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Abstract
In this work, we consider the problem of low-thrust GTO-to-GEO osculating trajectory op-
timization and tracking. We exploit analytical solutions available in the averaged planar
problem and use homotopy methods to obtain fuel- and time-optimal osculating trajectories
using direct numerical optimal control tool GPOPS-II. We employ an attitude controller for
tracking the thrust vector profile obtained from the optimal trajectories, while maintaining
desired solar panel alignment. We simulate the operation of our controller numerically us-
ing MATLAB and the high-fidelity Systems Tool Kit (STK) software, and show satisfactory
tracking performance of the controller.
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LOW-THRUST GTO-TO-GEO TRAJECTORY OPTIMIZATION AND
TRACKING

Uroš Kalabić∗, Avishai Weiss†, and Piyush Grover†

In this work, we consider the problem of low-thrust GTO-to-GEO osculating tra-
jectory optimization and tracking. We exploit analytical solutions available in
the averaged minimum-energy planar optimal control problem, and use homo-
topy methods to obtain fuel- and time-optimal osculating trajectories using di-
rect numerical optimal control tool GPOPS-II. We employ an attitude controller
for tracking the thrust vector profile obtained from the optimal trajectories, while
maintaining desired solar panel alignment. We simulate the operation of our con-
troller numerically using MATLAB and the high-fidelity Systems Tool Kit (STK)
software, and show satisfactory tracking performance of the controller.

INTRODUCTION

Electrical propulsion is more efficient than chemical propulsion but produces smaller amounts

of thrust. Using chemical thrusters, orbital maneuvers are typically performed using impulses fired

at specific times. Because chemical thrusters produce a large amount of thrust, they can cause a

large enough change in the orbital parameters to send a satellite into an orbital-transfer trajectory.

To achieve the same effect, electrical thrusters must be fired for longer periods of time, perhaps

even continuously. In this work, we study the raising of a satellite from geostationary transfer orbit

(GTO) to geostationary Earth orbit (GEO) using electrical thrusters.

Our solution to the orbit-raising problem for low-thrust satellites is divided into two compo-

nents. The first component computes an optimal trajectory prior to flight for both minimum-fuel

and minimum-time transfers. The second component is an on-board controller designed to track

the optimal trajectory; it consists of an attitude controller that tracks the thrust vector obtained via

trajectory optimization, while ensuring that the spacecraft solar panels are always aligned perpen-

dicularly to the Sun.

Our trajectory optimization scheme is based on direct transcription, which is one of the two main

numerical approaches for solving optimal control problems, the other being shooting methods. Var-

ious analytical techniques have been proposed in the literature to simplify the numerical solution of

low-thrust trajectory optimization problems. Among these, orbital averaging methods that exploit

the slow-variation in orbital parameters to simplify the problem are popular. Averaging was used

along with direct transcription in Reference 1 to obtain minimum-time GTO-to-GEO trajectories,

and in Reference 2 to obtain coplanar transfers. The authors of Reference 3 used a parameter-

ized control law and averaging to solve for minimum-time Earth-orbit transfers. Shooting methods
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have been used along with a homotopy approach to solve for minimum-fuel Earth-orbit transfers

in Reference 4. A sequential quadratic programming approach to direct transcription has also been

used to solve for minimum-fuel Earth-orbit transfer with very low thrust.5 Using averaging, the

authors of References 6 and 7 obtained analytical solutions to the averaged coplanar transfers in the

minimum-energy case. Reference 8 proposed a novel way of generating a good initial guess and

used GPOPS-II9 to solve the minimum-time GTO-to-GEO problem using direct transcription.

Our scheme is reliant on obtaining a good initial guess, which we do by solving a sequence of op-

timization problems with sequentially higher fidelity. In the case of minimizing fuel-consumption,

at first we obtain an initial guess from the analytical solution to the time-averaged, coplanar-transfer,

minimum-energy problem.6, 7 We use this to obtain the solution to the coplanar-transfer, minimum-

energy problem. We then find the solution to the case of the non-coplanar transfer. Finally, knowing

that there exists a homotopy between the minimum-energy and minimum-fuel trajectories, we find

the solutions to a blend of minimum-energy and minimum-fuel costs, gradually changing the cost

from minimum-energy to minimum-fuel. In the case of minimizing flight-time, we follow the pro-

cedure of Reference 8, where the initial guess for the full optimal control problem is obtained by

concatenating solutions of a sequence of modified optimal control problems, each at most one orbit

long. The solution of the full problem is then improved via a gradient descent method to escape

possible local minima. For both minimum-time as well as minimum-fuel case, GPOPS-II is used to

solve the intermediate and final optimal control problems.

Trajectory tracking is achieved by a feedback attitude controller, based on the one provided in

Reference 10, which uses reaction wheels on the spacecraft to track a desired attitude profile. The

desired attitude profile is uniquely determined from the thrust vector profile, obtained via optimiza-

tion and the vector pointing in the direction of the Sun. Trajectory tracking is not done directly, i.e.,

it is open loop. However, by implementing good tracking of the attitude, we are able to track the re-

quired thrust closely enough to ensure that the tracking of the trajectory is within specifications and

prescribed constraints. Since the trajectory is computed using a high-fidelity dynamic model, which

takes into account the major disturbances affecting the spacecraft, namely the J2 and J4 oblate-

ness effects and the Sun’s gravitation, open-loop tracking of the trajectory can result satisfactory

performance.

A numerical simulation is presented, which uses MATLAB for propagation of attitude dynamics

and Systems Tool Kit (STK) for propagation of orbital dynamics. The results show good tracking

of the desired trajectory, with errors within the prescribed constraints.

The paper is organized as follows. The next section describes the optimization or the orbit-raising

trajectory scheme. The next section describes the attitude-tracking control scheme. The next section

provides simulation results obtained using STK. The final section is the conclusion.

TRANSFER FROM GTO TO GEO USING LOW-THRUST PROPULSION

In this work, we design and test a method of transferring a spacecraft from GTO to GEO using

low-thrust propulsion. Because of the small amount of force generated by the spacecraft thrusters,

our design is based on the assumption that thrusters will fire continuously at maximum output for

the duration of the mission. We consider two types of trajectories: one minimizing fuel expended

and the other minimizing total mission time. The trajectories are precomputed using a high-fidelity

optimization model taking into account the major forces acting on the satellite in space. In flight,

the spacecraft tracks these trajectories using a control system that fires the thruster in the direction
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element value

GTO semi-major axis (km) 24,522

GTO eccentricity 0.72

GTO inclination (◦) 28.5

GEO semi-major axis (km) 42,164

GEO eccentricity 0

GEO inclination (◦) 0

Table 1: Specifications of initial GTO orbit and final GEO orbit

that is tangential to the trajectory, using a feedback controller to track the desired attitude using a

3-axis reaction wheel assembly.

According to the mission specifications, our design must achieve certain requirements. The initial

GTO and final GEO orbits have the specifications given in Table 1. The specifications for the

tracking component of the mission design are as follows. Firstly, the total amount of thrust available

is no more than T = 0.895N. Secondly, the angular velocities of the reaction wheels must stay

within 4000rpm. Secondly, to allow for enough solar-power generation, the spacecraft’s solar panels

can point no more than 15◦ away from the Sun. Finally, to allow for insertion into GEO, the tracking

error at the end of the mission must be no more than,

|∆a(tf )| ≤ 10km, (1a)

|∆e(tf )| ≤ 10−3, (1b)

|∆i(tf )| ≤ 0.1◦, (1c)

|∆L(tf )| ≤ 0.1◦, (1d)

where a is the semi-major axis of the spacecraft orbit, e is the eccentricity, i is the inclination, L is

the longitude, and tf is the time at the end of the mission. The symbol ∆ is used to denote deviation

from the nominal value.

The desired trajectory, along with the requirements on the thruster and solar-paned axes, uniquely

describes an attitude that must be tracked by the controller. The attitude controller is a feedback

controller, but it does not make corrections being made for deviations from the nominal trajectory.

As such, the tracking of the precomputed trajectories is done in an open-loop fashion and there is

no a priori guarantee that the requirements listed above will be achieved. For this reason, in order

to rigorously validate our design, we found it necessary to simulate the mission in the high fidelity

simulator STK.

In the rest of this section, we describe the designs of our trajectory optimization scheme and

attitude control system in detail.

Orbit-Raising Design

We consider a design comprised of two parts. The first part is the determination of the trajectory

optimization, which is computed numerically prior to launch of the spacecraft. The output of the

optimization scheme is a trajectory and the required thrust profile. The second part of the design

consists of an attitude tracking controller that is designed to closely track the desired thrust vector

and align the spacecraft solar panels with the Sun. After launch, the controller achieves the desired
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Figure 1: Schematic of the orbit-raising design

trajectory by ensuring that the thrusters always point in the prescribed direction. We provide a

schematic of the design in Figure 1 and, in the following, we discuss the two components of our

design.

Optimal Trajectory Design Via Solution of Low-Thrust Optimal Control Problem

We solve the low-thrust optimal control problem using a direct transcription method11 and the

pseudo-spectral numerical optimal control tool GPOPS-II.9

The dynamical equation governing the spacecraft motion is given by,

ẍ = −µ
x

‖x‖3 + a, (2)

where x is the position of the satellite in an inertial frame centered at the Earth, a is the acceleration

due to thrusting acting on the satellite measured in the same frame and µ is the gravitational pa-

rameter of the Earth. An alternative to these equations of motion is to use the modified equinoctial

coordinates,11 which avoid singularities and result in a more robust optimization scheme. In these

coordinates, the acceleration u =
[

ur uθ uh
]T

is expressed in the radial-orthoradial frame and

satisfies a = ur r̂+uθθ̂+uhĥ, where r̂ = x/‖x‖, θ̂ = ẋ/‖ẋ‖, ĥ = r̂× θ̂. The equations of motion

are given by,

ẏ =
∑

i=r,θ,h

fi(L,y)ui, (3a)

L̇ = g0(y) + gh(L,y)uh, (3b)

where the elements of y =
[

p ex ey hx hy
]T

, along with L, are the modified equinoctial

coordinates; p is the semi-latus rectum, the pair (ex, ey) comprises the eccentricity vector, the pair

(hx, hy) comprises the angular momentum vector, and L is the longitudinal position along the tra-
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Figure 2: Illustration of the multi-step optimization scheme to obtain a 3D osculating minimum-fuel

trajectory

jectory in radians. The expressions for fi and g0 and gh are given by,
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where q = 1 + ex cosL+ ey sinL, r = p/q, α2 = h2x − h2y , and s2 = 1 +
√

h2x + h2y . The reason

for separating L from the rest of the elements of y is that it is treated as an independent variable in

the computation of the optimal control. By doing this, we simplify the computation8 and are still

able to relate L to the actual time t by using Eq. (3b).

The acceleration vector u can be decomposed into a control component uT and a disturbance

component ud,

u = uT + ud. (4)

The disturbance acceleration ud consists of all accelerations acting on the satellite not due to

thrust. The main disturbances expected to be encountered during the mission, i.e., the disturbances

due to the J2 and J4 oblateness effects and the gravitational pulls of the Sun and Moon, are accounted

for during the optimization process using analytical expressions or ephemeris data.

Minimum-fuel problem. The main challenge in computing (near) optimal solutions using direct

transcription is obtaining a high-quality initial guess; since low-thrust trajectories consist of hun-

dreds of orbits with many local minima, a good initial guess is of critical importance. To address this

challenge, we adopt a multi-step approach that uses analytical solutions available in the averaged

2D minimum energy problem, and exploit its relation to the minimum fuel problem. The approach

is summarized in the schematic of Figure 2.

We begin by replicating the analysis of Reference 7, where the authors obtain an analytical ex-

pression for the minimum-energy trajectory by using an averaging method. We first note that the

dynamics (3) can be written with L as the independent variable,

dy

dL
=

1

g0(y) + gh(L,y)vh

∑

i=r,θ,h

fi(L,y)ui. (5)
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Consider the problem of minimizing the thruster energy over the time span [0, tf ] with normalized

thrust v =
[

vr vθ vh
]T

= u/ε,
∫ tf

0

ε2‖v‖2dt. (6)

With a change of independent variable, the cost function becomes,

∫ Lf

0

ε2‖v‖2
g0(y) + εgh(L,y)vh

dL, (7)

where Lf = L(tf ). Assuming a solution exists, the Hamiltonian of the above problem can be

expressed as,

Hε(L,y,λ,v) =
ε2

g0 + εghvh



−1

2
‖v‖2 +

∑

i=r,θ,h

λ
Tfi



 ,

=
ε2

g0

(

1− ε
gh
g0

+ · · ·
)



−1

2
‖v‖2 +

∑

i=r,θ,h

λ
Tfi



 ,

=
ε2

g0



−1

2
‖v‖2 +

∑

i=r,θ,h

λ
Tfi



+ o(ε2),

where λ is the costate vector. Neglecting higher-order terms, taking the maximum, and setting

ε = 1 for convenience, the true Hamiltonian becomes,

H(L,y,λ) =
1

2g0

∑

i=r,θ,h

(λTfi)
2. (8)

Since the true Hamiltonian is periodic in L with period 2π, we can take define the averaged Hamil-

tonian as,

H̄(y,λ) =
1

2π

∫

2π

0

H(L,y,λ)dL. (9)

As shown in Reference 7, the averaged Hamiltonian system is integrable. In particular, the authors

provide an analytical expression for the minimum energy trajectories in the case of a coplanar orbital

transfer, which we use as the starting point for our optimization procedure. The averaged trajectory

is a geodesic for the corresponding sub-Riemannian problem and describes the curve of the optimal

trajectory in the (p, e)-plane. In that analysis, it was further established that the product of transfer

time and maximum thrust is a constant for the case of very low thrust, meaning that time is inversely

proportional to amount of thrust.

The computation of the optimal trajectory follows the steps introduced in Figure 2. They are

described in the following.

1. We begin by estimating N , the number of revolutions for a given thrust magnitude. We di-

vide the analytically available 2D optimal trajectory, i.e., geodesic, into N equally spaced

segments in L, and label the points (pi, ei)
N
i=1

. Each segment represents one orbit or revolu-

tion of the osculating trajectory. A sequence of optimal control problems are solved to obtain
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a guess for the osculating elements and the control profile for each orbit. Each of these op-

timal control problems has its initial condition on the geodesic curve, and aims to minimize

the distance between the endpoint of the current segment and the next point on the geodesic

curve. An initial guess for each segment is obtained by continuously thrusting in the tangen-

tial direction at full thrust. Hence, the optimal control problem for the i-th segment is solved

over the L-interval [i2π, (i + 1)2π] to minimize the cost function subject to the dynamics

(3a),

Ji =
(p(Lf,i)− pi+1)

2

(1 + pi+1)2
+

ex(Lf,i)
2 + ey(Lf,i)

2 − e2i+1

(1 + e2i+1
)2

, (10)

where Lf,i = (i+1)2π. The optimization is subject to the thrust constraint ‖u(L)‖ ≤ T , and

has initial condition p = ai, ex = ei, ey = 0, hx = tan (iGTO/2), hy = 0, with the value for

initial inclination iGTO being set to 28.5◦ as according to Table 1.

2. An initial guess for the full, osculating 2D trajectory is obtained by patching together the

individual segments obtained in Step 1. This initial guess is used to solve the 2D optimal

control problem with energy as the cost function to be minimized.

3. The solution of Step 2 is modified to include an inclination that decreases linearly in L and

achieves 0 at the final time. This modified trajectory is used as an initial guess for solving the

3D minimum-energy optimal control problem.

4. In the final step, a homotopy12 is carried out by iteratively solving the optimal control prob-

lems with the following cost function while gradually decreasing the homotopy parameter α
from 1 to 0,

J =

∫ T

0

|u(t)|(α|u(t)| + (1− α))dt. (11)

At each iteration, the solution from the previous iteration is used as an initial guess, with the

solution for the case where α = 1 having been obtained in Step 3.

Minimum-time problem. Unlike the minimum-fuel case, the optimal trajectory for minimum-

time case cannot be obtained via a homotopy from an analytically derived solution. It is known

that the time-optimal trajectory requires the thruster to fire continuously at maximum thrust. It is

therefore necessary to determine the profile of the direction of the thrust vector that minimizes the

time taken to transfer the satellite from GTO to GEO. For obtaining minimum-time optimal trajecto-

ries, we obtain the initial guesses using a two-step process using methods described in Reference 8.

Specifically, a sequence of trajectory optimization problems are solved to obtain segments of the full

osculating trajectory, where each segment is at most one revolution long. Each of these optimiza-

tion problems are initialized at the end-point of the previous segment, and minimize the distance

between the desired final condition and its own end point, with the distance being measured in

(a, e, i) coordinates. An initial guess for each segment is obtained by continuously thrusting in the

tangential direction. This process is continued until the final end point is close to a point on GEO.

Once an initial guess for the full trajectory is available, the minimum time problem is solved with

a constraint on the final cumulative longitude Lf . A gradient descent in Lf is then carried out to

escape possible local minima and obtain candidates for globally time-optimal solutions.
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Figure 3: Control magnitude (top-left), semi-major axis (top-right), eccentricity (bottom-left), and

inclination (bottom-right) profiles for fuel- and time-optimal trajectories

Computational Results

In Fig. 3, we show the control profile, the semi-major axis, eccentricity and inclination for both

fuel-optimal and time-optimal trajectories. For the fuel-optimal case, the maximum mission time

is constrained to be 157 days. Note that the numerically computed fuel-optimal trajectory exhibits

an almost on-off profile, without it being explicitly enforced during the optimization; theoretically,

the optimal profile should be on-off.6 The duration of time-optimal trajectory is 127.6 days with

∆V = 2.65 km/s. The fuel optimal trajectory is 156.9 days long with ∆V = 2.32 km/s.

The computational cost of computing the minimum-fuel trajectory is dominated by the first step.

On a desktop computer with a single Intel Xeon 3.67GHz processor, Step 1 takes an average of

about 120 minutes. Steps 2 through 4 take an additional 30 minutes, depending upon the tolerances

in the nonlinear programming solver and GPOPS-II.

ATTITUDE TRACKING

Given a time-history of the desired thrust vector uT , obtained as a solution to the optimal orbit-

raising problem, we need to design a control scheme to align the thrust vector of the spacecraft with
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uT so that we track the orbit raising trajectory. The thrust vector, aligned with the x-axis in the body

frame, does not on its own uniquely determine the spacecraft orientation. A unique orientation is

obtained when we consider the constraint on the solar panel axis, which requires that we point the

spacecraft solar panels toward the Sun at all times. The panels are aligned with the z-axis in the

spacecraft body frame and, since they can rotate about this axis, they can therefore align themselves

with the Sun as long as the z-axis is close to perpendicular to the Sun axis. We therefore define the

desired rotation matrix Rd as,

Rd =
[

r1 r2 r×1 r2
]

, (12)

where r1 = RT
HuT is the thrust vector in the inertial frame, RH is the rotation matrix into Hill’s

frame, r2 = s̃/‖s̃‖, and s̃ = Proj⊥
r1
(s) is the projection of the vector from the spacecraft to the

Sun s in the inertial frame onto the plane perpendicular to r1, whenever s is not parallel to r1.

Practically speaking, considering that numerical precision is very high, these two vectors should

never be parallel – if highly improbable case that their directions coincide, we take the previously

computed s̃ as a solution.

To track Rd, we use the control method from Reference 10. To describe the control scheme, we

begin by introducing the spacecraft dynamics,

Ṙ = Ṙω
×, (13a)

Jω̇ = −ω
×(Jω + Jαν)− Jαuα, (13b)

ν̇ = uα, (13c)

where R is the spacecraft rotation matrix, J is the moment of inertia of the spacecraft in the body

frame, and ω is the angular velocity. The spacecraft is equipped with three reaction wheels which

control the orientation. The moment of inertial due to these wheels is given by Jα and their speeds

are given by the components of ν. The accelerations of the wheels are the control inputs uα.

The control input is composed of two parts,

uα = J−1
α (v1 + v2), (14)

where,

v1 = −(Jω + Jαν)− J(K1Ṡ+ ω̃
×
ω −RT

ω̇d),

v2 = −Kv(ω̃ +K1Ṡ)−KpS.

The first term in the controller v1 is designed to ensure close tracking. The term S is an error term,

given by,

S =

3
∑

i=1

ai(R̃
Tei)

×ei, (15)

where ai > 0, i = 1, 2, 3 are penalty weights, ei is the i-th elementary vector, and where R̃ = RT
dR.

The term ω̃ = ω − ωd is the error in desired angular velocity, computed numerically from R̃; ω̇d

is also computed numerically. The second term in the controller v2 is designed to control the speed

of convergence. The term Ṡ is given by the analytically derived expression,

Ṡ =

3
∑

i=1

ai((R̃
Tei)

×
ω̃)×ei. (16)

9



The controller is guaranteed to asymptotically stabilize the spacecraft attitude almost-globally. In

Reference 10, the authors provide a Lyapunov function proving stability of the spacecraft attitude

dynamics under this control.

STK SIMULATION RESULTS

In this section, we present numerical simulation results obtained with MATLAB and STK soft-

ware. For export control reasons, we were unable to simulate the spacecraft attitude dynamics using

STK. Therefore, we used MATLAB to propagate the differential equations describing the attitude

dynamics (13) to obtain the spacecraft rotation R. We then passed the first column of this rotation

matrix to STK as the thrust vector. The MATLAB simulation results for the attitude tracking are

presented in Figures 4-5 and the STK simulation is presented in Figures 6–9.

From the results it is clear that we have achieved the required specifications. Firstly, as can be

seen in Figure 4 the rotation wheel stay well below their maximum speed of 4000rpm. In Figure 5,

we can see that the constraint on solar panel alignment is also enforced, as the Euler angle errors

stay below 3◦, which is well below 15◦. Furthermore, we have shown satisfactory tracking of the

nominal trajectory. In Figures 6–9, we can see that all constraints on the spacecraft final orbit (1)

have been achieved.

CONCLUSION

We have presented a scheme for raising the orbit of a spacecraft from GTO to GEO. The scheme

consists of two components: The first component is the design of the optimal trajectory and the

second component is the in-flight, tracking component. The design of the trajectory was based on a

direct transcription method, in which multiple steps were required to obtain improved initial guesses

for use in the optimization software GPOPS-II. The trajectories corresponding to both a minimum-

fuel and a minimum-time problem were obtained. The tracking component was designed to align

the thrust vector of the spacecraft in the desired direction and to align the spacecraft solar panels

with the Sun. The controller used to achieve this is a feedback controller on the spacecraft attitude

and receives no feedback from trajectory error.

A numerical simulation was performed using STK for propagation of orbital dynamics and MAT-

LAB for propagation of attitude dynamics. The spacecraft tracked the minimum-time trajectory

within the prescribed constraints, thereby showing good tracking.
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Figure 4: Time-histories of rotation wheels (top) and pointing error measured in 3-2-1 Euler angles

(bottom)
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Figure 5: Time-history of angle between Sun and axis perpendicular to solar panels
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Figure 6: Time-histories of semi-major axis (top) for both perfect (blue) and actual tracking (red)

and error in the semi-major axis between perfect tracking and actual tracking (bottom)
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Figure 7: Time-histories of eccentricity (top) for both perfect (blue) and actual tracking (red) and

error in the eccentricity between perfect tracking and actual tracking (bottom)
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Figure 8: Time-histories of inclination (top) for both perfect (blue) and actual tracking (red) and

error in the inclination between perfect tracking and actual tracking (bottom)
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Figure 9: Time-histories of longitude (top) for both perfect (blue) and actual tracking (red) and

error in the longitude between perfect tracking and actual tracking (bottom)
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