
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Matrix Profile VII: Time Series Chains: A New Primitive
for Time Series Data Mining

Zhu, Y.; Imamura, M.; Nikovski, D.N.; Keogh, E.

TR2017-168 November 2017

Abstract
Since their introduction over a decade ago, time series motifs have become a fundamental
tool for time series analytics, finding diverse uses in dozens of domains. In this work we
introduce Time Series Chains, which are related to, but distinct from, time series motifs.
Informally, time series chains are a temporally ordered set of subsequence patterns, such that
each pattern is similar to the pattern that preceded it, but the first and last patterns are
arbitrarily dissimilar. In the discrete space, this is similar to extracting the text chain ”hit,
hot, dot, dog” from a paragraph. The first and last words have nothing in common, yet they
are connected by a chain of words with a small mutual difference. Time series chains can
capture the evolution of systems, and help predict the future. As such, they potentially have
implications for prognostics. In this work, we introduce a robust definition of time series
chains, and a scalable algorithm that allows us to discover them in massive datasets.

International Conference on Data Mining

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139

Matrix Profile VII: Time Series Chains: A New Primitive for Time Series

Data Mining

Yan Zhu1, Makoto Imamura2, Daniel Nikovski3, Eamonn Keogh1
 1University of California, Riverside, yzhu015@ucr.edu, eamonn@cs.ucr.edu

2Tokai University, imamura@tsc.u-tokai.ac.jp
3Mitsubishi Electric Research Laboratories, nikovski@merl.com

Abstract— Since their introduction over a decade ago, time

series motifs have become a fundamental tool for time series

analytics, finding diverse uses in dozens of domains. In this work

we introduce Time Series Chains, which are related to, but distinct

from, time series motifs. Informally, time series chains are a

temporally ordered set of subsequence patterns, such that each

pattern is similar to the pattern that preceded it, but the first and

last patterns are arbitrarily dissimilar. In the discrete space, this

is similar to extracting the text chain “hit, hot, dot, dog” from a

paragraph. The first and last words have nothing in common, yet

they are connected by a chain of words with a small mutual

difference. Time series chains can capture the evolution of systems,

and help predict the future. As such, they potentially have

implications for prognostics. In this work, we introduce a robust

definition of time series chains, and a scalable algorithm that

allows us to discover them in massive datasets.

Keywords— Time Series, Motifs, Prognostics, Link Analysis

I. INTRODUCTION

Time series motifs are approximately repeating
subsequences embedded in a longer time series. Since their
formulation in 2002 [15] they have emerged as one of the most
important primitives in time series data mining. Motif discovery
has been used as a sub-routine in higher-level analytics,
including classification, clustering, visualization [4], and rule-
discovery [17]. Moreover, motif discovery has been applied to
domains as diverse as severe weather prediction, robotics,
medicine [20] and seismology [25].

In retrospect, it is easy to see why time series motifs are so
useful. If a pattern is repeated (or conserved), there must be a
latent system that occasionally produces the conserved behavior.
For example, this system may be an overcaffeinated heart,
sporadically introducing a motif pattern containing an extra beat
(Atrial Premature Contraction [9]), or the system may be an
earthquake fault, infrequently producing highly repeated
seismograph traces because the local geology produces unique
wave reflection/refractions [25]. Time series motifs are a
commonly used technique to gain insight into such latent
systems, in essence, they can be seen as “generalizing the notion
of a regulatory motif to operate robustly on non-genomic
data”[20].

In this work, we expand the notion of time series motifs to
the new primitive of time series chains (or just chains). Time
series chains may be informally considered motifs that evolve or
drift in some direction over time. Fig. 1 illustrates the difference
between time series motifs and time series chains (we defer
formal definitions until Section II).

Fig. 1. Visualizing time series subsequences as points in high-dimensional

space. left) A time series motif can be seen as a collection of points that

approximate a platonic ideal, represented here as the crosshairs. right) In

contrast, a time series chain may be seen as an evolving trail of points in the

space. Here the crosshairs represent the first link in the chain, the anchor.

Both motifs and chains have the property that each
subsequence is relatively close to its nearest neighbor. However,
the motif set also has a relatively small diameter. In contrast, the
set of points in a chain has a diameter that is much larger than
the mean of each member’s distance to its nearest neighbor.
Moreover, the chain has the property of directionality. For
example, in Fig. 1.left, if a tenth member was added to the motif
set, its location will also be somewhere near the platonic ideal,
but independent of the previous subsequences. In contrast, in
Fig. 1.right, the location of the tenth member of the chain would
be somewhere just left of item nine.

While we can clearly define chains, it may not be obvious
that such constructs exist in the real-world. In fact, as we
preview in Fig. 2, time series chains appear to be near ubiquitous
in many domains, so long as the data trace is sufficiently long.

Fig. 2. A time series chain discovered in an electrical power demand dataset

monitoring domestic freezer usage [14]. Note that through the early afternoon,

the valley becomes narrower and the peak that follows it becomes sharper.

With a little introspection, it is clear that chains should exist.
Consider the following systems:

• Human Heart: An overcaffeinated heart can sporadically
produce a pattern containing an extra beat, but over time the
caffeine leaves the blood stream, and the pattern fades [9].

1

2

3
4

5 6

78

9
1

2
3456789

Minutes
0 1 2 3

12:07
20 March 2014

13:04

13:33

14:04

• Distillation Process: A distillation column is a ubiquitous
industrial tool used to separate a mixture into its component
parts. Ideally, most telemetry monitoring a distillation
column should reflect a repeating process, over production
cycles. However, most large distillation columns are open to
the atmosphere, and the patterns observed may drift as the
seasons change. In addition, a slowly clogging feed pipe can
throttle the feed rate and force the patterns to drift until they
become unacceptable and force maintenance.

• Aggregate Human Behavior: Human behavior is often
unpredictable for individuals, but more structured in
aggregate. For example, online shopping behaviors often
shows conserved motifs, but these motifs may drift over time
in response to advertising campaigns or cultural shifts. This
has been noted in recent studies. For example, [7] notes that
their attempts to model consumer e-commerce visitation
patterns “suggests the existence of a slow rate of
environmental change or exploration that would slowly
undermine the model's accuracy.”

• Machines: In general, most mechanical and electrical
systems such as cars, motors, elevators, air conditioners, etc.
are subject to gradual deterioration over time. This
deterioration can be manifested in shorter or longer duty
cycles, increased vibration, or some other gradually
changing pattern. In the field of prognostics, the degree of
deterioration is often called the State of Health (SoH) of the
system. SoH is rarely directly measurable, and its estimation
typically involves advanced modeling and estimation
algorithms. Because a time series chain defines an implicit
curve in some high-dimensional space, as shown in Fig. 1,
the natural coordinate along this curve can serve as a
surrogate SoH measure. If high probability of failure can be
associated reliably with a certain level of SoH, the
discovered time series chain can be used successfully for
prognostics and condition-based maintenance of machines.

As we will show in Section IV, once given the computational
ability to find time series chains, we begin to find them
everywhere, in datasets from ten seconds, to ten years in length.

The rest of this paper is organized as follows. In Section II
we briefly review related work and background, then formally
define time series chains. We introduce an ultra-fast algorithm
to compute time series chains in Section III. Section IV shows
the ubiquity of time series chains. Finally, in Section V we offer
conclusions and directions for future work.

II. RELATED WORK AND BACKGROUND

Our review of related work is brief. To the best of our
knowledge, there are simply no closely related ideas in the time
series domain. However, there are very similar ideas in the text
domain, even to the point of using similar language [24][1][22].
For example, Zhu and Oates discuss “Finding Story Chains in
Newswire Articles” (analogous to our emphasis) [24]. Likewise,
Bögel and Gertz argue for the need to go beyond finding
repeated variants of news articles (like motifs), to allowing
“Temporal Linking of News Stories” (like chains) [1]. Beyond
the difference in data type considered, this work is much more
supervised. The user typically selects a particular news article,

and asks “what leads up to this?” or “what happened next?”. In
contrast, because we are often exploring domains for which we
have limited intuitions, we want to tell the algorithms nothing
(except the desired length of patterns to consider) and have the
algorithm find the natural chains in the data (if any).

There is a huge body of work in finding periodicity in time
series [8], however this work is orthogonal to the task-at-hand.
A time series can have perfect periodicity, but no chains (i.e. a
pure sine wave), and a time series can have chains, but no
appreciable periodicity (it is easy to construct artificial
examples, for example by embedding increasing damped sine
waves in random walk).

The notion of chains invokes the familiar idea of concept
drift in [3]; however, we are not starting with an explicit model
to drift away from. Our starting point is a completely
unannotated dataset.

Finally, time series chains are clearly related to time series
motifs [15][23][25]. However, chains are neither a
specialization nor a generalization of motifs. It is possible to
have a rich set of motifs in a dataset, without having any chains.
Time series motifs have a rich and growing literature, we refer
the reader to [23][25] and the references therein.

A. Developing Intuition for Time Series Chains

To help the reader understand the task at hand, and our
contributions to it, we begin by considering a similar problem in
a domain that better lends itself to discussion. In particular, it
will be helpful to sharpen our intuitions on strings, the discrete
analogue to time series, and using the Hamming distance, the
discrete analogue to the Euclidean distance.

A word ladder is a classic puzzle used to challenge children
to build their vocabulary [11]. The challenge is as follows: given
two related words, such as “cat” and “dog”, find a path between
the words that consists of legal English words that differ only in
one letter. For example, this instance is solved by {cat, cot, dot,
dog}. By definition, each word is exactly a Hamming distance
of 1 from both its neighbors. Let us consider variants of this
problem. Suppose our words are subwords of length m in a
longer, unpunctuated string S, of length n:

thecatsleepinginthecotwasawokenbydothedogwh…

Further suppose that we are challenged to find the longest
ladder (or chain) of words in this string. We are told only that
the words are of length 3, and that each word is at most a
Hamming distance of 1 from both its neighbors. The problem is
still tenable by eye, at least for this short string. However, the
problem becomes significantly harder if the words are no longer
constrained to be English words:

uifdbutmffqjohjouifdpuxbtbxplfoczepuifephxi…

This string is actually just the previous string Cesar-shifted
by one letter, but without the intuition of meaningful words, the
problem becomes much harder for the human eye. Solving the
problem with computers is also somewhat daunting. The
obvious solution is depth-first-search, which only requires O(n2)
space, but requires O(nn) time. If we constrain the subwords in
a chain to have no overlap, the time complexity is slightly
reduced to O(nn/m).

Our consideration of strings allows further intuitive
explanation of issues for the task at hand. Consider the following:

catauygfbatiuvheiucathoeircatiajesathfwecat…

Under the definition that each word is at most a Hamming
distance of 1 from both its neighbors, this string has a chain of
length six. However, this chain lacks directionality: the pattern
is not drifting or evolving. Indeed, this “chain” might better be
explained as multiple occurrences of a single prototypical
pattern “cat”, with some spelling errors. In the time series space,
we already have a technique to find such patterns, time series
motifs [15][23][25]. Thus, any definition we wish to formalize
should guard against such pathological solutions.

Another important property that any definition of chains
should have is robustness. Consider the following list of words
that we will embed into a string {sad, had, ham, hag, rag}:

iwassadthatIhadahamsandwichwiththehaginrags…

Here we easily find the five-word chain. However, suppose
we had a single letter misspelling in the string, for example:

iwassadthatIhadajamsandwichwiththehaginrags…

Because of this trivial single-letter difference, we can only
find two chains of length two, something that might easily have
happened by chance. This brittleness of chains has been
understood for centuries. Alexander Pope noted in 1733 “From
Nature’s chain whatever link you strike, tenth or ten thousandth,
breaks the chain alike”. Thus, when designing the definition of
chains for the time series space, we want to make sure that our
definition is robust to one or two links being missing in an
otherwise long chain. This is especially important in the time
series domain where we often encounter noisy/missing data.

In summary, considering a simpler but related problem, we
can see that when designing a formal definition for our task at
hand, we must strive (at a minimum) to make it efficiently
computable, directional, and robust. In the next section, we will
introduce a definition of time series chains that satisfy these
requirements.

Finally, this is a good place to introduce some nomenclature.
We plan to support two types of time series chains (here we
show their analogues in a string):

• Unanchored: In this case we are interested in finding the
unconditionally longest chain in the string. For example,
considering S, the first string we introduced, FindChain(S,
m, default) would find the longest chain (with m = 3) of
length 4: {cat, cot, dot, dog}.

• Anchored: In this case we want to start the chain with a
particular subsequence. For example, FindChain(S, m, 20)
would find the longest chain (with m = 3) starting with the
subword at index 20, which is {cot, dot, dog}.

Note that if we have discovered all the anchored chains, the
unanchored chain is simply the longest one among them.

B. Time Series Notation

Before we formally define time series chains, we need to
review some related definitions (Definitions 1 to 3), and create
some new ones (Definitions 4 to 11).

The data type of interest is time series:

Definition 1: A time series T is a sequence of real-valued
numbers ti: T = t1, t2, ..., tn where n is the length of T.

A local region of time series is called a subsequence:

Definition 2: A subsequence Ti,m of a time series T is a
continuous subset of the values from T of length m starting from
position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1≤ i ≤ n-m+1.

If we take a subsequence and compute its distance to all
subsequences in the same time series, we get a distance profile:

Definition 3: A distance profile Di of time series T is a
vector of the Euclidean distances between a given query
subsequence Ti,m and each subsequence in time series T.
Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤ i, j ≤ n-m+1)
is the distance between Ti,m and Tj,m.

This may seem like an expensive operation, but recent work
has shown this can be achieved in just O(nlog(n)) time [13]. To
concretely ground this, on a standard desktop (Intel i5-6330U
CPU with 8GB Memory), it is possible to compute a distance
profile for ten million data points in much less than 0.1 seconds.

We assume that the distance is measured by Euclidean
distance between z-normalized subsequences [2][23][25].

Note that by definition, the ith location of distance profile Di
is zero, and very close to zero just before and after this location.
We avoid such “self” matches by ignoring an “exclusion zone”
of length m/4 before and after the location of the query.

Recent work has introduced the matrix profile [23][25], a
data structure that stores nearest neighbor information for every
subsequence in a time series, and showed that it offers the
solutions to many problems in time series data mining, including
motif discovery and discord discovery. We propose to leverage
these ideas. However, it is useful for us to “re-factor” the
computation into two halves, independently considering the
nearest neighbor to the left, and the nearest neighbor to the right.
Note that the total amount of computation we need to do is the
same. Fig. 3 previews the two data structures: left matrix profile
and right matrix profile. We could create the original matrix
profile [23][25] by simply taking the minimum of the two.

Fig. 3. The left matrix profile, right matrix profile and matrix profile of a toy

time series. The deep valleys within the (left/right) matrix profiles indicate that

the corresponding subsequence has close (left/right) nearest neighbors. The

matrix profile shows general nearest neighbor information.

Before introducing the left matrix profile and right matrix
profile, we begin by showing that we can divide a distance
profile into a left distance profile and a right distance profile.

time series

left matrix profile

right matrix profile

matrix profile

Definition 4: A left distance profile DLi of time series T is a
vector of the Euclidean distances between a given query
subsequence Ti,m and each subsequence that appears before Ti,m
in time series T. Formally, DLi = [di,1, di,2,…, di,i-m/4].

Definition 5: A right distance profile DRi of time series T is
a vector of the Euclidean distances between a given query
subsequence Ti,m and each subsequence that appears after Ti,m in
time series T. Formally, DRi = [di, i+m/4, di, i+m/4+1,…, di,n-m+1].

We can easily find the left nearest neighbor of a subsequence
Ti,m from the left distance profile, and the right nearest neighbor
of Ti,m from the right distance profile.

Definition 6: A left nearest neighbor of Ti,m, LNN(Ti,m) is a
subsequence that appears before Ti,m in time series T, and is most
similar to Ti,m. Formally, LNN(Ti,m)= Tj,m if di,j = min(DLi).

Definition 7: A right nearest neighbor of Ti,m, RNN(Ti,m) is
a subsequence that appears after Ti,m in time series T, and is most
similar to Ti,m. Formally, RNN(Ti,m)= Tj,m if di,j = min(DRi).

As shown in Fig. 3, we use a vector called left matrix profile
to represent the z-normalized Euclidean distances between all
subsequences and their left nearest neighbors:

Definition 8: A left matrix profile PL of time series T is a
vector of the z-normalized Euclidean distance between each
subsequence Ti,m and its left nearest neighbor in time series T.
Formally, PL = [min(DL1), min(DL2),…, min(DLn-m+1)], where
DLi (1 ≤ i ≤ n-m+1) is a left distance profile of time series T.

The ith element in PL tells us the distance from subsequence
Ti,m to its left nearest neighbor in time series T. However, it does
not tell where that left neighbor is located. This information is
stored in a companion vector called the left matrix profile index.

Definition 9: A left matrix profile index IL of time series T
is a vector of integers: IL=[IL1, IL2, … ILn-m+1], where ILi=j if
LNN(Ti,m)= Tj,m.

By storing the neighboring information this way, we can
efficiently retrieve the left nearest neighbor of query Ti,m by
accessing the ith element in the left matrix profile index.

Analogously, we define the right matrix profile (as shown in
Fig. 3) and the right matrix profile index as follows:

Definition 10: A right matrix profile PR of time series T is
a vector of the Euclidean distances between each subsequence
Ti,m and its right nearest neighbor in time series T. Formally, PR
= [min(DR1), min(DR2),…, min(DRn-m+1)], where DRi (1 ≤ i ≤
n-m+1) is a right distance profile of time series T.

Definition 11: A right matrix profile index IR of time series
T is a vector of integers: IR=[IR1, IR2, … IRn-m+1], where IRi=j
if RNN(Ti,m)= Tj,m.

C. Formal Definitions of Time Series Chains

We are finally in the position to define time series chains.
Before we do so, recall our guiding principle. We want
something very like the definition of time series motifs
[15][23][25], but with the additional property of directionality.
For example, given a choice between the following:

{ ape → abe → ape → ape → abe → ape }

{ ape → apt → opt → oat → mat → man }

The latter is strongly preferred because the pattern is in some
sense “evolving” or “drifting”. We can now see this intuition in
the real-valued space of interest. The definition below captures
this spirit in the continuous case.

Definition 12: A time series chain of time series T is an
ordered set of subsequences: TSC={TC1,m, TC2,m, … TCk,m} (C1≤
C2≤...≤Ck), such that for any 1 ≤ i ≤ k-1, we have RNN(TCi,m) =
TC(i+1),m, and LNN(TC(i+1),m) = TCi,m. We denote k the length of the
time series chain.

To help the reader better understand this definition, let us
consider the following time series:

47, 32, 1, 22, 2, 58, 3, 36, 4, -5, 5, 40

Assume that the subsequence length is 1, and the distance
between two subsequences is simply the absolute difference
between them (to be clear, we are making these simple and
pathological assumptions here just for the purposes of
elucidation; we are actually targeting much longer subsequence
lengths and using z-normalized Euclidean distance in our
applications). According to Definition 9 and Definition 11, we
can store the left and right nearest neighbor information into the
left and right matrix profile indices, as shown in Fig. 4.

Index 1 2 3 4 5 6 7 8 9 10 11 12

Value 47 32 1 22 2 58 3 36 4 -5 5 40

IR 12 8 5 8 7 12 9 12 11 11 12 -

IL - 1 2 2 3 1 5 2 7 3 9 8

Fig. 4. The left nearest neighbor index and right nearest neighbor index of the

toy example.

Here the Index vector shows the location of every
subsequence in the time series, IR is the right matrix profile
index and IL is the left matrix profile index. For example,
IR[2]=8 means the right nearest neighbor of 32 is 36; IL[3]=2
means the left nearest neighbor of 1 is 32.

To better visualize the left/right matrix profile index, in Fig.
5 we use arrows to link every subsequence in the time series with
its left and right nearest neighbors.

Fig. 5. Visualizing left matrix profile index and right matrix profile index: every

arrow above the time series points from a number to its right nearest neighbor;

every arrow below the time series points from a number to its left nearest

neighbor.

We call an arrow pointing from a number to its right nearest
neighbor (arrows shown above the time series) a forward arrow
(i.e. x→y means RNN(x)=y), and an arrow pointing from a
number to its left nearest neighbor (arrows shown below the time
series) a backward arrow (i.e. x←y means LNN(y)=x).
Definition 12 indicates that every pair of consecutive
subsequences in a chain must be connected by both a forward

47 32 1 22 2 58 3 36 4 -5 5 40

arrow and a backward arrow. The diligent reader may quickly
discover the longest time series chain in our toy example:

47, 32, 1, 22, 2, 58, 3, 36, 4, -5, 5, 40 (Raw data)

1 ⇌ 2 ⇌ 3 ⇌ 4 ⇌ 5 (Extracted chain)

We can see that this chain shows a gradual increasing trend
of the data. Note that in this one-dimensional example, the
elements of the chain can only drift by increasing or decreasing.
In the more general case, the elements can drift in arbitrarily
complex ways. Our claim is that our definition is also capable of
discovering complex drifting patterns in high-dimensional
space. For example, the reader can easily verify that the two-
dimensional chain in Fig. 1.right, a curvy evolving pattern, is
captured by our definition. The definition also works for a sin-
wave drifting pattern, a zigzag, spirals, etc. We defer real-world
examples in much higher dimensional spaces to Section IV.

However, to be clear, we are not claiming that we can
discover all kinds of drifting; we are only targeting chains with
directionality (the last item should be very different from the
first item, as suggested previously). Therefore, full closed circles
(i.e. {1, 3, 4, 5, 1}) are not captured by our definition. However,
if needed, we can still potentially capture such topologies if we
consider combining multiple chains. For example, in {1, 3, 4, 5,
1}, our definition captures two chains: {1, 1} and {3, 4, 5}. The
circle is a combination of the two.

Beyond satisfyingly the directionality requirement, here we
provide a simple sanity check of the robustness of our definition
by removing a link from the chain. Imagine that in Fig. 5, the
number “3” is missing. In this case, RNN(2)=4, LNN(4)=2; we
can still find the chain 1 ⇌ 2 ⇌ 4 ⇌ 5. We defer a more
“stressed” and quantified robustness test to Section IV.E.

As suggested in Section II.A, we are especially interested in
supporting two types of time series chains: anchored and
unanchored chains. We formally define them as follows.

Definition 13: An anchored time series chain of time series
T starting from subsequence Tj,m is an ordered set of
subsequences: TSCj,m ={TC1,m, TC2,m, … TCk,m} (C1≤C2≤...≤Ck,
C1=j), such that for any 1≤ i ≤ k-1, we have RNN(TCi,m)=TC(i+1),m,
and LNN(TC(i+1),m)=TCi,m; for TCk,m, we have either TCk,m is the last
subsequence in T, or LNN(RNN (TCk,m))≠TCk,m.

We can “grow” an anchored chain step-by-step as follows.
Consider Fig. 5 as an example. If we start from 1, we find
RNN(1)=2 and LNN(2)=1, so 2 can be added to the chain; since
RNN(2)=3 and LNN(3)=2, 3 can also be added; this process
continues until we reach 5. As RNN(5)=40 and LNN(40) ≠5, the
chain terminates, and finally we find the chain 1⇌2⇌3⇌4⇌5 as
the longest chain starting from 1.

Note that our definition produces one and only one anchored
time series chain starting from any user-supplied subsequence
Tj,m (1≤ j≤n-m+1), as there is only one right (and also left)
nearest neighbor for every subsequence in T. Based on this
observation, we can find all the time series chains within T.

Definition 14: An all-chain set STSC of time series T is a set
of all anchored time series chains within T that are not subsumed
by another chain.

Here we are not simply finding all the anchored chains
starting from all subsequences of T; STSC excludes those that are
subsumed by another chain. For example, the all-chain set
corresponding to Fig. 5 is STSC = {47, 32⇌36⇌40, 1⇌2⇌3⇌4⇌5,
22, 58, -5}. STSC does not contain the anchored chain 36⇌40, or
2⇌3⇌4⇌5, as they are both subsumed by longer chains.

Note that the all-chain set STSC has an important property:
every subsequence of T appears exactly once in STSC. The all-
chain set shows all possible evolving trends within the data.

We believe that of all the chains in STSC, the longest one
should reflect the most general trend within the data. We call
this chain the unanchored time series chain.

Definition 15: An unanchored time series chain of time
series T is the longest time series chain within T.

Note that there can be more than one unanchored time series
chain of time series T with the same maximum length. In case of
such ties, we report the chain with minimum average distance
between consecutive components. However, one might imagine
other tie-breaking criteria, such as choosing the chain with
smaller variance of consecutive pairwise distances.

One can imagine in some situations that the chain of interest
may not be the longest one. In the next section, we provide an
algorithm to compute the all-chain set, which we use to easily
find any anchored or unanchored chain, from the set.

III. DISCOVERING TIME SERIES CHAINS

To compute the time series chains, according to Definition
12, we first need to find the left/right nearest neighbor of every
subsequence in the time series. Such information can be found
from two vectors: left matrix profile index and right matrix
profile index (Definitions 9 and 11). The LRSTOMP algorithm
is an (optimal) algorithm to efficiently compute these vectors.

A. LRSTOMP Algorithm

The recently introduced STOMP algorithm [25] can
efficiently compute matrix profile and matrix profile index in
O(n2) time and O(n) space. Here we briefly review how STOMP
[25] keeps track of the nearest neighbor of every subsequence:
the algorithm computes distance profiles D1, D2, …, Dn-m+1 (see
Definition 3) in order. The matrix profile P is initialized as D1
and the matrix profile index I is initialized as a vector of ones.
As shown in Fig. 6, once the computation of Di is completed, we
compare every element of Di with its corresponding element in
P: if di,j< Pj, we set Pj = di,j and Ij =i. In this way, the matrix
profile P and matrix profile index I keep track of the nearest
neighbors of every subsequence in the time series.

Fig. 6. STOMP keeps track of the general nearest neighbor of every

subsequence in the time series

Instead of finding the general nearest neighbor information
as in STOMP [25], to support chain discovery, we need to

P1 P2 P3 … Pn-m+1

di,1 di,2 di,3 … di,n-m+1

Update if Smaller

Di

P

separately find the left and right nearest neighbors of each
subsequence in the time series.

Leveraging off the insights of STOMP [25], we call our
algorithm LRSTOMP (Left-Right-STOMP). To initialize our
four output vectors, we begin by setting both the left and right
matrix profiles PL and PR as Infs, and both the left and right
matrix profile indices IL and IR as zeros. Then, using the
technique in [25], we compute the distance profiles D1, D2, …,
Dn-m+1 (see Definition 3) in order. Note that the ith subsequence
can only be the right nearest neighbor of the 1st to the (i-m/4)th
subsequence in the time series, and the left nearest neighbor of
the (i+m/4)th to the last subsequence in the time series.
Therefore, as shown in Fig. 7, after the ith distance profile Di is
computed, we need to divide Di into two halves. For ∀ j∈[1, i-
m/4], if di,j< PRj, we set PRj = di,j and IRj =i. For ∀ j∈[i+m/4, n-
m+1], if di,j< PLj, we set PLj = di,j and ILj =i.

Fig. 7. LRSTOMP keeps track of both the left and right nearest neighbors of

every subsequence in the time series.

After evaluating all of the distance profiles, we can obtain
the final left and right matrix profiles (and matrix profile
indices).

Note that switching the updating process from Fig. 6 to Fig.
7 does not affect the overall complexity of the algorithm.
Therefore, the time complexity of LRSTOMP is O(n2) and the
space complexity is O(n), the same as STOMP [25].

B. Computing the Time Series Chains

Now we are in the position to compute the time series chains.
We begin with the simpler variant, the algorithm to compute the
anchored time series chains (ATSC) in TABLE I.

TABLE I. ATSC ALGORITHM

 Procedure ATSC(IL, IR, j)

Input: The left matrix profile index IL and

right matrix profile index IR generated by

LRSTOMP(T, m), where T is the time series and

m is the subsequence length; and j, location

of the anchor subsequence.

Output: Anchored Time series chain C, where

C[i]=j means the ith element of the chain is

the jth subsequence in the time series

1

2

3

4

5

6

 C ← [j] // initialization

 while IR[j]≠0 and IL[IR[j]]==j do

j ← IR[j]

C ← [C, j]

 end while

 return C

The algorithm is straight-forward. We begin growing the
chain from its user-specified anchor, the jth subsequence. If the
right nearest neighbor exists (if it does not exist, then IR[j]=0;

this indicates that we have reached the end of the time series)
and LNN(RNN(Tj,m))=Tj,m, then we set j as RNN(Tj,m) and add it
to the back of the chain. The process iterates until nothing more
can be added to the chain.

The time and space overhead of ATSC algorithm are both
O(n).

Given that we can efficiently compute the anchored time
series chain starting from any subsequence, the all-chain set
(ALLC) can also be computed. The (unanchored) time series
chain is simply the longest chain in the all-chain set.

A simple approach to compute the all-chain set is
enumerating all anchored chains starting from all subsequences,
and removing those that are subsumed by longer chains.
However, this brute-force approach would result in an
undesirable O(n2) time complexity. Fortunately, as shown in
TABLE II, by exploiting several properties of our definition of
time series chains, we can reduce the time complexity of the
ALLC algorithm to O(n).

TABLE II. ALLC ALGORITHM

 Procedure ALLC(IL, IR)

Input: The left matrix profile index IL and

right matrix profile index IR generated by

LRSTOMP(T, m), where T is the time series and m

is the subsequence length.

Output: The all-chain set S and the unanchored

chain C

1

2

3

4

5

6

7

8

9

10

11

12

 L ← ones, S ← ∅//initialization
 for i : 1 to length(IR) do

 if L[i]==1 do

 j ← i, C ←[j]

 while IR[j]≠0 and IL[IR[j]]==j do
 j ←IR[j], L[j]←-1, L[i]←L[i]+1, C ←[C,j]

 end while

 S ← S ∪ C
 end if

 end for

 C ← ATSC(IL, IR, Max_Index(L))

 return S, C

The vector L in line 1 is a vector of length n-m+1, the same
length as the four meta time series. We use L[i] to store the
length of the anchored time series chain starting from L[i], and
initialize L with all ones (as the length of an anchored chain is at
least 1). In lines 2 to 10, we iterate through all possible anchor
points, and store in L[i] the length of the anchored chain starting
from the ith subsequence. We store all the chains found in S. In
line 11, we find the unanchored time series chain corresponding
to the maximum value in L.

Note that in lines 5-7, as we grow an anchored chain from
the ith subsequence, we set L[j] to -1 for every subsequence j
visited except the anchor subsequence. This helps us prune
unnecessary computations, as there is only one anchored time
series chain starting from any subsequence. Consider again the
toy example in Fig. 5: when i=3, we discover the chain 1 ⇌ 2 ⇌
3 ⇌ 4 ⇌ 5. By marking out the length of the anchored chain
starting from 2, 3, 4 and 5 as -1s, we can avoid spending time on
growing a chain like 2 ⇌ 3 ⇌ 4 ⇌ 5, which is subsumed by 1 ⇌
2 ⇌ 3 ⇌ 4 ⇌ 5. With this technique, every subsequence in the
time series is visited exactly once; therefore, the time complexity
of the algorithm is O(n), which is inconsequential compared to

PR1 PR2 PR3 … PRi-m/4

di,1 di,2 di,3 … di,i-m/4

Update if Smaller

Di [1:i-m/4]

PR

PLi+m/4 PLi+m/4+1 PLi+m/4+2 … PLn-m+1

di,i+m/4 di,i+m/4+1 di,i+m/4+2 … di,n-m+1

Update if Smaller

PL

Di [i+m/4:n-m+1]

the O(n2) time (already demonstrated as ultra-fast in [25]) to
compute the left/right matrix profiles and matrix profile indices.
This O(n)-complexity algorithm is the optimal algorithm to
compute the all-chain set under our definitions and assumptions,
as we need to at least scan through the entire time series once.

Although we will mainly be showing the applications of the
unanchored (or longest) time series chain, sometimes the chain
of interest may not be the longest one. Based on domain
knowledge, one may be interested in looking at the top-k chains,
a chain starting from a specific location, a chain with less
difference between the links, etc. All these tasks are trivial given
the all-chain set S. Therefore, the ALLC algorithm can
potentially help us discover any possible evolving trend within
the time series. We reserve such considerations for future work.

IV. EMPIRICAL EVALUATION

“You reasoned it out beautifully, it is so long a chain, and
yet every link rings true.” Sir Arthur Conan Doyle:
Adventures of Sherlock Holmes, 1892.

We note in passing that all the experimental results in this
paper are reproducible. To ensure this, we have created a website
to archive all the datasets and code in perpetuity [26].

After an extensive literature search, we are convinced that
there is no strawman algorithm to compare to. Moreover, unlike
clustering or motif discovery, there is no formal metric to
measure the quality of chains. In a sense, we are not the ideal
group that should invent such a metric, as we could define one
that tautologically rewards the properties we have defined.
However, in Section IV.E, we provide a pseudo measure of
quality as the gold standard. We measure the length of a chain
in a data set, then ask how robust would our chain discovery
algorithm be if we distorted the data in various ways. Clearly a
chain discovery algorithm would engender little confidence if
minor changes to the data could prevent the discovery of the
(same basic) chain.

Before this robustness test, we provide four case studies in
which we applied our algorithm to various datasets. These case
studies will help the reader gain an appreciation for the utility of
chain discovery. These datasets are designed to span the diverse
types of data encountered in time series data mining, some are
stationary, some have trends, some are smooth, some are noisy,
the shortest is ten seconds long, the longest is ten years, etc.

While we can obtain the all-chain set with the ALLC
algorithm, in this section, we are only showing the application
of the unanchored time series chain. Unless otherwise stated, in
the rest of this section, we use the term “time series chain” to
represent unanchored time series chain in Definition 15, rather
than Definition 12.

A. Case Study: Hemodynamics

In November 2016, we briefed Dr. John Michael Criley,
Professor Emeritus at the David Geffen School of Medicine at
UCLA, and Dr. Gregory Mason of UCLA Medical Center, a
noted expert on cardiac hemodynamics, on the capabilities of
time series chain discovery. They suggested more than a dozen
possible uses for it in various clinical and research scenarios in
medicine. Here we consider one example they are interested in.

Syncope is the loss of consciousness caused by a fall in blood
pressure. The tilt-table test (see Fig. 8.top.left) is a simple,
noninvasive, and informative test first described in 1986 as a
diagnostic tool for patients with syncope of unknown origin [5].

Fig. 8. left-to-right, top-to-bottom) A patient lying on a medical tilt table has

his arterial blood pressure monitored. Nomenclature for a standard beat. The

chain discovered in this dataset shows a decreasing height for the dicrotic notch.

Beyond diagnosing the condition, the test may reveal the
cause, neurological disorder, metabolic disorder, mechanical
heart disease, cardiac arrhythmias, etc. [12].

In brief, the clinician will want to contrast any evolving
patterns in the patient’s arterial blood pressure (ABP) that are a
response to changes in positon induced by a tilt table, with
evolving patterns that are not associated with changes of
posture. As hinted at in Fig. 8, time series chains are an ideal
way to find and summarize such patterns. Here we set m=200,
as this is the typical length of an ABP signal (Fig. 8.bottom.left).

Fig. 8 shows just a snippet of the time series searched. We
encourage the reader to see the full dataset/results at [26].
Nevertheless, even this snippet is visually compelling. It shows
that as the table is tilted, the height of the dicrotic notch steadily
decreases. Per Dr. Mason, the change in orientation
“dramatically increases central venous filling and subsequent
left ventricular end-diastolic volume, for several heart
beats. Left ventricular stroke volume and effective cardiac
output increase transiently, (likely due to) relative hyperemia,
which is well-described during recovery from transient vascular
occlusion”.

As noted above, Fig. 8 only shows a small section of the data
we searched. In addition to finding meaningful chains, a good
algorithm should avoid finding spurious chains, even if there are
dense motifs (recall the distinction visualized in Fig. 1). In Fig.
9 we show the prefix of the data we searched, but truncated out
of Fig. 8, gratifyingly, the chain we discovered has no element
here, even though there are clearly dense motifs [23].

Fig. 9. The prefix of the ABP data shown in Fig. 8. There are no chain elements

discovered in this region, although it is compressed of dense motifs.

B. Case Study: Penguin Behavior

In this case study, we decided to explore a dataset for which
we have no expertise, to see if we could find time series chains,
which we could then show to an expert for independent
evaluation of meaning and significance (if any).

0 5000

20

40

60

tilt begins

2040 2220 2440 2620 3040 3220

Peak systolic pressure

Dicrotic

notch

m
m

H
g

tilt begins

-23000 -18000 -13000 -8000 -3000 2000

20

60

m
m

H
g

0

To this end, we consider telemetry collected from a
Magellanic penguin (Spheniscus magellanicus). The dataset was
collected by attaching a small multi-channel data-logging device
to the bird. The full data consists of 1,048,575 data points
recorded at 40 Hz (about 7.2 hours). While a suite of
measurements was recorded, for simplicity we focus on the X-
Axis acceleration (the direction of travel for a swimming bird).
In Fig. 10 we show the snippet of the data in which we found a
chain, with m=28. This is about 0.7 seconds, and the
approximate period of the data.

Fig. 10. top) A random three-minute snippet of X-Axis acceleration of a

Magellanic penguin (from a total of 7.2 hours). bottom) An eighteen-second

long section containing the time series chain. In the background, the red time

series records the depth, starting at sea-level and leveling off at 6.1 meters.

In fact, this chain does have a simple interpretation. Adult
Magellanic penguins regularly dive to depths of up to 50m to
hunt prey, and may spend as long as fifteen minutes under water.
One of our sensors measures pressure, which we showed in Fig.
10.bottom as a fine/red line. This shows that the chain begins
just after the bird begins its dive, and ends as it reached its
maximum depth of 6.1m. Magellanic penguins have typical
body densities for a bird at sea-level, but just before diving they
take a very deep breath that makes them exceptionally buoyant
[16]. This positive buoyancy is difficult to overcome near the
surface, but at depth, the compression of water pressure cancels
it, giving them a comfortable neutral buoyancy [16][21]. In
order to get down to their hunting ground below sea level it is
clear that “(for penguins) locomotory muscle workload, varies
significantly at the beginning of dives” [21]. The snippet of time
series shown in Fig. 10 does not suggest much of a change in
stroke-rate, however penguins are able to vary the thrust of their
flapping by twisting their wings [21]. The chain we discovered
shows this dramatic sprint downwards leveling off to a
comfortable cruise. Fortunately, our data contains about a dozen
major dives, allowing us to confirm our hypothesis about the
meaning of this chain on more data.

Note that our chain does not include every stroke in the dive.
Our data is undersampled (only 40Hz for a bird that can swim at
36kph) and this data is recorded in the wild, the bird may have
changed directions to avoid flotsam or fellow penguins.
However, this is a great strength of our algorithm: we do not
need “perfect” data to find chains; we can find chains in real-
world datasets. Also, from Fig. 10.bottom we can see that m=28
is longer than the actual period of the data; our algorithm is not
sensitive to this and still discovered a meaningful chain.

C. Case Study: Human Gait

In the experiments in the previous section we could be sure
of the validity of the discovered chains, because we had access
to some ground truth. In this section and the next, we show
examples of chains we discovered in datasets for which we do
not have an obvious way to empirically verify. This
demonstrates one use for chains, finding patterns that are

interesting but speculative, and may warrant further
investigation.

We first consider a snippet of a gait dataset recorded to test
a hypothesis about biometric identification [6]. The dataset is
shown in Fig. 11.top. We set m = 50 here, as this is the
approximate length of a period of the data.

As hinted at in Fig. 11.inset (taken from the original paper),
the authors of the study were interested in “the instability of the
mobile in terms of its orientation and position when it is put
freely in the pocket” [6]. Given the experimental setup, we
suspected that the gait pattern might start out as being
unpredictable as the phone jostled about in the user’s pocket,
eventually settling down as the phone settled into place. This is
exactly what we see in Fig. 11.top. Note that the first few links
are far apart and asymmetric, but the last few links are close
together, and almost perfectly symmetric.

Fig. 11. top) A 30-second snippet of data from an accelerometer on a mobile

phone. The phone was placed in the user’s front pocket (inset). bottom) The

extracted chain shows an evolution to a stable and symmetric gait

D. Case Study: Web Query Volume

In contrast to the smooth, stationary, oversampled
accelerometer data considered in the last section, we next
consider a dataset that is noisy, under-sampled and has a
growing trend. We examined a decade-long GoogleTrend query
volume for the keyword Kohl’s, an American retail chain (data
courtesy of [10]). As shown in Fig. 12, the time series features a
significant “bump” around the end-of-years holidays,
unsurprising for a store known as a destination for gift buyers.
Here we set m = 76 (the approximate length of a “bump”). Note
that m does not need to be precisely set. If we set m = 114 (50%
longer), we can still obtain the same basic chain (though each
link is 50% longer, see [26] for a visual comparison).

Fig. 12. top) Ten years of query volume for the keyword Kohl’s. bottom) The

z-normalized links of the time series chain discovered in the data hints at the

growing importance of “Cyber Monday”.

The discovered chain shows that over the decade, the bump
transitions from a smooth bump covering the period between
Thanksgiving and Xmas, to a more sharply focused bump
centered on Thanksgiving. This seems to reflect the growing
importance of Cyber Monday, a marketing term for the Monday
after Thanksgiving. The phrase was created by marketing
companies to persuade people to shop online. The term made its

0 18 seconds

3-minute snippet

0 200 400 600 800

160 180 380 420 620 660 760 780 780 820 820 860

0 250 weeks 500 weeks

45 55 95 105 150 165 305 315 410 420 460 475

2004
2014

Thanksgiving

Xmas

debut on November 28th, 2005 in a press release entitled “Cyber
Monday Quickly Becoming One of the Biggest Online Shopping
Days of the Year” [19]. Note that this date coincides with the
first glimpse of the sharping peak in our chain.

Here we seem to “miss” a few links in the chain. However,
note that the data is noisy and coarsely sampled, and the
“missed” bumps are too distorted to conform with the general
evolving trend. This noisy example again illustrates the
robustness of our technique. As before, we note that we do not
need “perfect” data to find meaningful chains. Even if some
links are badly distorted, the discovered chain will still be able
to include all the other evolving patterns.

Furthermore, consider the potential of using chains to predict
the future. Assume that we are now at mid-2012 (the location of
the blue line in Fig. 12. top. We would like to forecast the shape
S of the fist “bump” after the blue line, given the data before it.

In the data prior to mid-2012, we discovered a chain that
consists of the first five links in Fig. 12. bottom (call them S1, S2,
S3, S4, S5). Our assumption is that the difference between S4 and
S5 is the same as the difference between S5 and S. We compare
our prediction result with a popular strawman in the literature,
persistence prediction (i.e. which assumes S = S5) [18], in Fig.
13. Our simple, chain-based prediction method is more accurate
(especially in the center part), as it captures the trend of the data.

Fig. 13. left) Our predicted shape (blue) is very similar to gound truth (red),

with a Root Mean Squared Error (RMSE) of 0.17. right) Persistence prediction

result (blue) is less similar to the ground truth (red), with a RMSE of 0.18.

E. Quantifying the Robustness of Chains

In the previous sections we showed the broad applicability
of time series chains, and implicitly showed the robustness of
our algorithm/definitions; given that it can find meaningful
chains even in real-world “non-perfect” datasets. To further
demonstrate this robustness, we need to provide a measure of
the quality of time series chains that does not tautologically
reward the properties we have defined, and can serve as a “gold
standard” to compare the quality of chains before and after we
have added some confounding factors.

To test the quality of our chain-discovery algorithm, we
should consider two different scenarios: If the data include a
long intrinsic chain, then a good algorithm should be able to
discover (or “recover”) a large portion of it. On the other hand,
if the time series does not have any intrinsic evolving trend (for
example, the data merely contains k repeated patterns), then we
expect the length of the longest chain to be much shorter than k.
We will test our algorithm in both scenarios.

Suppose we have a time series with an intrinsic chain of
length k (that is to say, we know, possibly from external

knowledge, that there should be exactly k evolving

subsequences of length m in the time series, and we have a set
Lknown: |Lknown|=k×m that shows the locations of all the data

points within the embedded chain). Further suppose that,

without knowing this, an algorithm discovers a time series chain

of length kdiscovered, and the locations of the kdiscovered×m data
points within the discovered chain is stored in the set Ldiscovered.

Then we can define the recall of the chain as 𝑅 =
|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑∩𝐿𝑘𝑛𝑜𝑤𝑛|

|𝐿𝑘𝑛𝑜𝑤𝑛|
 and the precision as 𝑃 =

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑∩𝐿𝑘𝑛𝑜𝑤𝑛|

|𝐿𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑|
.

For a robust chain, we expect 𝑃 ≈ 1. However, note that 𝑅 does

not necessarily need to be as large. Recall the example in Fig.

12; although the discovered chain only covers around 60% of

the “bumps”, it still reflects the general trend of the data.

Therefore, once Lknown is given, R and P are excellent
measures of quality for the discovered chain. We propose to
exploit this idea by building synthetic time series for which we
know true chains (both length and locations), and distorting the
data to “stress-test” the chain discovery algorithm.

Fig. 14 shows an example of such a time series, with an
embedded chain with k=5. Here the subsequences evolve
gradually from a sine wave to a random-walk pattern, and in
between the chain elements we inserted snippets of random
noise.

Fig. 14. Synthetic time series embedded with a chain of five subsequences. The

subsequences evolve from a sine-wave to a random-walk pattern.

We used 100 different random-walk patterns like the one in
Fig. 14 to generate our benchmark time series. Each time series
includes 20 subsequences of length 50 (k=20, m=50), evolving
gradually from a sine wave to a random-walk pattern. Fig. 15.top
shows how the average results of R and P vary, over the 100 runs
as we increase the noise level.

Fig. 15. top) Recall (R) and Precision (P) both decrease as the noise amplitude

increases. bottom) A snippet of a “perfect” time series versus the same snippet

with 20% noise added.

For a large amount of noise (1%~10% of the signal
amplitude), we can successfully recover most of the embedded
chain elements (more than 14 out of 20), with R>70% and
P>95%. This demonstrates the robustness of our algorithm:
though we missed a small number of embedded patterns, most
of them are still recovered.

However, when the noise amplitude gets over 20%, R
becomes smaller than 50%. This is because the noise level
becomes large enough to hide the evolving characteristics within
some part of the data. To see this, in Fig. 15.bottom we compared

random noise is added to distort the patterns

0 400

20% noise

no noise

noise amplitude / signal amplitude (%)
0 20 40 60 80 100

100% P

R
50%

0%

a snippet from a “perfect” benchmark time series without noise
to the same snippet with 20% noise. The evolving trend is
originally clear in the “perfect” time series; when the noise
amplitude increases to 20%, the second and fourth patterns are
heavily distorted, so they can no longer be included in the chain.
According to Fig. 15.top, though with 20% noise only about half
of the embedded patterns (10 out of 20, with 𝑅 ≈ 50%) are
discovered, the precision 𝑃 is still over 90%. Thus, the
discovered chain can still reflect the general trend of the data.
Moreover, note that in many cases we could “undo” much of the
ill-effect of noise by simply smoothing the data, but that is
orthogonal to the purpose of our demonstration.

We have demonstrated the that our algorithm is robust in the
face of (a reasonable amount of) noise, with a synthetic dataset
that contains an intrinsic chain. Conversely, we need to test if
kdiscovered is small compared to k, when there is no intrinsic chain
within the data, that is to say, are we robust to false positives?

To test this, as shown in Fig. 16, we constructed a synthetic
time series with k = 100 repeated random-walk patterns.

Fig. 16. A snippet of a synthetic time series with 100 repeated patterns.

As before, we added random noise to all the repeated
patterns, so they look slightly different from each other. Unlike
the data in Fig. 14, here the k patterns do not have an evolving
trend. We constructed 100 such synthetic time series, and found
that the average length of the discovered time series chain
kdiscovered is 5.04, which is much smaller than k = 100. This result
suggests that our algorithm is robust to discovering spurious
chains, even in the face of frequent and dense motifs.

V. CONCLUSIONS AND FUTURE WORK

We introduced time series chains, a new primitive for time
series data mining. We have shown that chains can be efficiently
and robustly discovered from noisy and complex datasets, to
provide useful insights. In future work we plan to consider a
more theoretical treatment of the properties of chains, and
adapt/apply them to online problems, including prognostics.

ACKNOWLEDGMENT

We would like to acknowledge funding from MERL and
from NSF IIS-1161997 II and NSF IIS-1510741. We especially
want to thank Dr. John Michael Criley and Dr. Gregory Mason
for their invaluable advice on the hemodynamics domain, and
Dr. Matsubara for providing the GoogleTrend data.

REFERENCES

[1] Bögel, T. and Gertz, M., 2015, June. Time will Tell: Temporal Linking of

News Stories. In Proceedings of the 15th ACM/IEEE-CS Joint Conference

on Digital Libraries, pp. 195-204.

[2] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and Keogh, E.

Querying and Mining of Time Series Data: Experimental Comparison of

Representations and Distance Measures. VLDB 2008, 1542-52.

[3] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. and Bouchachia , A. A

survey on concept drift adaptation. ACM Computing Surveys

(CSUR), 46,4 (2014): 1-37.

[4] Hao, M.C. et. al. Visual exploration of frequent patterns in multivariate

time series. Information Visualization, 11.1 (2012): 71-83.

[5] Heldt, T., Oefinger, M.B., Hoshiyama, M. and Mark, R.G. Circulatory

response to passive and active changes in posture. In Computers in

Cardiology (2003):263-266. IEEE.

[6] Hoang, T., Choi, D. and Nguyen, T., On the instability of sensor

orientation in gait verification on mobile phone. In 12th IEEE

International Joint Conference on e-Business and Telecommunications

(ICETE), 4 (2015): 148-159.

[7] Krumme, C., Llorente, A., Cebrian, M., Pentland, A. and Moro, E. The

predictability of consumer visitation patterns. Scientific Reports (1645).

2013.

[8] Li, Z., Han, J., Ding, B. and Kays, R. Mining periodic behaviors of object

movements for animal and biological sustainability studies. Data Mining

and Knowledge Discovery, (2012): 355-386.

[9] Lovallo, W.R., et, al. Blood pressure response to caffeine shows

incomplete tolerance after short-term regular

consumption. Hypertension, 43.4 (2004): 760-765.

[10] Matsubara, Y., Sakurai, Y. and Faloutsos, C. The web as a jungle: Non-

linear dynamical systems for co-evolving online activities. In Proc’ of the

24th WWW (pp. 721-731).

[11] McLoone J. URL retrieved September 6 th 2016:

blog.wolfram.com/2012/01/11/the-longest-word-ladder-puzzle-ever

[12] Moya, A. Tilt testing and neurally mediated syncope: too many protocols

for one condition or specific protocols for different situations?. Eur Heart

J. 30.18 (2009): 2174-2176.

[13] Mueen, A., Viswanathan, K., Gupta, C.K. and Keogh, E. The fastest

similarity search algorithm for time series subsequences under Euclidean

distance. URL retrieved Feb 2th 2017

www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.

[14] Murray, D. et, al. A data management platform for personalised real-time

energy feedback. EEDAL, 2015

[15] Patel, P., Keogh, E., Lin, J. and Lonardi, S. Mining motifs in massive time

series databases. In Data Mining, Proceedings of the 2002 IEEE

International Conference on. 370-377.

[16] Ponganis, P.J., St Leger, J. and Scadeng, M. Penguin lungs and air sacs:

implications for baroprotection, oxygen stores and buoyancy. Journal of

Experimental Biology. (2015): 720-730.

[17] Shokoohi-Yekta, M. et. al. Discovery of meaningful rules in time series.

In Proc’ of the 21th ACM SIGKDD pp. 1085-1094.

[18] Silver, N. The signal and the noise: the art and science of prediction.

Penguin UK, London. 2012.

[19] Smith J. “The Accidentally-on-Purpose History of Cyber Monday”, URL

retrieved February 5th 2017: www.esquire.com/news-

politics/news/a23870/cyber-monday-online-shopping-4021548/

[20] Syed, Z., Stultz, C., Kellis, M., Indyk, P. and Guttag, J. Motif discovery

in physiological datasets: a methodology for inferring predictive

elements. TKDD, 4.1(2010): 2.

[21] Williams, C.L., Sato, K., Shiomi, K. and Ponganis, P.J. Muscle energy

stores and stroke rates of emperor penguins: implications for muscle

metabolism and dive performance. Physiological and Biochemical

Zoology.85.2(2011):120-133.

[22] Yan, R., Wan, X., Otterbacher, J., Kong, L., Li, X. and Zhang, Y.

Evolutionary timeline summarization: a balanced optimization

framework via iterative substitution. In Proc’ of the 34th ACM SIGIR

(2011): 745-754.

[23] Yeh, C.C.M. et. al. Matrix Profile I: All Pairs Similarity Joins for Time

Series: A Unifying View that Includes Motifs, Discords and Shapelets.

IEEE ICDM 2016, pp. 1317-1322.

[24] Zhu, X. and Oates, T. Finding story chains in newswire articles.

In Information Reuse and Integration (IRI), 2012 IEEE 13th International

Conference on, pp. 93-100.

[25] Zhu, Y. et. al. Matrix Profile II: Exploiting a Novel Algorithm and GPUs

to Break the One Hundred Million Barrier for Time Series Motifs and

Joins. ICDM 2016, pp. 739-748.

[26] Supporting webpage: https://sites.google.com/site/timeserieschain/

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-168.pdf
	Matrix Profile VII: Time Series Chains: A New Primitive for Time Series Data Mining
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

