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Online Data-Driven Battery Voltage Prediction
Milutin Pajovic, Zafer Sahinoglu, Yebin Wang, Philip V. Orlik, and Toshihiro Wada

Abstract—We consider in this article battery state of power
(SoP) estimation, in particular, we propose two algorithms for
predicting voltage corresponding to a future current profile that
is known to be demanded by the battery load. The proposed
algorithms belong to the class of data-driven methods and are
based on the Gaussian Process Regression (GPR) framework.
In comparison to conventional model-based approaches, data-
driven approaches circumvent the issue of observability of SoP
from measurements, especially pronounced in batteries with flat
open circuit voltage (OCV) characteristic. In addition, the GPR
framework admits accurate modeling of a fairly complicated
battery dynamics using training data. Finally, the considered
setup enables a relatively easy access to training data whenever
the necessity for retraining arises, such as due to battery
aging. The proposed algorithms aim to handle diverse battery
operating conditions involving smooth and abruptly changing
voltage/current measurements with both relatively small and
large training datasets. The algorithms are tested on two such
datasets, and the measured prediction performance and compu-
tation time verify their viability for real-time industrial use. We
conclude with a number of possible directions for future research.

Index Terms—Battery management system, Gaussian process
regression, Lithium-ion battery, State of power, Voltage predic-
tion.

I. INTRODUCTION

Rechargeable batteries are nowadays widely deployed. For
example, they are used as a backup power supply in case
of power outages in hospitals, data centers, communication
base stations, government premises, to store energy in solar
panels, as well as to supply energy to electric vehicles, implant
medical devices, consumer electronic devices, etc. Battery
management system (BMS) manages the operation of a battery
and ensures its safety and proper functioning. The BMS
employs sensors which measure a variety of physical quantities
related to a battery, such as voltage, current, temperature, in-
ternal resistance, etc. These measurements are supplied to the
algorithms hosted in the BMS to estimate different measures
quantifying the state of the battery. The BMS further manages
the battery based on the algorithms’ outputs.

Traditionally, the state of health (SoH) and state of charge
(SoC) have been used to quantify the state of a battery. In some
literature, the battery SoH quantifies its maximum capacity,
i.e., the amount of charge it can hold, with respect to the rated
(nominal) capacity. The SoH of a newly fabricated battery
without defects is 100%. However, as the battery ages, its
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capability to store energy diminishes and the SoH decreases.
On the other hand, the SoC quantifies battery’s capacity at
a given time with respect to its maximum capacity. The
SoC is between 100%, when the battery is fully charged,
and 0%, when the battery is fully discharged. A number of
algorithms for battery SoH and/or SoC estimation have been
proposed in the literature. Most of them are based on a battery
equivalent circuit model [1], [2], or electrochemical model [3],
and embed some form of Kalman filtering. On the other hand,
data-driven SoH/SoC estimation algorithms started to emerge
with the developments of machine learning and data analytics
methods [4], [5]. In comparison to conventional models, the
models revealed by the data-driven methods can, in general,
describe a wider class of battery models, thereby providing
better estimation performance. However, due to battery aging,
the battery model parameters become inaccurate after a certain
time period, and hence require retraining. A major difficulty
with retraining is the lack of an easy access to the true SoH
and SoC values over a range of operating conditions. This
is especially an issue in the data-driven SoH/SoC estimation
methods.

In addition to the SoH and SoC, the battery state of power
(SoP) is also used as a metric to assess its functionality.
Essentially, the SoP indicates how much power a battery can
provide at a given time. Compared to the SoH and SoC,
the SoP estimation has been less explored in the literature,
although the SoP is a metric that can actually be measured.
Model-based approaches for the estimation of SoP [6] and
peak power [7], [8] prevail. There, the SoP is estimated from
the SoH and SoC (as well as resistances) and therefore the
estimation accuracy depends on the quality of the SoH/SoC
estimators. However, achieving accurate SoH/SoC estimation
is difficult for batteries with ”flat”-OCV characteristics, such
as LiFePO4, SCiB, NiMH, because of poor observability of the
SoH and SoC from the measurements. The direct estimation
of the SoP from the measurements can have stronger observ-
ability, nevertheless there are no models which are physically
understandable.

In this paper, we study the problem of SoP estimation.
In particular, we consider a problem of predicting battery
voltage corresponding to a future current profile, assuming it
is known and available to the BMS. This is a realistic setup in
a number of applications, for example, in the uninterruptible
power supply (UPS) systems. Assuming the present time is t,
we propose two algorithms to predict voltage corresponding
to future time t + T , assuming the current demand at t + T
is known. The proposed algorithms are data-driven for the
following reasons. First, in comparison to the model-based
SoP estimation, data-driven SoP estimation does not require



SoH and SoC estimation and thus circumvents the issue
of observability. Second, given that the true value of the
quantity being estimated is available immediately after the
time period T , this setting enables a relatively easy access
to the training data at any time of operation. Thus, the
training data is easily available when the utilized model needs
to be retrained because of the battery aging, unlike in the
SoH/SoC estimation. Finally, the models learned from data-
driven methods are able to more accurately fit the actual
battery dynamics than the conventional models. As an aside
note, the proposed data-driven algorithms can be relatively
easily cast to solve an alternative problem of predicting the
current corresponding to future voltage demand. Also note
that once the voltage is predicted, the battery SoP is given
as the product between the predicted voltage and the current
demand. The voltage prediction has already been studied in
the literature using conventional battery models [9], [10].
However, we were unable to find a data-driven battery voltage
prediction algorithm in the literature.

The proposed voltage prediction algorithms are based on
the Gaussian process regression (GPR) framework [11], which
is a Bayesian non-parametric technique suitable for modeling
highly complicated input-output relations with relatively small
training datasets. The GPR models unknown quantity as a
Gaussian distributed random variable whose predicted mean
is a point estimate, while the predicted variance is used to
quantify the uncertainty in the point estimate. This uncer-
tainly quantification, which naturally follows from the GPR
framework, is one of the GPR advantages over other methods.
The GPR framework has been successfully applied for battery
SoH [12], [13], and SoC estimation [14], [15].

The rest of the paper is organized as follows. Section II
presents two proposed voltage prediction algorithms. Section
III validates the performance of the algorithms on simulated
and experimental datasets. Section IV concludes the paper and
provides possible directions for further research.

II. VOLTAGE PREDICTION ALGORITHMS

A. Problem statement

The essence of the problem considered in this paper is
to predict battery voltage corresponding to future current
demand, assumed known and available. An equivalent problem
is to predict current given the future voltage demand. We focus
on the former problem, but note that the proposed algorithms
can also handle the latter problem.

We assume the measurements of battery’s physical quanti-
ties (such as voltage, current and temperature) up to the present
time are available and utilized for voltage prediction. Formally,
the measurements of the voltage, current and temperature
of a battery at discrete time t are denoted, respectively, Vt,
It and Tt. The measurements are taken with the sampling
period ∆T . The future current demand at M subsequent time
instants t + 1, . . . , t + M , following the time instant t, is
It+1, . . . , It+M . Our goal is to predict voltage corresponding
to the future current demand, i.e., to estimate Vt+1, . . . , Vt+M

using the available data.

B. One-step voltage prediction

A simpler problem of predicting voltage corresponding to
time t+1 from the measurements at times t, . . . , t−L and the
current demand corresponding to time t+1, It+1, is considered
first. We refer to L as the memory size since it specifies the
number of previous measurements used for voltage prediction.

The measurements and future current are collected in an
input vector xt, of length 3L+ 1, formatted as

xt =
[
It+1 Vt It Tt . . . Vt−L It−L Tt−L

]T
.

(1)
The output yt from the one-step voltage prediction algorithm
is the voltage corresponding to time t+ 1,

yt = Vt+1. (2)

The proposed prediction algorithms are based on the Gaus-
sian process regression (GPR) framework [11]. The crux of the
method is in modeling the joint probability density function of
N outputs yt1 , yt2 , . . . , ytN as the joint Gaussian probability
density,

p(yt1 , yt2 , . . . , ytN ) ∼ N (0,Σ), (3)

where the zero mean is assumed without loss of generality.
The covariance matrix Σ ∈ RN×N is given by

[Σ]ij = κ(xti ,xtj ), (4)

where κ(xti ,xtj ) is the kernel function measuring similarity
between inputs xti and xtj . Intuitively, similar input vectors
should yield similar outputs, i.e., voltage values.

The selection of a kernel from a number of standard kernels
available in the literature, is driven by the specifics of a
particular problem. Conceptually, one ought to choose a kernel
that captures the insights in how output depends on the input.
In that sense, a problem specific kernel can be designed.
Alternatively, one may choose a kernel from several different
candidates which yields the best performance.

An example of a kernel function commonly used in the GPR
framework is the squared exponential (SE) kernel, defined as

κSE(xti ,xtj ) = σ2
v exp(−xT

tiDxtj ), (5)

where D is the diagonal matrix whose diagonal entries indicate
the relevance of each entry in the input vector. Those entries,
along with the kernel strength σ2

v are referred to as the hyper-
parameters, collectively denoted H.

The hyper-parameters are estimated from the training data.
The training data D consists of N input-output pairs (xti , yti),
where i = 1, . . . , N . The negative log-likelihood (NLL)
function of the training data follows directly from the joint
Gaussian distribution (3)

NLL(D,H) =
1

2
log det Σ +

1

2
yTΣ−1y +

N

2
log(2π), (6)

where y =
[
yt1 yt2 . . . ytN

]T
and the entries in Σ are

evaluated using (4) for hyper-parameters H. The maximum
likelihood (ML) point estimate of the hyper-parameters is



obtained as the argument which minimizes the NLL,

Ĥ = arg min
H

NLL(D,H). (7)

The optimization problem (7) can be solved using a gradient
based method. We note that the gradient of the NLL (6) is
given in a closed form for most available kernel functions.
However, the NLL function is, in general, non-convex and the
optimization (7) may therefore converge to a local minimum.
To alleviate this issue, several optimization routines initialized
differently may be run in parallel, and once all of them
converge, the one resulting in the smallest NLL value yields
the point estimate Ĥ. A flow chart of the training stage of the
one-step voltage prediction is shown in Algorithm 1.

Algorithm 1 Training stage of the one-step predictor

1: Input: Training data D = {(xt1 , yt1), . . . , (xtN , ytN )}
2: Input: Kernel function κ(., .) parameterized by H
3: Run optimization: Ĥ = arg minHNLL(D,H)
4: Evaluate inverse covariance matrix Σ−1 for Ĥ using (4)
5: Output: Learned hyper-parameters Ĥ
6: Output: Inverse covariance matrix Σ−1

The estimated hyper-parameters Ĥ and training data D are
used to infer the output yt corresponding to the input xt in
the testing/operation stage. To do so, we first recall that the
joint distribution of the training data outputs yt1 , . . . , ytN , and
the target output yt is Gaussian,

p(yt1 , yt2 , . . . , ytN , yt) ∼ N (0,Σ′). (8)

The covariance matrix Σ′ ∈ R(N+1)×(N+1) is given by

Σ′ =

[
Σ κ
κT κ0

]
. (9)

Above, Σ is the covariance matrix corresponding to the
training data and obtained from (4), κ ∈ RN×1 is the vector of
kernel functions evaluated at each input xti from the training
data D, and the test input xt,

[κ]i = κ(xti ,xt), i = 1, . . . , N, (10)

while κ0 is given by

κ0 = κ(xt,xt). (11)

Note that all kernels κ in the covariance matrix Σ′ are
evaluated using the estimated hyper-parameters Ĥ, obtained
in the training stage.

The unknown output yt is inferred from the joint distribu-
tion (8) by conditioning on the known training data outputs
yt1 , . . . , ytN . Since the joint distribution is Gaussian, the
conditional distribution is also Gaussian,

p(yt|yt1 , . . . , ytN ) ∼ N (µt, σ
2
t ), (12)

where the mean µt and variance σ2
t are given by

µt = κTΣ−1y (13)
σ2
t = κ0 − κTΣ−1κ. (14)

The mean value of the inferred distribution is the point
estimate of the predicted voltage,

V̂t+1 = µt, (15)

while the variance represents prediction uncertainly and can
be used, for example, to specify the corresponding 95%
confidence interval,

[µt − 1.96σt, µt + 1.96σt] . (16)

A flow chart of the one-step voltage prediction in the opera-
tional stage is shown in Algorithm 2.

Algorithm 2 Operational stage of the one-step predictor

1: Input: Training data D = {(xt1 , yt1), . . . , (xtN , ytN )}
2: Input: Kernel function κ(., .) and hyper-parameters Ĥ
3: Input: Inverse covariance matrix Σ−1

4: Input: Measurements Vt, It, Tt, . . . , Vt−L, It−L, Tt−L
5: Input: Future current It+1

6: y =
[
yt1 yt2 . . . ytN

]T
7: xt =

[
It+1 Vt It Tt . . . Vt−L It−L Tt−L

]T
8: [κ]i = κ(xti ,xt), i = 1, . . . , N
9: κ0 = κ(xt,xt)

10: µt = κTΣ−1y
11: σ2

t = κ0 − κTΣ−1κ
12: Output: Predicted mean µt and variance σ2

t

As a final remark, the extension of the presented develop-
ment to the case of a non-zero mean vector in (3) is relatively
straightforward. In the stationary case, the non-zero mean is
estimated as the sample mean of the training data outputs.
The estimated mean is then subtracted from the training data
outputs and, upon performing all processing steps of the
training and testing stage, added to (13) to yield the final
voltage estimate.

In the following, we present two algorithms for multi-step
voltage prediction.

C. Parallel Multi-Step Voltage Prediction (P-MSVP)

The P-MSVP consists of M parallel branches, indexed by
m = 1, . . . ,M , where each branch m performs a separate m-
step voltage prediction. Thus, the basic routine of the P-MSVP
is the m-step voltage prediction, which is a generalization of
the one-step voltage prediction, described in Section II-B.

The input vector of the m-step voltage prediction routine at
some discrete time t, x

(m)
t , is formatted by concatenating the

future current demand at t+m, and the measurements of the
voltage, current and temperature at t, t−m, . . . , t−mL,

x
(m)
t =

[
It+m V

(m)
t I

(m)
t T

(m)
t

]T
, (17)



where

V
(m)
t =

[
Vt Vt−m . . . Vt−mL

]T
I
(m)
t =

[
It It−m . . . It−mL

]T
Tt =

[
Tt Tt−m . . . Tt−mL

]T
The target output is the voltage corresponding to time t+m,

y
(m)
t = Vt+m. (18)

The training stage of the m-step voltage prediction routine
learns the hyper-parametersH(m) corresponding to the utilized
kernel function by minimizing the negative log-likelihood
(NLL) of the training data outputs, where the training data
D(m) consists of N (m) input-output pairs, (x

(m)
ti , y

(m)
ti ), i =

1, . . . , N (m). In the testing/operational stage, the mean µ
(m)
t

and variance σ2(m)
t of the inferred Gaussian distribution of the

voltage corresponding to the future current It+m are evaluated
following the procedure described in Section II-B. The flow
charts of the training and operational stages are shown in
Algorithms 3 and 4, respectively. Note that the for loops
in the flow charts are executed in parallel.

Algorithm 3 P-MSVP: Training stage

1: Input: Training data D = {(xt1 , yt1), . . . , (xtN , ytN )}
2: Input: Kernel function κ(., .) parameterized by H
3: for m = 1 : M do
4: Downsample D by m to obtain D(m)

5: Run optimization: Ĥ(m) = arg minHNLL(D(m),H)
6: Evaluate corresponding Σ−1m using (4)
7: end for
8: Outputs: Ĥ(m), m = 1, . . . ,M
9: Outputs: Σ−1m , m = 1, . . . ,M

Algorithm 4 P-MSVP: Operational stage

1: Input: Training data D = {(xt1 , yt1), . . . , (xtN , ytN )}
2: Input: Kernel function κ(., .) parameterized by H
3: Input: Measurements Vt, It, Tt, . . .,
4: Input: Future current demand It+1, . . . , It+M

5: for m = 1 : M do
6: Downsample D by m to obtain D(m)

7: Format x
(m)
t as in (17)

8: [κ]i = κ(x
(m)
t ,xti), i = 1, . . . , |D(m)|, xti ∈ D(m)

9: κ0 = κ(x
(m)
t ,x

(m)
t )

10: µ
(m)
t = κTΣ−1m y

11: σ
2,(m)
t = κ0 − κTΣ−1m κ

12: end for
13: Outputs: µ(m)

t , σ2,(m)
t , m = 1, . . . ,M

D. Recursive Multi-Step Voltage Prediction (R-MSVP)

The main idea behind the R-MSVP is to treat the predicted
voltage corresponding to a certain time instant t + m as the
measured voltage when predicting the voltage corresponding

to the following time instant t + m + 1. More precisely, at
some time instant t, the one-step voltage prediction yields µ(1)

t ,
evaluated using (13). To predict voltage corresponding to t+2,
the point estimate of the predicted voltage corresponding to
t+ 1, µ(1)

t , is treated as the measured voltage and used along
with the measurements of the voltage, current and temperature
at time instants t, t − 1, . . . , t − L, as well as future current
demands It+1 and It+2 in a one-step prediction algorithm to
obtain µ

(2)
t . The process continues in this spirit until all M

voltage predictions are obtained. We note that one form of
recursion in the SoC estimation using the GPR framework
has been porposed in [16].

The basic routine of the R-MSVP is the one-step prediction
algorithm, described in Section II-B. The training stage of
the R-MSVP algorithm is the same as in Section II-B and
consists of learning the hyper-parameters of the kernel function
by minimizing the negative log-likelihood of the training data
D, consisting of N input-output pairs (xti , yti), i = 1, . . . , N .
The estimated hyper-parameters are used for voltage prediction
over the whole prediction time horizon.

In the testing/operational stage, the R-MSVP at time t
serially predicts voltages corresponding to t+1, . . . , t+M . The
voltage corresponding to time instant t+m is predicted using
the one-step prediction algorithm where the input is formatted
as

x
(m)
t =

[
It+m V

(m)
t I

(m)
t Tt

]T
, (19)

with

V
(m)
t =

[
µ
(m−1)
t . . . µ

(1)
t Vt . . . Vt−L+m−1

]T
I
(m)
t =

[
It+m−1 . . . It+1 It . . . It−L+m−1

]T
Tt =

[
Tt Tt−1 . . . Tt−L

]T
and where µ(p)

t is the mean of the inferred Gaussian distri-
bution of the predicted voltage corresponding to t + p. Note
that the formatting in (19) holds when L > m, while the case
when L ≤ m is handled in an analogous manner.

A flow chart of the operational stage of the R-MSVP is
shown in Algorithm 5. Note that the flow chart of the training
stage of the R-MSVP is the same as for the one-step prediction
and is shown in Algorithm 2.

E. Discussion

1) Computational Complexity: The computational com-
plexity of the one-step voltage prediction in the operational
stage can be assessed from (13) and (14) noting that the
mean µt is given as a linear combination of the training
data outputs, with the coefficients given by the vector-matrix
product κTΣ−1. Assuming the covariance matrix of the
training data, Σ, is inverted at the end of the training stage, the
computational complexity of the one-step voltage predictor is
O(N2) per prediction.

Since both P-MSVP and R-MSVP perform M one-step
voltage predictions at any time instant t, the overall computa-
tional complexity in the operational stage of either algorithm



Algorithm 5 Operational stage of the R-MSVP

1: Input: Training data D = {(xt1 , yt1), . . . , (xtN , ytN )}
2: Input: Kernel function κ(., .) and hyper-parameters Ĥ
3: Input: Inverse covariance matrix Σ−1

4: Input: Measurements Vt, It, Tt, . . . , Vt−L, It−L, Tt−L
5: Input: Future currents It+1, . . . , It+M

6: y =
[
yt1 yt2 . . . ytN

]T
7: for m = 1 : M do
8: Format x

(m)
t as in (19)

9: [κ]i = κ(x
(m)
t ,xti), i = 1, . . . , N

10: κ0 = κ(x
(m)
t ,x

(m)
t )

11: µ
(m)
t = κTΣ−1y

12: end for
13: Output: Predicted voltages V̂t+m = µ

(m)
t , m = 1, . . . ,M

is O(MN2). On the other hand, while R-MSVP relies on a
single one-step predictor, the P-MSVP employs M separate
one-step predictors. This implies that training the P-MSVP is
M times more computationally demanding than training the
R-MSVP.

While the P-MSVP and R-MSVP have the same computa-
tional complexity in the operational stage, the computational
times needed to output all M voltage predictions are different
because the former admits parallel implementation, while the
later performs predictions serially. This implies that the P-
MSVP is M times faster than the R-MSVP.

2) Online Retraining: Both proposed algorithms require
training data to learn hyper-parameters of the utilized kernel
function. However, the battery model changes due to aging
and the hyper-parameters should be re-estimated after a certain
time period. While this restriction poses significant challenges
in the data-driven SoC and SoH estimation, this is not so of
an issue in the battery voltage prediction. Namely, the current,
voltage and temperature of a battery are continuously being
measured and thus the training data is immediately available
as soon as the voltage prediction error (also easily available)
starts indicating that the need for retraining has arisen.

3) Possible Enhancements: The main disadvantage of the
P-MSVP algorithm is that its each parallel branch effectively
downsamples the incoming measurements, possibly introduc-
ing aliasing, which detrimentally impacts the performance.
Therefore, this method may not be suitable for the scenarios
where voltage and current exhibit abrupt changes. A possible
approach to alleviate this issue is to incorporate anti-aliasing
filtering in each parallel branch.

On the other hand, the R-MSVP can handle data with abrupt
changes as long as the sampling period ∆T of the measure-
ment system is appropriately selected. However, the R-MSVP
relies on voltage predictions corresponding to t+1, . . . , t+m
to predict voltage for t+m+ 1, implying that the estimation
error may accumulate over a relatively long prediction time
horizon. A possible way to overcome this problem is to
feed back not only the predicted mean µt, but a certain
number of samples (i.e., particles) taken from the predicted

Gaussian distribution. This approach is currently under our
active exploration.

III. RESULTS AND DISCUSSION

The proposed algorithms are validated using simulated and
experimental datasets. As a performance metric, we report the
maximum relative prediction error (MRE), defined as

MRE(m) = max
t

∣∣∣∣∣Vt+m − V̂t+m

Vt+m

∣∣∣∣∣ . (20)

Although the simulated and experimental datasets are quite
different, we make no effort in optimizing the prediction
performance with respect to kernel function, so that the same
kernel is used in all tests for both algorithms. This kernel is
given as the sum of two squared exponential kernels and a
neural network kernel,

κ(xti ,xtj ) =

2∑
s=1

σ2
s exp(−xT

tiDsxtj ) (21)

+σ2
3 arcsin

σ2
p(1 + xT

tixtj )√
(1 + σ2

p + σ2
px

T
tixti)(1 + σ2

p + σ2
px

T
tjxtj )

,

where H = {σ2
1 , σ

2
2 , σ

2
3 , σ

2
p,D1,D2} are the hyper-

parameters. Being the sum of three elementary kernels, this
kernel embodies a relatively rich space of nonlinear maps.

Since we are not aware of any data-driven voltage prediction
algorithms in the literature, this part validates the performance
of the proposed algorithms only.

A. Test on Simulated Data

The simulated data was generated with a battery model
based on equivalent circuit model, including thermal equation.
In particular, the simulated model consists of two RC circuits
(Rd1 = 0.72 mΩ, Cd1 = 2678.49 F, Rd2 = 0.08 mΩ,
Cd2 = 2678.49 F) and one resistance (Rsct = 2.04 mΩ),
which are connected in series [17]. The simulated voltage,
current and temperature are shown in Fig. 1. The sampling
period is ∆T = 1 sec. The first 10,000 data points are used
for training, while the remaining data is used for testing.

The simulated battery data is used to test the accuracy of
the P-MSVP in predicting voltages 10 to 20 seconds (steps)
ahead. The P-MSVP predictor consists of 11 parallel branches,
such that each branch corresponds to a particular m, where
m = 10, 11, . . . , 20 steps. The m-th branch downsamples the
data by factor m so that the sampling period is m∆T = m
seconds. A one-step predictor in each branch is trained, i.e.,
the corresponding hyper-parameters are learned. Note that due
to the downsampling, the number of data points used for
training the predictors is different across branches. Namely, the
m-th branch uses b10, 000/mc data points for training. The
predictors in each branch, however, have the same memory
length L = 2. This relatively short memory length is selected
because the measurements exhibit relatively smooth variations.

Once the hyper-parameters of the predictors across branches
are estimated, the remaining portion of the data is used for
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Fig. 1: Simulated battery data (top: voltage in V, middle:
current in A, bottom: temperature in oC).

testing the predictors. As such, the predictor in the m-th
branch at some time instant t takes the measurements of the
voltage, current and temperature at t, t − m and t − 2m,
as well as the future current at t + m and performs one-
step voltage prediction to yield the mean and variance of the
inferred Gaussian distribution of the voltage corresponding to
time instant t + m. The mean is the point estimate of the
predicted voltage, while the variance is used to compute the
95% confidence interval.

The predicted voltage, 95% confidence interval and mea-
sured (i.e., simulated) voltage are shown in Fig. 2 for m = 20
step ahead voltage prediction. The curves corresponding to
the predicted and true voltage are almost indistinguishable.
To give a better sense of the estimation error, the absolute and
relative estimation errors corresponding to this case are shown
in Fig. 3.
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Fig. 2: P-MSVP on simulated data: 20 step voltage prediction.

The MRE performance corresponding to all branches is
summarized in Fig. 4. As can be observed, the MRE’s for
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Fig. 3: Absolute (top panel) and relative (bottom panel) error
in 20 step ahead voltage prediction on simulated data with the
P-MSVP.

all considered steps m are similar and below 0.5%.
In general, we expect the R-MSVP to yield better per-

formance than the P-MSVP because the R-MSVP does not
involve downsampling, which eliminates a high frequency
components in the time series. However, the MRE of 0.5%
is a fairly good prediction performance and we thus do not
test the R-MSVP on the simulated data. Instead, the R-MSVP
is tested in the following part on a more challenging dataset.
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Fig. 4: MRE for P-MSVP with simulated data.

B. Test on Experimental Data

The experimental data was collected from a
LiMn2O4/hardcarbon battery with a nominal capacity of 4.93
Ah in the Advanced Technology R&D Center, Mitsubishi
Electric Corporation. Five consecutive cycles of charging
and discharging with constant current were performed using
a rechargeable battery test equipment produced by Fujitsu
Telecom Networks. The obtained measurements of the



voltage, current and temperature are shown in Fig. 5. The
sampling period of the measurements is ∆T = 1 sec.

0 250 500 750 1000 1250 1500 1750 2000
3

3.5

4

Time (sec)

V
o
lt
a
g
e
 (

V
)

0 250 500 750 1000 1250 1500 1750 2000
−50

0

50

Time (sec)

C
u
rr

e
n
t 
(I

)

0 250 500 750 1000 1250 1500 1750 2000
20

30

40

Time (sec)

T
e
m

p
 (

C
)

Fig. 5: Experimental data (top: voltage in V, middle: current
in A, bottom: temperature in oC).

The training data consist of measurements corresponding
to the first two charge-discharge cycles, which totals 721 data
points. The R-MSVP algorithm is tested for voltage prediction
m = 1, 2, . . . , 20 sec (steps) ahead. The same memory size
L = 27 (which optimizes the one-step predictor performance)
is used for all steps m.

The predicted and measured (true) voltage corresponding
to m = 20 are shown in Fig. 6. The corresponding absolute
and relative estimation errors are shown in Fig. 7. As can be
seen, the largest errors appear at the time instants at which
the voltage exhibits abrupt changes. This emphasizes that the
experimental data is a rather challenging one, despite the
constant charge-discharge current and pseudo-periodic pattern
of the measured current and voltage.
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Fig. 6: R-MSVP on experimental data: 20 step ahead voltage
prediction.

The MRE’s achieved for different time horizon lengths m
are summarized in Fig. 8. As can be seen, the MRE is below
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Fig. 7: Absolute (top panel) and relative (bottom panel) error
in 20 step ahead voltage prediction on experimental data with
the R-MSVP.

1.9% for all considered steps m. As with m = 20, the largest
errors in all cases occur at the instants of abrupt changes in
the current and voltage.
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Fig. 8: MRE for R-MSVP with experimental data.

The computation time needed to make 20 voltage predic-
tions in series (as the R-MSVP does) at each time instant
has also been measured using the tic and toc routines in
the Matlab implementation. The measured average time to
deliver all 20 predictions is 0.25 sec. We recall that the R-
MSVP is M times slower than the P-MSVP, implying that both
algorithms are viable solutions with respect to computation
time.

The P-MSVP has been also tested using the experimental
data. It is confirmed that it underperforms the R-MSVP. More
importantly, we note that the P-MSVP is less suitable in this
case because the experimental data exhibits abrupt changes in
voltage and current so that the downsampling causes aliasing.
In addition, the effective training data size used for training
one-step predictors in each parallel branch becomes fairly



small as m increases. For example, when m = 10, only 72
data points are available to train the corresponding one step
predictor.

Finally, we emphasize few remarks. First, both algorithms in
both datasets exhibit a fairly stable performance over the tested
prediction time horizon of M = 20 seconds. The expectation
is that the prediction performance will start to deteriorate as
the time horizon M increases. The study of how rapidly this
happens and at what M takes an effect is a possible future
research. Second, the temperature measurements have been
used in both tests. The impact of temperature on prediction
performance needs to be closely studied as using only the
measurements of the voltage and current might be a viable
option. Alternatively, the proposed methods may be cast to
predict battery temperature corresponding to future current
and/or voltage demand. Finally, an interesting question for
further investigation is how to select the memory size L. To
give an idea, it ought to depend on the time constant of the
battery dynamics (and, in turn, on the battery chemistry), and
the expected voltage/current patterns (i.e., sampling period,
presence or absence of the (pseudo)-periodicity).

IV. CONCLUSIONS AND FUTURE RESEARCH

The problem considered in this paper in concerned with es-
timating SoP of a battery. More specifically, two algorithms for
predicting voltage corresponding to a future current demand
have been proposed. Both methods are based on the main idea
behind the Gaussian Process Regression (GPR) framework.
The P-MSVP consists of multiple parallel one-step predictors
acting upon appropriately downsampled measurements. The
R-MSVP comprises of a one-step predictor which performs
multiple one step ahead voltage predictions recursively. While
the P-MSVP is better suited for larger training datasets with
relatively smoothly varying voltage and/or current, the R-
MSVP is suggested for smaller training datasets with abrupt
changes in voltage and/or current. The considered voltage
prediction setting is amenable to a relatively easy model re-
training, the necessity of which may arise as a result of battery
aging. Both methods can be recast to handle an alternative
problem of predicting current corresponding to future voltage
demand.

The proposed algorithms have been tested over future
time horizon of 20 sec using simulated and experimentally
measured battery data. The maximum relative prediction error
(MRE) on the simulated data is below 0.5%. The experi-
mental data with constant current charge-discharge is more
challenging in the sense that voltage and current exhibit
abrupt changes, while the training data size is relatively small.
Still, MRE of below 1.9% is achieved over the whole 20
sec future time horizon. While both algorithms have similar
computational complexities, the P-MSVP is faster since all
voltage predictions over the considered time horizon are done
in parallel. The measured average computation time of all 20
voltage predictions at each testing time instant with the slower
R-MSVP is 0.25 sec. Along with the performance, this further
confirms the viability of the proposed algorithms.

Possible directions for future research include incorporating
anti-aliasing filters in the parallel branches of the P-MSVP
algorithm with the goal to better handle abrupt current/voltage
changes. Also, the R-MSVP may benefit from feeding back
not only the predicted mean but also a certain number of
samples (particles) from the predicted Gaussian distribution.
Other items for future research include optimization with
respect to the memory size L, validation on experimental data
with dynamic charge-discharge profile, study of the impact of
temperature on the prediction performance and comparison to
other (if any) data-driven voltage prediction algorithms.

REFERENCES

[1] A. E. Mejdoubi, A. Oukaour, H. Chaoui, H. Gualous, J. Sabor, and
Y. Slamani, “State-of-charge and state-of-health Lithium-ion batteries’
diagnosis according to surface temperature variation,” IEEE Trans. on
Ind. Electron., vol. 63, no. 4, pp. 2391–2402, Apr. 2016.

[2] C. Zhang, L. Y. Wang, X. Li, W. Chen, G. G. Yin, and J. Jiang, “Robust
and adaptive estimation of state of charge for Lithium-ion batteries,”
IEEE Trans. on Ind. Electron., vol. 62, no. 8, pp. 4948–4957, Aug.
2015.

[3] S. Tang, Y. Wang, Z. Sahinoglu, T. Wada, S. Hara, and M. Krstic, “State-
of-charge estimation of lithium-ion batteries via a coupled thermal-
electrochemical model,” American Control Conference (ACC), pp. 5871–
5877, Jul. 2015.

[4] J. N. Hu, J. J. Ju, H. B. Lin, X. P. Li, C. L. Jiang, X. H. Qiu, and W. S.
Li, “State-of-charge estimation for battery management system using
optimized support vector machine for regression,” Journal of Power
Sources, vol. 269, pp. 682–693, Dec. 2014.

[5] H. T. Lin, T. J. Liang, and S. M. Chen, “Estimation of battery state
of health using probabilistic neural network,” IEEE Trans. on Ind. Inf.,
vol. 9, no. 2, pp. 679–685, May 2013.

[6] G. L. Plett, “High-performance battery-pack power estimation using a
dynamic cell model,” IEEE Trans. on Veh. Tech., vol. 53, no. 5, pp.
1586–1593, Sept 2004.

[7] P. Malysz, J. Ye, R. Gu, H. Yang, and A. Emadi, “Battery state-of-power
peak current calculation and verification using an asymmetric parameter
equivalent circuit model,” IEEE Trans. on Vech. Tech., vol. 65, no. 6,
pp. 4512–4522, June 2016.

[8] X. Hu, R. Xiong, and B. Egardt, “Model-based dynamic power assess-
ment of lithium-ion batteries considering different operating conditions,”
IEEE Trans. on Ind. Inf., vol. 10, no. 3, pp. 1948–1959, Aug 2014.

[9] D. N. Rakhmatov, “Battery voltage prediction for portable systems,”
2005 IEEE International Symposium on Circuits and Systems, vol. 4,
pp. 4098–4101, May 2005.

[10] Rakhmatov and Daler, “Battery voltage modeling for portable systems,”
ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 2, pp. 29:1–29:36,
Apr. 2009.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA: MIT Press, 2006.

[12] D. Liu, J. Pang, J. Zhou, Y. Peng, and M. Pecht, “Prognostics for state of
health estimation of lithium-ion batteries based on combination gaussian
process functional regression,” Microelectronics Reliability, vol. 53, pp.
832–839, April 2013.

[13] F. Li and J. Xu, “A new prognostics method for state of health estimation
of lithium-ion batteries based on a mixture of gaussian process models
and particle filter,” Microelectronics Reliability, vol. 55, no. 7, pp. 1035–
1045, June 2015.

[14] G. Ozcan, M. Pajovic, Z. Sahinoglu, Y. Wang, P. V. Orlik, and T. Wada,
“Online state of charge estimation for lithium-ion batteries using gaus-
sian process regression,” in Proc. of 42nd Annual Conf. of the IEEE
Industrial Electronics Society (IECON), Oct. 2016, pp. 998–1003.

[15] ——, “Online battery state-of-charge estimation based on sparse gaus-
sian process regression,” in Proc. of Power and Energy Society General
Meeting (PESGM), July 2016.

[16] ——, “Battery state of charge estimation based on regular/recursive
Gaussian process regression,” IEEE Trans. on Ind. Electron., submitted.

[17] G. L. Plett, Battery Management Systems, Volume I: Battery Modeling.
Artech House, 2015.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-101.pdf
	Online Data-Driven Battery Voltage Prediction
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8



