel
weights given a sequence of LR and corresponding super-resolved images and ⊗ indicates
element wise multiplication between matrices. F is learned by minimizing the fusion cost

L f us =
1
T ∑

<SL,SH>

D(F(SL,G), Î). (4)

Î is taken as HR version of the Kth frame from the sequence.
We employ two types of distance measures in training: L2 distance and structural simi-

larity (SSIM) distance. L2 distance between two images X,Y ∈ RW×H is defined as

DL2(X,Y) = ‖X−Y‖F (5)

where ‖·‖F indicates Frobenius norm. SSIM is a popular measure that accounts for humans
perception of image quality [33]. On a local patch of two images X and Y around pixel p,
SSIM is computed as SSIM(X,Y,p) = 2µxµy+c1

µ2
x +µ2

y +c1

2σxy+c2
σ2

x +σ2
y +c2

,where µx,µy and σx,σy denote

the mean and variance, respectively, of the intensities in the local patch around pixel p in X
and Y and σxy is the covariance of intensities in the two local patches. c1 and c2 are constant
factors to stabilize the division with weak denominator. We divide the image into h×h grids
and employ the mean of SSIM over all patches to come up with the SSIM distance between
two images

Dssim(X,Y) =
1
T

T

∑
k=1

∑
p

[
1−SSIM(Xk,Yk,p)

]
(6)

where T is the total number of patches and Xk and Yk is the kth corresponding patch pair.
Compared with reconstruction loss, minimizing SSIM loss helps recover the information
at high frequency visually. Consequently, we utilize a weighted sum of the two distance
measures in training our algorithm

D(X,Y) =DL2(X,Y)+αDssim(X,Y). (7)

2.3 Network Architecture
Overview of our system is seen in Figure 1. Each LR image in the input sequence is first
given to the generator network to obtain an estimate of their HR version. LR images are
upsampled to the HR image size with bicubic interpolation1 and input to the fusion network
along with the super-resolved images. The fusion network generates weight maps based on
the temporal information in the sequence.

1Any other upsampling technique can be used here.
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Figure 1: System overview. Dashed lines indicate weight sharing between subnetworks.

Network Layer Index Type Kernel Stride Pad Output Learning
(Depth) Size Channels Rate

Generator 1 Conv 3 1 1 512 10−4

Generator 2 Deconv 2 2 0 512 0
Generator 3 Conv 3 1 1 256 10−4

Generator 4 Deconv 2 2 0 256 0
Generator 5 Conv 5 1 2 128 10−4

Generator 6 Deconv 2 2 0 128 0
Generator 7 Conv 5 1 2 64 10−4

Generator 8 Conv 5 1 2 1 10−4

Fusion 1-5 Conv 3 1 1 64 10−5

Fusion 6 Conv 3 1 1 1 10−6

Table 1: Network architecture

For generator we use a slightly modified version of [30] trained on gray-scale images.
For fusion network we use a similar architecture with the gated network of [35]. The details
of our architecture is given in Table 1. Each convolution layer is followed by RELU except
the last layers. The deconvolution layers perform a simple nearest neighbor upsampling of
the data and their weights are kept fixed during training.

3 Experiments

We carried out experiments in controlled and uncontrolled environments on three datasets.
We first performed experiments on FRGC dataset [19], which consists of frontal face images
captured under a controlled environment. We generated a video sequence for each image
in the dataset by simulating a similarity transform. In order to analyze the performance
of the method on real-life scenarios, we did experiments on ChokePoint [26] and YouTube
Faces [25] datasets, which contains videos of faces in-the-wild.
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3.1 Dataset and Experimental Setup

FRGC: The FRGC dataset contains frontal face images taken in a studio setting under two
lighting conditions with only two facial expressions (smiling and neutral). We generated
training and test splits, where we kept the identities in each set disjoint. The training set
consisted of 20,000 images from 409 subjects and the test set consisted of 2,149 images
from 142 subjects. In order to generate a sequence of face images, for each image in the
training or testing set, we randomly generated different similarity transforms and applied
them to the HR image, followed by LR image generation.
ChokePoint: This dataset consists of face videos of subjects captured, when they are walk-
ing through a portal in a natural way. We used the fourth sequence of the images in P1E,
P1L and P2E portals as test set, and the rest as training set, achieving a diverse set of training
and test images for enter-exit and indoor- outdoor scenarios. We discarded the frames with
smaller facial region than our experimental HR setting. As a result, we ended up having
8,272 training image sequences and 1,884 test sequences.
YouTube Faces: This dataset contains 3,245 videos of 1,595 people downloaded from
YouTube. It comes with 10 folds separated with disjoint identities among them. We used
the first fold as the test set and the rest as training set. As a result, we had 46,693 test image
sequences and 402,003 training image sequences.
Data preparation: HR images had 128× 128 pixel resolution, where the faces occupied
approximately 50×50 pixels. We generated low-resolution images with 8 times downsam-
pling by following the approach in [27]. As a result, the LR images contained a facial area
of approximately 6× 6 pixels. We used N = 8 consecutive frames in forming our MISO
datasets. The images in the sequence were roughly aligned following a similarity transform
based on location of eye and mouth centers. ChokePoint dataset already provides facial land-
mark points as ground truth. For FRGC and YouTube Faces datasets, we employed landmark
detection method in [23]. In practice, a low-resolution face detector would be sufficient for
rough alignment. We set K = 8 and superresolved the last frame in each sequence.
Algorithm Details and Experimental Setup: We trained two different networks depending
on the distance measure used. In other words, we either used only L2 distance by setting
α = 0 or used both L2 and SSIM distances as a joint distance measure. The value of α is se-
lected with a greedy search procedure as α = 1000. We super-resolved test image sequences
using our multi-input-single-output (MISO) super-resolution framework. Since the first part
of our network architecture (i.e. generator network) is considered single-input-single-output
(SISO), we also performed experiments by inputting the test images one by one to the gen-
erator network. Our goal is to better understand the gain in using video inputs as opposed to
single images.

The code is implemented using Caffe deep learning framework [11]. Optimization was
performed using the RMSProp algorithm [7]. The training took 3 days on a NVIDIA
GeForce GTX TITAN X GPU with Maxwell architecture and 12GB memory. Average run-
ning time for super-resolution of a sequence is 0.12 second. We used a patch size of h = 8
for SSIM loss.

3.2 Quantitative Results

We evaluated the performance of our algorithm using peak signal-to-noise-ratio (PSNR) and
structural similarity (SSIM) measures as reported in Table 2. As can be seen using only L2
distance can yield larger PSNR values, but the use of SSIM loss improves SSIM scores as
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Method FRGC ChokePoint YouTube Faces
PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 23.812 0.606 26.034 0.660 23.591 0.598
VSRnet [12] 22.997 0.565 26.778 0.693 23.907 0.620
SPMC [22] 21.388 0.555 23.083 0.648 21.189 0.539
SISO (only L2 distance) 26.810 0.808 27.353 0.746 24.676 0.682
SISO (joint distance) 26.767 0.809 27.494 0.751 24.791 0.687
MISO (only L2 distance) 26.892 0.811 27.663 0.761 25.088 0.700
MISO (joint distance) 26.903 0.813 27.726 0.764 25.108 0.701

Table 2: PSNR and SSIM values for the experimental results on all datasets.

expected. The improvement from a SISO architecture to MISO architecture is more obvious
on ChokePoint dataset. This might be due to the fact that ChokePoint contains subjects that
walk in a certain trajectory yielding certain motion patterns in the sequences. Hence, fusion
network benefits from the motion pattern in order to generate more accurate super-resolution
results.

We also compared our algorithm with two recent existing video super-resolution meth-
ods: VSRnet by Kappeler et al. [12] and SPMC by Tao et al. [22]. Both methods are designed
for general scenes with at most 4× magnification. Thus, we applied the methods with 4×
upsampling followed by 2× upsampling. We used the provided models by the authors to
test on the face datasets. The sequence size is 5 and 3 for VSRnet and SPMC respectively.
Thus, the final single image is produced using 9 frames for VSRnet and 5 frames for SPMC
method. Since these methods depend heavily on a preprocessing stage for motion estimation,
they suffer from the small facial region seen in the LR images. On the contrary our algorithm
is more adaptable, where motion information is learned in the fusion network implicitly. As
can be seen from the Table 2, our method outperforms VSRnet and SPMC based on PSNR
and SSIM measures.

3.3 Qualitative Results

We provide example results on all datasets using our SISO and MISO architectures with
different loss functions in Figure 22. Each row from top to bottom shows results for FRGC,
ChokePoint and YouTube Faces datasets respectively. As can be seen the use of multiple
frames creates more visually appealing results. Also, the images super-resolved using the
network trained to minimize SSIM loss along with the reconstruction loss produce in sharper
looking images.

Comparative results on FRGC, ChokePoint and YouTube Faces datasets are displayed in
Figures 3, 4 and 5 respectively. Note that horizontal lines on VSRnet results are due to the
preprocessing stage of the algorithm that uses patches 3. Since we computed our evaluation
measures on a bounding box around the face in all our experiments, the spurious lines were
not included in the evaluation.

2Since our network is trained on gray-scale images, color images are obtained by super-resolving the luminance
channel and adding bicubic-upsampled chrominance channels to the result.

3The displayed images are cropped from left and right for better visualization. Vertical black lines also appear
in cropped out areas.
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Input Bicubic SISO L2 SISO Joint MISO L2 MISO Joint GT

Figure 2: Qualitative results using MISO and SISO architectures with different loss func-
tions. Each row from top to bottom contains results from FRGC, ChokePoint and YouTube
Faces datasets respectively.

Input Bicubic VSRnet [12] SPMC [22] MISO L2 MISO Joint GT

Figure 3: Qualitative results on FRGC Dataset

Input Bicubic VSRnet [12] SPMC [22] MISO L2 MISO Joint GT

Figure 4: Qualitative results on ChokePoint Dataset
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Input Bicubic VSRnet [12] SPMC [22] MISO L2 MISO Joint GT

Figure 5: Qualitative results on YouTube Faces Dataset

4 Conclusion

We presented a method for super-resolving face images by using multiple images as in-
put. Motivated by availability of cameras and saving medium, we followed a multi-input-
single-output approach. The LR faces we target in this work are tiny with a facial area of
around 6×6 pixels that are difficult to identify even with human eye. Our experiments show
that using multi-input-single-output framework creates more accurate images compared to
single-input-single-output framework.

Our network architecture consisted of two subnetworks. The first subnetwork super-
resolved each frame in the sequence. This was followed by a fusion network, which used
the accumulated information over the frames and produced the super-resolution of one of
the frames in the sequence. We used a super-resolution network architecture that consisted
of 5 layers. However, our architecture is modular and the super-resolution network can be
changed with any existing super-resolution network from the literature. Thus, our fusion
network idea is a general one that can be utilized with any other existing SR technique.

In our experiments, we used a sequence size of 8, which was decided empirically. The
results degraded as we increased the sequence size. This might be due to the fact that our
network architecture cannot handle large motion variation since we kept kernel sizes small in
order to perform SR and fusion in small patches. Thus, magnification factor, frame rate and
motion variation of the videos are factors that would affect the choice of sequence size. Al-
though, increasing sequence size would provide more information for SR of a single image,
it requires a more careful and sophisticated use of the data.

An important strength of the method is its independence from face models and motion
estimation. Estimating motion or detecting facial landmarks become more difficult as the
target face size gets smaller. An interesting extension to the current algorithm can be per-
forming SR in a cascaded way and carry out motion estimation or model fitting when the
facial details are visible in a cascade level. However, training a cascaded system (e.g. 2×
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upsampling in each cascade) would be more time consuming and accuracy of the results in
each cascade would be more critical as later stages depend on it.

This work assumes that faces were tracked throughout the sequence. In real life cases,
the cameras are mounted at a specific location (e.g. surveillance cameras at an airport)
and other body parts of the person are also visible in the scene. Therefore, tracking faces
can benefit from human tracking. Moreover, in some surveillance settings there are certain
trajectories that people follow that will also help improve tracking performance as a motion
prior. Repeated motion patterns in the sequences will be also useful for our fusion network to
provide a more precise output. Solving tracking and super-resolution problems in alternating
steps will be the future extension of this study.
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