
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Deep Reinforcement Learning for Partial Differential
Equation Control

Farahmand, A.-M.; Nabi, S.; Nikovski, D.N.

TR2017-063 May 2017

Abstract
This paper develops a data-driven method for control of partial differential equations (PDE)
based on deep reinforcement learning (RL) techniques. We design a Deep Fitted Q-Iteration
(DFQI) algorithm that works directly with a high-dimensional representation of the state of
PDE, thus allowing us to avoid the model order reduction step common in the conventional
PDE control design approaches. We apply the DFQI algorithm to the problem of flow control
for timevarying 2D convection-diffusion PDE, as a simplified model for heating, ventilating,
air conditioning (HVAC) control design in a room. We also study the transfer learning of a
policy learned for a PDE to another one.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139

Deep Reinforcement Learning for Partial Differential Equation Control

Amir-massoud Farahmand, Saleh Nabi, Daniel N. Nikovski

Abstract— This paper develops a data-driven method for
control of partial differential equations (PDE) based on deep
reinforcement learning (RL) techniques. We design a Deep
Fitted Q-Iteration (DFQI) algorithm that works directly with
a high-dimensional representation of the state of PDE, thus
allowing us to avoid the model order reduction step common
in the conventional PDE control design approaches. We apply
the DFQI algorithm to the problem of flow control for time-
varying 2D convection-diffusion PDE, as a simplified model for
heating, ventilating, air conditioning (HVAC) control design in
a room. We also study the transfer learning of a policy learned
for a PDE to another one.

I. INTRODUCTION

This paper develops a data-driven method for control of
partial differential equations (PDE) based on deep reinforce-
ment learning (RL) techniques. This work is motivated by
two recent developments in machine learning and control.
The first is that the PDE control problem can be formulated
as a reinforcement learning problem [1]. Reinforcement
learning is the problem of adaptively finding an optimal
policy (i.e., controller) for an unknown nonlinear stochastic
dynamical system without the knowledge of the dynamics—
using only interaction data [2], [3]. The second motivating
development is the recent successes of deep learning-based
approaches to RL, which has been applied to solve complex
problems such as playing Atari games [4], the board game
of Go [5], and the visual control of robotic arms [6].

We describe a deep learning-based RL algorithm, called
Deep Fitted Q-Iteration (DFQI), that can directly work with
the state of PDE, a theoretically infinite-dimensional vector,
thus allowing us to potentially overcome the limitations of
classical approaches to PDE control. As an example, we
consider the problem of optimal control for time-varying 2D
convection-diffusion PDE, as a simplified model for heating,
ventilating, air conditioning (HVAC) control design in a
room, our motivating application. The proposed approach is
general and can be applied to other PDE control problems
too.

To motivate the reason behind formulating the PDE control
problem as an RL problem, we first briefly summarize the
conventional approaches to PDE control. These approaches
can be classified into two categories. The first category is
called reduce-then-design approach, in which the PDE is
numerically approximated by a finite-dimensional ordinary
differential equation (ODE). The resulting ODE is high-
dimensional, so a model order reduction method is applied at

All authors are with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA, USA. {farahmand, nabi,
nikovski}@merl.com

this stage. A linear controller is then designed based on the
reduced-order ODE model. An optimal controller is typically
designed based on optimizing a quadratic cost functional [7].
The other alternative is the design-then-reduce approach,
in which one directly designs a controller for the PDE,
for example using distributed parameter LQR theory, and
then later use numerical approximations to find the control
gains [8], [9], [10]. Also refer to [11] for a survey on many
methods for the turbulence control problem.

Even though the conventional approaches are elegant,
they have some drawbacks, especially when they must be
deployed to control a real-world system such as the temper-
ature of a room in an HVAC system. The first drawback is
that the controller is typically only valid in a small neigh-
bourhood of the nominal PDE for which the controller has
been designed. If the boundary conditions are significantly
changed, for instance because some furniture is added to the
room, the controller should be re-designed to maintain the
performance. This is often impractical as this re-designing
requires the knowledge of a control engineer who has ex-
pertise in designing PDE controllers. The second drawback
is that the linear control design ignores potentially useful
nonlinear phenomenon inherent in fluid dynamics problems
[12]. Designing a controller based on this simplified model
might lead to a suboptimal solution.

It is desirable to have a controller design procedure that
has minimal assumptions about the PDE, does not need
to know the model of the PDE, and is completely data-
driven. In other words, it is desirable to have a method
that finds a reasonably good controller only based on data
observed from the plant. These desiderata can be achieved
by formulating the PDE control problem as an RL problem,
as has recently been shown [1], or some other flexible
data-driven approaches such as genetic programming-based
method of [13]. The focus of this work is on the RL-based
approach.

Nonetheless due to the curse of dimensionality, solving an
RL problem with a high-dimensional state space is difficult.
The PDE control problem is particularly challenging as the
state of a PDE is an infinite-dimensional vector (or a very
high-dimensional vector in simulations). This makes the
value function approximation, a step required by many RL
algorithms, quite different from the usual problems for which
RL algorithms have been applied so far, as almost all of them
are designed to deal with problems with finite, and often
low, dimensional state spaces. The challenge is to design
a method that can easily deal with very high-dimensional
state spaces, e.g., 2500 dimensions in our experiments.
Generally speaking, the only way to deal with the curse of

dimensionality is to exploit the intrinsic regularities of the
problem, such as the smoothness of the value function or
its sparsity in a certain set of basis functions, or any other
type of structure or regularities that can make the learning
problem easier. Refer to [14] for results on difficulty of
learning in the context of supervised learning, and [15] for
the role of regularities in RL and some sample-complexity
results. So despite the fact that the value function of a PDE
control problem resides in a very high-dimensional space, an
RL algorithm that can exploit the value function’s regularities
might still perform well.

One source of regularities that can be exploited to solve
PDE control problems comes from noticing the similarity of
an infinite-dimensional object such as the 2D/3D temperature
scalar field in a convection-diffusion problem (or more gen-
erally, any scalar/vector fields for other types of PDEs) with
a 2D/3D image in computer vision problems. Both of these
objects are scalar (or vector) fields, one defining the solution
of a PDE and the other defining the colour of an image.
They often have much spatial regularities, such as local
smoothness and other spatial patterns, which can potentially
be exploited by a learning algorithm. This connection can be
seen most clearly by noticing that visualizing the solution of
a PDE is indeed nothing but representing the state of the
PDE as an image.1

This similarity has motivated us to design RL algorithms
that directly work with the PDE’s infinite-dimensional state
vector and treat it as if the state is an image. In a previous
work [1], we suggested to use the Regularized Fitted Q-
Iteration (RFQI) algorithm [16] with a reproducing kernel
Hilbert space (RKHS), as the value function approximator,
for the PDE control problem. An RKHS is a suitable choice
because it only requires us to define a kernel function (i.e., a
measure of similarity) between two states of a PDE. Seeing
the state of a PDE as an image means that we only need to
define a kernel function between two images, which is not a
difficult task.

This paper takes a different approach. We use a deep
neural network (DNN) [17], particularly a deep convolutional
network (ConvNet), as the estimator of the value function.
The motivation is that ConvNets are quite suitable to extract
problem-dependent features from image-like inputs. They
have mitigated the need to manually design features for many
computer vision problems. They have also been successfully
used for learning to play computer games [4], perform visual-
servoing [6] (both formulated as RL problems) and imitating
a human driver using camera input [18] (formulated as a
supervised learning problem). In this work, we describe the
DFQI algorithm and apply it to two related PDE control
problems. We empirically compare the performance of DFQI
and RFQI. We also investigate the transfer learning problem
within the context of RL and PDE control.

1Even though an image has a finite-dimensional representation (e.g., a
500 × 500-dimensional vector in an Euclidean space), it is effectively,
from the numerical computation perspective, as high-dimensional as e.g.,
the temperature and/or flow field of a PDE.

II. PDE CONTROL AS A MARKOV DECISION
PROCESS

We describe how a PDE control problem can be for-
mulated as a Markov Decision Process (MDP), which is a
mathematical framework to define an RL problem [2].2

A finite-action discounted MDP is a 4-tuple
(X ,A,P,R, γ), where X is a measurable state space,
A is a finite set of actions, P : X × A → M(X) is the
transition probability kernel, and R : X × A → M(R) is
the immediate reward distribution. The constant 0 ≤ γ < 1
is the discount factor. We use r(x, a) to denote the expected
value of the random variable R ∼ R(·|x, a).

We identify these quantities within the PDE control
context. For concreteness, we consider a time-varying
convection-diffusion PDE as a model to describe spatio-
temporal evolution of temperature field in presence of a time-
varying velocity field, but the basic idea behind formulating
the PDE control problem as an RL problem is more general
and can be applied to other PDEs too.

We denote the domain of PDE by Z ⊂ R2 (or R3), which
might represent a confined region, e.g., a room. Its boundary
is denoted by ∂Z . The time set is denoted by I , e.g., I =
R+. Let us denote the temperature field by a time-dependent
scalar field T : Z × I → R, and v : Z × I → R2 (or R3) as
the time-varying velocity field, e.g., an airflow field. Denote
S : Z × I → R as the time-varying source. The convection-
diffusion equation is

∂T (z, t)

∂t
=

1

Pe
∇2T −∇ · (vT) + S(z, t), (1)

in which Pe = Lvc
D is the Péclet number with L being the

characteristic length of the domain, vc being the character-
istic velocity, and D : Z → R being the thermal diffusivity
constant. The velocity field is divergence-free to respect the
continuity (conservation of mass), i.e., ∇·v = 0. For a given
velocity and source field, the temperature field is T (·, t) ∈ T ,
in which T is the space of all temperature fields for a fixed
time. We also use S to denote the space of all S(·, t). If there
is no chance of confusion, we may simply use T , v, and S
to refer to T (·, t), v(·, t), and S(·, t) for a particular t.

Let us partition the boundary ∂Z to ∂Z1 and ∂Z2, and
impose the Dirichlet and Neumann boundary conditions:

T (z, t) = Tb(z, t), ∀z ∈ ∂Z1

~n · ∇T (z, t) = 0. ∀z ∈ ∂Z2

The Neumann boundary condition signifies an insulated
temperature surface and the Dirichlet boundary condition
defines a prescribed temperature surface, e.g., provided by
the HVAC unit.

We consider a PDE control problem in which the dynamics
is controlled by changing the boundary temperature Tb(z, t)
(for z ∈ ∂Z1) and flow velocity v. For example, the boundary
temperature can be changed by turning on/off heaters or
coolers on the walls of a room. The flow can be controlled

2This section closely follows the same section from [1] for the conve-
nience of the reader.

by using fans that induce a flow field in the room. For
simplicity of our simulations, we assume that v can be chosen
from a given set of divergence-free flows (we consider two
different types of airflow fields in our simulations, as will
be explained), but in a real physical system v is actually
determined by the Navier-Stokes equations.

We only consider the case that the control commands (Tb
and v) belong to a finite action (i.e., control) set A with
|A| <∞:

A = { (T ab , v
a) : a = 1, . . . , |A| } .

This should be interpreted as choosing action a at time t
leads to setting the boundary condition as Tb(·, t) = T ab and
the flow velocity as v(·, t) = va(·).

The dynamics of the PDE at time t is fully described
when v, T , and S are all known.3 The function v is
a part of the action that we choose. So the rest defines
the state of the system, which we denote by an infinite-
dimensional vector x = (T, S). The state space is X ,
{x = (T, S) : T ∈ T , S ∈ S }.

We can compactly write the PDE as

∂x

∂t
= g(x(t), a(t)),

in which both the domain and its boundary condition are
implicitly incorporated in the definition of function g. To
simplify and make it compatible with the MDP framework,
we deal with a discrete-time version of the previous set of
equations, which can be obtained by integration from time t
to time t+ 1. So we have

xt+1 = f(xt, at).

The choice of 1 as the time step is arbitrary and could be
replaced by any ∆t, but for simplicity we assume it is indeed
equal to 1. This deterministic dynamics can be generalized
to stochastic dynamics by describing the temporal evolution
of the PDE by a transition probability kernel:

Xt+1 ∼ P(·|X(t), a(t)).

We use X instead of x in order to emphasize that
it is a random variable. For deterministic dynamics,
P(x|X(t), a(t)) = δ (x− f(X(t), a(t))), in which δ is
Dirac’s delta function.

We now describe how the reward function r : X ×A → R
might be specified. That function should reflect the desir-
ability of the current state of the system as well as the
cost of a selected action. We provide an example: Consider
that the comfort zone of people in the room is denoted by
Zp ⊂ Z , and let T ∗ be the desirable temperature scalar field.
This might be a constant or a spatially-varying temperature
profile. One possible definition of the reward function is
r(x, a) = −

[∫
Zp
|T (z)− T ∗(z)|2dz + caction(a)

]
, in which

caction(a) is the cost of choosing action a. This might include

3Here we assume that the evolution of S(z, t) can be described by another
PDE with S as its state. If the dynamics of S depends on other variables
too, they should be included as a part of the state too.

the cost of heater or cooler operation and the cost of using the
fan(s) that generates the airflow field. In general, the reward
can be any function of x, a, and the next state x′.

After identifying the state, action, and the reward function
for a typical PDE control problem, we briefly introduce the
concepts of policy and value functions from the MDP and
RL literature. A measurable mapping π : X → A is called a
deterministic Markov stationary policy, or simply policy in
short. Following a policy π in an MDP means that at each
time step t, we have At = π(Xt).

For a policy π, the action-value function Qπ is defined
as follows: Let (Rt)t≥1 be the sequence of rewards when
the Markov chain starts from a state-action (X1, A1) drawn
from a positive probability distribution over X ×A and the
agent follows policy π. Then the action-value function Qπ :
X ×A → R at state-action (x, a) is defined as

Qπ(x, a) , E

[∞∑
t=1

γt−1Rt

∣∣∣X1 = x,A1 = a

]
.

For a discounted MDP, we define the optimal action-value
functions by Q∗(x, a) = supπ Q

π(x, a) for all (x, a) ∈ X ×
A. A policy π∗ is optimal if it achieves the best values in
every state, i.e., if Qπ

∗
= Q∗.

We say that a policy π is greedy with respect to (w.r.t.) an
action-value function Q if π(x) = argmaxa∈AQ(x, a) for all
x ∈ X . We define function π̂(x;Q) , argmaxa∈AQ(x, a)
(for all x ∈ X) that returns a greedy policy of an action-value
function Q (If there exist multiple maximizers, a maximizer
is selected in an arbitrary deterministic manner). Greedy
policies are important because a greedy policy w.r.t. the
optimal action-value function Q∗ is an optimal policy. Hence,
knowing Q∗ is sufficient for behaving optimally.

The Bellman optimality operator T ∗ : B(X × A) →
B(X ×A) is defined as

(T ∗Q)(x, a) , r(x, a) + γ

∫
X

max
a′

Q(y, a′)P(dy|x, a).

(2)

The Bellman optimality operator has a property that its fixed
point is the optimal action-value function, i.e., Q∗ = T ∗Q∗.
Because of this property, value-based approaches to MDP
and RL aim to find a good approximation to the fixed point
of the Bellman optimality operator. Suggesting a method for
doing so is the subject of the next section.

III. DEEP FITTED Q-ITERATION

The Deep Fitted Q-Iteration algorithm (DFQI) is an in-
stance of the family of Approximate Value Iteration (AVI)
(or Fitted Q-Iteration) algorithms [19], [20], [21], [16], [22],
[23], [4]. These algorithms are based on approximately
performing the Value Iteration (VI) algorithm. A generic VI
algorithm iteratively assigns

Qk+1 = T ∗Qk.

Since T ∗ is a contraction mapping with Q∗ being its fixed
point, in the limit Qk → Q∗. For MDPs with large state

space (i.e., finite, but large number of states; or high-
dimensional continuous), performing the exact VI is often
impractical. In such cases, we can try AVI instead, that
results in

Qk+1 ≈ T ∗Qk,

in which Qk+1 is represented by a function from a function
space F |A| : X ×A → R. The function space F |A| is often
much smaller than the space of all measurable functions on
X ×A.

In addition to the challenge of dealing with a large state
space, we may also face the problem that the integral in
the definition of T ∗Qk (2) cannot be computed easily. For
instance this might be because we do not have a direct access
to P , but instead we only have data from interacting with the
dynamical system in the form of {(Xi, Ai, Ri, X

′
i)}ni=1 with

(Xi, Ai) ∼ ν and Ri ∼ R(·|Xi, Ai) and X ′i ∼ P(·|Xi, Ai)
(RL setting). To handle this setting, a key observation is that
for any fixed measurable function Q, we have

E
[
R(x, a) + γ max

a′∈A
Q(X ′, a′) | X = x,A = a

]
=

(T ∗Q)(x, a),

which means that the conditional expectation of samples in
the form of R(x, a) + γmaxa′∈AQk(X ′, a′) is the same
as T ∗Qk. Estimating this expectation given samples is the
problem of regression, which is well-studied in the machine
learning and statistics literature [24], [14], [25].

The difference between various AVI methods boils down
to the choice of the function approximator F |A| and the
way they perform regression to fit a function Qk+1 ∈
F |A| to T ∗Qk. Some choices for F |A| that have been
proposed and studied are collection of trees [19], RKHS
with regularized regression [16], and deep ConvNet, in
an architecture called Deep Q-Network (DQN) [4]. These
algorithms have also been studied theoretically. For error
propagation analysis of AVI procedures, which relates the
size of errors ‖Qk+1 − T ∗Qk‖ to the performance of the
outcome policy compared to the optimal policy, refer to [26],
[27]. For statistical analysis of some variants of AVI, refer
to [21], [16], [15].

In this work we propose an AVI algorithm that uses a
deep neural network [17], particularly a ConvNet, as F |A|.
As already mentioned, one reason for this choice is that
ConvNets have been successful in extracting features from
image-like inputs, especially for supervised computer vision
problems [28]. Since the state of a PDE is a scalar field,
it suggests that the choice of ConvNet might be suitable.
Another reason is that similar architectures have been suc-
cessfully applied to solving problems in computer games
with image inputs [4].

Algorithm 1 describes the DFQI algorithm. The function
space F |A| is represented by a deep neural network, and
in particular a deep ConvNet for the PDE control problem.
The algorithm works as follows. At iteration k, we are given
a dataset D(k)

n = {(Xi, Ai, Ri, X
′
i)}ni=1 with Xi ∼ νX , a

sampling distribution over the state space X , the action Ai ∼

Algorithm 1 Deep Fitted Q-Iteration (F |A|,K,Nepoch, b)

// F |A|: Deep neural network representing the action-value
function space
// K: Number of iterations of DFQI
// Nepoch: Epochs per each iteration
// b: mini-batch size
Initialize the neural network Q̂0 ∈ F |A|
for k = 0 to K − 1 do

Generate samples D(k)
n = {(Xi, Ai, Ri, X

′
i)}ni=1

Yi = Ri + γmaxa′∈A Q̂k(X ′i, a
′) for i = 1, . . . , n

Define regression dataset D′n = {((Xi, Ai), Yi)}ni=1

Q̂k+1 ← Q̂k
for Nepoch times do

Construct a random batch of Db =
{((Xj , Aj), Yj)}bj=1 from D′n
Define Lb = 1

b

∑
(Xj ,Aj ,Yj)∈Db

∣∣∣Q̂k+1(Xj , Aj)− Yj
∣∣∣2.

Update Q̂k+1 in the direction of gradient of Lb
end for

end for
return Q̂K and πK(·) = π̂(·; Q̂K)

πb(·|Xi), a behaviour policy, the reward Ri ∼ R(·|Xi, Ai),
and the next state X ′i ∼ P(·|Xi, Ai). This dataset might be
generated a priori or it might be generated at each iteration
(as shown in the algorithm).

Each iteration of DFQI performs a regression estimation
(though only approximately). We define the regression tar-
gets Yi = Ri + γmaxa′∈A Q̂k(X ′i, a

′) for i = 1, . . . , n. The
regression targets are defined based on the current estimate
of the action-value function Q̂k. So we obtain a dataset
D′n = {((Xi, Ai), Yi)}ni=1.

In most Fitted Q-Iteration algorithms, such as RFQI [16],
we solve the regression problem exactly. For example, in the
RFQI algorithm we solve

Q̂k+1 ← argmin
Q∈H

1

n

n∑
i=1

|Q(Xi, Ai)− Yi|2 + λQ,n ‖Q‖2H ,

with H(= F |A|) being an RKHS and λQ,n > 0 being the
regularization coefficient.

Solving such an optimization problem up to the machine
precision with a DNN is impractical and not even necessary.
It is impractical as 1) convergence of a DNN is only
guaranteed to a local minimum, and 2) the convergence rate
is slower than solving a system of linear equations, which
has to be solved in the RKHS-based formulation. But it is
also not necessary because having an optimization error close
to zero is not required for the good generalization error of a
learning algorithm [29].

Instead of solving the regression problem exactly at each
iteration, DFQI only partially minimizes the loss function. At
each iteration of DFQI, it follows the direction of gradient
of the regression loss only for a relatively small number of
iterations Nepoch. Moreover, we follow the common practice

Cooling'fans'

Heat'Invader'

Fig. 1. Heat Invader Domain. A heat source starts from a random initial
position and moves towards the bottom of the room. The agent can turn
two cooling fans ON or OFF.

in training DNN of using mini-batches of size b to estimate
the gradient, instead of using the whole dataset D′n. To be
more concrete, for Nepoch times we randomly choose a mini-
batch (i.e., a subset) of size b from D′n. Afterwards, we define
the empirical loss function Lb, a squared error one, only
based on these selected tuples, and compute the gradient of
the empirical loss function Lb w.r.t. the DNN’s parameters.
We update the network based on the gradient. The exact
way to use the gradient to update the network can vary.
One may choose different weight adaptation rules to update
the network: vanilla stochastic gradient descent, Adam [30],
RMSprop, etc.

Note that in the inner loop, we optimize Q̂k+1, but we do
not change the value of Yis. This makes it different from the
Q-learning algorithm. This is the same as using two separate
networks, as is done by [4].

This computation is performed for K iterations to obtain
the estimate Q̂K(x, a) of the optimal action-value function
Q∗. The obtained policy is the greedy policy of Q̂K , i.e.,
π̂(x; Q̂K) = argmaxa∈A Q̂K(x, a).

DFQI is similar to DQN [4] and Neural Fitted Q-Iteration
(NFQ) [20]. All of them are essentially AVI (or Fitted Q-
Iteration) algorithms that use a neural network (DNN for
DFQI and DQN, a shallow NN for the implementation of
NFQ) as the underlying function space F |A|. A common
feature of DFQI and DQN is that at each iteration of AVI,
neither of them attempts to converge to the minimum of
the empirical loss function; instead, they only partially move
towards the minimum before applying the Bellman operator
to the current estimate. The DFQI algorithm is presented as a
batch algorithm, so its connection to the other AVI algorithms
might be more clear than DQN, which is presented as
an online algorithm. Note that the authors of [22] present
an algorithm with the same name Deep Fitted Q-iteration
(DFQ). Their algorithm is, however, quite different from
DFQI or DQN. DFQ uses an auto-encoder to find a low-
dimensional representation of the state, which is then used
by the tree-based Fitted Q-Iteration algorithm of [19].

IV. EXPERIMENTS

We use Heat Invader, a time-varying convection-diffusion
problem, to conduct our experiments (cf. Figure 1). In the

heat invader problem, introduced by [1], a heat source enters
a room at a randomly chosen location at the top half of
the room. This heat source travels the room with a constant
speed (downward and leftward) until it leaves the room. As
a result of this heat disturbance, the temperature field of
the room, which is governed by a 2D convection-diffusion
PDE, changes. The heat invader might be thought of as a
heat disturbance entering the room after briefly opening the
window in a hot day. To fight off the heat invader, two
cooling fans on the floor can be turned ON or OFF. The
goal is to choose when each of them should be ON or OFF
in order to make the room “comfortable” while minimizing
the energy used by the cooling system. Turning each of the
cooling fans induces an airflow field in the room, depending
on which fan is ON. The airflow field in the work of [1]
was uniformly upward in the left and/or right section of the
room. Here we also perform experiments with more complex
circular airflow fields, which are more physically realistic, as
shall be described soon.4

The state of the system, x, at time t depends on the
temperature field T (·, t). T is a scalar field, so in theory
it is an infinite-dimensional object. In our simulations, we
use a finite volume solver (FiPy by [31]) with a 50 × 50
grid to represent the square room, so T is represented by a
2500 dimensional real-valued vector.5 To fix the length scale,
assume that the width and the height of the room is in fact
50 units of length. The heat invader defines the source S
in (1). At the location of the heat invader, a square whose
width is 1/5th of the room’s (so it is 10 × 10), we set the
value of S(z, t) = 1, and we set it to zero elsewhere. The
heat invader moves with a downward/leftward velocity of
−(4ex + 2ey) per time step (ex/y are the unit vectors in the
x or y direction), so this defines a time-varying source. We
choose the Péclet number Pe = 500, as it is close to typical
values for a room [32], [33].

The action set A = { (T ab , v
a) : a = 1, . . . , |A| } in our

experiments has four elements corresponding to a being one
of OFF/OFF, ON/OFF, OFF/ON, and ON/ON settings of the
left/right cooling fans. When a side of the room has an ON
action, the Dirichlet boundary condition of the temperature,
T ab , at the corresponding side of the floor is set to −0.5;
and it is set to 0 when the action is OFF. Moreover, the fan
induces an airflow. We consider two types of airflow, namely
“uniform” and “circular”. In the uniform airflow, we have a
constant upward airflow on the same side of the room as
the fan is. That is, va(x, y) = 0ex + 5ey for all (x, y) in
the left or right side of the room, and zero on the opposite
side. When both of them are ON, the whole floor has the
temperature of −0.5 and the airflow is va(x, y) = 0ex+ 5ey
for all (x, y) in the room.

The circular airflow is defined as follows. When only the
right side fan is ON, the airflow field is vOFF/ON(x, y) =

4The name of Heat Invader is inspired from the Space Invader game on
Atari 2600. Heat Invader is the PDE version of that game.

5We performed some simple grid studies. A finer 100×100 discretization
has essentially the same behaviour, so to save the computation time we
performed our experiments only on 50× 50 grid.

−5 cos
(
2πx
50

)
sin
(
2πy
50

)
ex + 5 sin

(
2πx
50

)
cos
(
2πy
50

)
ey. When

only the left side fan is ON, the airflow has the opposite
flow direction, i.e., vON/OFF = −vOFF/ON(x, y). When both
of them are ON, the airflow is a constant upward flow, i.e.,
vON/ON = 5ey , which is the same as vON/ON of the uniform
airflow. All airflow fields for both uniform and circular cases
are divergence-free.

By considering circular airflows, we have made the PDE
more realistic compared to the uniform flow of [1]. We
should mention that a real fan’s induced airflow can be
more complicated, but for simplicity of our simulations
and to avoid solving the Navier-Stokes equations we focus
on the current model. Also note that since we effectively
control both the temperature on the boundary and the velocity
field, the current formulation is indeed a nonlinear (bilinear)
control problem due to ∇ · (vT) term in the convection-
diffusion equation (1).

The reward function (the negative of cost) encodes our
belief about what a comfortable room setting should be, in
addition to the cost of operating the cooling fans. If the
temperature field at any given point in the room is within a
specific threshold of the desired temperature, there would not
be any cost associated. Otherwise, that point is considered
undesirable, and it contributes to the cost. The part of the
reward due to the uncomfortable temperature is the average
value of this criteria over the whole room. The part related
to the operation cost is linear in the number of cooling fans
that are ON. More precisely,

r(T, a) =−
∫
Z
I{|T (z)− T ∗(z)| > ∆Tthreshold}dµ(z)

−

0 a = (OFF,OFF)
cactuator a ∈ {(ON,OFF), (OFF, ON)}
2cactuator a = (ON,ON)

(3)

We set the desired temperature profile T ∗(z) = 0, the
threshold ∆Tthreshold = 0.5, and cactuator = 0.025. Here µ is a
uniform probability measure, i.e., the volume of Z according
to µ is 1. Notice that this reward function is not linear
or quadratic in T . The discount factor is set to γ = 0.9.
In all our experiments, the left, right, and top walls have
the Neumann boundary condition. The floor has a Dirichlet
boundary condition, defined based on the selected action.

We compare the performance of DFQI, as described in
the previous section, and RFQI, as described by [1]. Both of
these algorithms have access to the whole scalar field T . This
is a close approximation of the true state of the system. From
now on, we call T the state of the system. We also compare
with some manually-designed policies, namely “Simple con-
troller” and “Smart controller” [1]. Briefly speaking, Simple
controller turns the fan ON on the side of the room that
is warmer, but it does not consider the operation cost. The
Smart controller considers the operation cost too. Both of
them are myopic policies.

We generate the batch of data Dn =
{(Xi, Ai, Ri, X

′
i)}ni=1, to be used by the DFQI and

RFQI algorithms, as follows: We randomly generate the

initial position of the heat invader at time t = 0 close to the
top of the room. The initial temperature T (·; 0) is set to zero
at time t = 0. We let the temperature diffuse according to the
convection-diffusion equation for one time step (since there
is no convection field, it is only the diffusion term that acts at
this time step). This results in the temperature field T (·; 1).
We use the temperature scalar field T (·; t) as the state Xt

that is fed to the algorithms (for t ≥ 1). We choose action
A1 uniformly random from the set of all possible actions
A = {(OFF/OFF), (ON/OFF), (OFF/ON), (ON/ON)} to
obtain the new temperature field at time t = 2. Depending
on the airflow type (uniform or circular), the effect would be
different. The reward at time t = 1 is R1 = r(T (·; 2), A1)
with r being defined in (3). Meanwhile the heat invader
moves with a constant velocity. After 40 steps, which
defines one episode, we reset the state of the environment
to its initial value of zero and then pick a new random
location for the heat invader.6 This procedure is repeated
until we obtain n data points.

In the first set of experiments, we generate a dataset with
n = 20000. After obtaining the data, we only use a subset of
it (i.e., n ∈ {1240, 2000, 3160, 5000, 7960, 12600, 20000})
to obtain the policy using the DFQI and RFQI algorithms.
We run each of those algorithms for K = 50 iterations. For
each choice of n, we evaluate the greedy policy w.r.t. Q̂K
from 50 random initial states. We use two evaluation metrics.
The first is the average reward per episode (i.e.,

∑Tf

t=1Rt)
and the second is the return (i.e.,

∑Tf

t=1 γ
t−1Rt) with Tf

being the episode’s length, which is 40 in our experiments.7

We then increase the size of the dataset (e.g., from 1240
to 2000)—reusing the data in the previous set. We initialize
the value function to the value obtained after processing the
previous dataset. Again, we perform K = 50 iterations of
RFQI/DFQI. We continue this procedure until we evaluate
the policy obtained with n = 20000. We repeat this whole
procedure 20 times, with an independent dataset in each
run, for each of the uniform and circular airflow fields. For
non-RL-based algorithms, the empirical average is computed
based on 100 independent runs.

We use a ConvNet architecture similar to the one used
by [4]. The network has three consecutive 2D convolutional
layers followed by a fully connected hidden layer and 4
output layers. The first convolutional layer has 32 filters
of 8 × 8 convolutions with the stride of 4. The second
convolutional layer has 64 filters of 4× 4 convolutions with
the stride of 2. The third convolutional layer has 64 filters of
3 × 3 convolutions with the stride of 1. The fourth layer is
a fully connected one with the output dimension of 500. All
these layers use Rectified Linear units (ReLu). The final layer
has 4 outputs (corresponding to Q̂(·, a) for each choice of
action a ∈ A) with linear units. We use RMSprop algorithm

6The heat invader takes at most 25 steps to start from the top of the room
and then leave it. The value of t = 40 is chosen accordingly, so that the
state of the system gets approximately settled if no action is taken.

7Even though the discounted MDP formulation is for infinite-horizon
problems, for evaluation we truncate the episode at the horizon Tf , mainly
to save the computation cost.

for weight update with the learning rate of 0.00025, the
momentum term of 0.95, and the normalizer constant of
0.01. We use the mini-batch size b = 64 and the number
of epochs per DFQI iteration Nepoch = 20. To implement
the ConvNet in DFQI, we use Keras package [34] on top of
Theano [35] in Python. To implement the RFQI algorithm,
we use scikit-learn [36] in Python.

Figure 2 compares the performance of DFQI and RFQI
as a function of the number of samples n used for training,
when the RL algorithms are trained (and evaluated) on the
uniform airflow field. Figure 3 presents the same comparison
when the airflow field (for both training and evaluation) is
circular. The Simple and Smart controllers do not depend
on n. The graphs depict the empirical mean of the average
reward per episode (left) and return (right). The error bars
around the curve show one standard error around the mean.

The graphs clearly indicate the progress in the quality of
both DFQI and RFQI policies as n increases. We see that
both DFQI and RFQI surpass the performance of the Simple
and Smart controllers.

In the uniform airflow case, they outperform the Simple
controller from n = 1240 samples, and they outperform the
Smart controller after n = 3160 (DFQI) and n = 7960
(RFQI) samples (measured according to the average return;
similar conclusion holds for the average reward). In the case
of circular airflows, the Simple controller performs poorly
(average reward is −0.393 ± 0.003 and the average return
is −2.60 ± 0.025, in which we are presenting the standard
error), so we do not show it in the graph. We observe that
both DFQI and RFQI outperform the Smart controller rather
quickly.

What is more interesting is that DFQI also outperforms
RFQI for both uniform and circular airflows. In the uniform
case, the superiority is mostly in the smaller range of sam-
ples, but eventually RFQI catches up. The difference is more
striking in the circular airflow, in which even after n = 20000
the performance of RFQI is inferior. We hypothesize that this
superiority of DFQI over RFQI is because the ConvNet in
DFQI could learn PDE-specific function space F |A|, while
the RKHS used in RFQI is not being adapted to the data. We
also see that the uniform airflow provides the possibility of
having higher performing controls compared to the circular
one, as reflected in the average reward and return in all
controllers.

Finally we briefly investigate the issue of transfer learning.
The question that we ask is whether learning a policy for
one PDE (e.g., the one with uniform airflow) can be used
to accelerate the learning of a good policy for different, but
related, PDE (e.g., the one with circular airflow). We study
three different scenarios. The first is that we learn a policy
using DFQI only on the target domain (circular airflow) from
scratch. There is no transfer learning in this case. We then
consider a scenario in which we first find a policy on a source
domain (uniform airflow) using DFQI, but then use it as an
initial DNN to train for the target domain. We consider two
sub-cases: When DFQI uses n = 5000 data points from the
source domain and when it uses n = 10000. Obviously the

1240 2000 3160 5000 7960 12600 20000

Number of samples

−0.11

−0.10

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

A
v
e
ra

g
e
 r

e
w

a
rd

DFQI (uniform)

RFQI (uniform)

Simple controller

Smart controller

1240 2000 3160 5000 7960 12600 20000

Number of samples

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

R
e
tu

rn

DFQI (uniform)

RFQI (uniform)

Simple controller

Smart controller

Fig. 2. (Uniform Airflow) The average reward per episode (left) and the
return (right) of several policies as a function of the number of training
points. The results are for uniform airflow. The red curve shows the
DFQI-based policy and the blue one shows the RFQI-based policy. The
performances of two manually-designed controllers are shown too. The error
bars depict one standard error.

1240 2000 3160 5000 7960 12600 20000

Number of samples

−0.11

−0.10

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

A
v
e
ra

g
e
 r

e
w

a
rd

DFQI (circular)

RFQI (circular)

Smart controller

1240 2000 3160 5000 7960 12600 20000

Number of samples

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

R
e
tu

rn

DFQI (circular)

RFQI (circular)

Smart controller

Fig. 3. (Circular Airflow) The average reward per episode (left) and the
return (right) of several policies as a function of the number of training
points. The results are for circular airflow. The red curve shows the
DFQI-based policy and the blue one shows the RFQI-based policy. The
performances of a manually-designed controller is shown too. The error
bars depict one standard error.

latter one provides a better policy for the source domain, but
we wonder whether it also provides a better initialization
for the target domain. We perform this comparison for 20
independent runs. The results are shown in Figure 4. We see
that transfer learning indeed helps a lot compared to the case
without any transfer. Moreover, when we trained based on
10000 data points in the source domain, the performance is
better, particularly when we do not have much data points
in the target domain.

V. CONCLUSIONS AND FUTURE WORK

In this work, we followed [1] in formulating a class of
PDE control problems as reinforcement learning problems.
We suggested to consider the state of a PDE as an image
and to use deep convolutional neural networks as the value
function estimator. We developed a Deep Fitted Q-Iteration
algorithm and empirically showed its good performance.

In our simulations we considered that the airflow field v
is given. Performing a more realistic simulation that finds
v itself by solving the Navier-Stokes equations would be

1000 2500 5000 10000

Number of samples (target)

−0.075

−0.070

−0.065

−0.060

−0.055

−0.050

−0.045

A
v
e
ra

g
e
 r

e
w

a
rd

Source: 0

Source: 5K

Source: 10K

1000 2500 5000 10000

Number of samples (target)

−1.15

−1.10

−1.05

−1.00

−0.95

R
e
tu

rn

Source: 0

Source: 5K

Source: 10K

Fig. 4. The average reward per episode (left) and the return (right) of
several source-to-target transfer learning scenarios. The horizontal axis is
the number of training points in the target domain. The blue curve shows
the scenario when no training on the source domain (with uniform airflow)
has been done. The black dashed curve is when the policy is first trained
on the source domain with 5K of data points, and then trained on the target
domain (with circular airflow). The red one is for 10K of data points in the
source domain. The error bars depict one standard error.

interesting. Eventually our aim is to perform a real physical
system experiment. It is also interesting to apply the pro-
posed method to other PDE control problems.

Although a main advantage of the proposed method is that
it is completely data-driven, so the knowledge of the PDE is
not required, it is curious to see whether we might leverage
any prior knowledge about the PDE, however approximate,
to accelerate the learning process. Another research direction
is developing a method that is not restricted to finite action
spaces, and can work with high-dimensional action spaces
too.

ACKNOWLEDGMENT

We would like to thank Piyush Grover for discussions at
the earlier stages of this work. We also acknowledge helpful
comments by the anonymous reviewers.

REFERENCES

[1] A.-m. Farahmand, S. Nabi, P. Grover, and D. N. Nikovski, “Learning
to control partial differential equations: Regularized fitted Q-iteration
approach,” in IEEE Conference on Decision and Control (CDC),
December 2016, pp. 4578–4585.

[2] Cs. Szepesvári, Algorithms for Reinforcement Learning. Morgan
Claypool Publishers, 2010.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998.

[4] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 02 2015.

[5] D. Silver et al, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 01 2016.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research
(JMLR), vol. 17, no. 39, pp. 1–40, 2016.

[7] S. Ahuja, A. Surana, and E. Cliff, “Reduced-order models for control
of stratified flows in buildings,” in American Control Conference
(ACC). IEEE, 2011, pp. 2083–2088.

[8] J. Borggaard, J. A. Burns, A. Surana, and L. Zietsman, “Control,
estimation and optimization of energy efficient buildings,” in American
Control Conference (ACC), 2009, pp. 837–841.

[9] J. A. Burns, X. He, and W. Hu, “Feedback stabilization of a thermal
fluid system with mixed boundary control,” Computers & Mathematics
with Applications, 2016.

[10] J. A. Burns and W. Hu, “Approximation methods for boundary control
of the Boussinesq equations,” in IEEE Conference on Decision and
Control (CDC), 2013, pp. 454–459.

[11] S. L. Brunton and B. R. Noack, “Closed-loop turbulence control:
Progress and challenges,” Applied Mechanics Reviews, vol. 67, no. 5,
2015.

[12] D. Foures, C.-c. Caulfield, and P. J. Schmid, “Optimal mixing in two-
dimensional plane poiseuille flow at finite Péclet number,” Journal of
Fluid Mechanics, vol. 748, pp. 241–277, 2014.

[13] T. Duriez, S. L. Brunton, and B. R. Noack, Machine Learning Control–
Taming Nonlinear Dynamics and Turbulence, ser. Fluid mechanics and
its applications. Springer, 2016, vol. 116.

[14] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. Springer Verlag, New York,
2002.

[15] A.-m. Farahmand, “Regularization in reinforcement learning,” Ph.D.
dissertation, University of Alberta, 2011.

[16] A.-m. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and S. Man-
nor, “Regularized fitted Q-iteration for planning in continuous-space
Markovian Decision Problems,” in American Control Conference
(ACC), June 2009, pp. 725–730.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[18] M. Bojarski et al, “End to end learning for self-driving cars,” CoRR,
vol. abs/1604.07316, 2016.

[19] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research (JMLR),
vol. 6, pp. 503–556, 2005.

[20] M. Riedmiller, “Neural fitted Q iteration – first experiences with a
data efficient neural reinforcement learning method,” in 16th European
Conference on Machine Learning, 2005, pp. 317–328.

[21] R. Munos and Cs. Szepesvári, “Finite-time bounds for fitted value
iteration,” Journal of Machine Learning Research (JMLR), vol. 9, pp.
815–857, 2008.

[22] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in
reinforcement learning,” in International Joint Conference on Neural
Networks (IJCNN), 2010.

[23] A.-m. Farahmand and D. Precup, “Value pursuit iteration,” in Advances
in Neural Information Processing Systems (NIPS - 25), 2012, pp.
1349–1357.

[24] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2001.

[25] L. Wasserman, All of Nonparametric Statistics (Springer Texts in
Statistics). Springer, 2007.

[26] A.-m. Farahmand, R. Munos, and Cs. Szepesvári, “Error propagation
for approximate policy and value iteration,” in Advances in Neural
Information Processing Systems (NIPS - 23), 2010, pp. 568–576.

[27] R. Munos, “Performance bounds in Lp norm for approximate value
iteration,” SIAM Journal on Control and Optimization, pp. 541–561,
2007.

[28] A. Krizhevsky, I. Sutskever, and G. E. Sutskever, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS - 25), 2012, pp. 1097–1105.

[29] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,”
in Advances in Neural Information Processing Systems (NIPS - 20).
MIT Press, 2008, pp. 161–168.

[30] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-
mization,” in International Conference on Learning Representations
(ICLR), 2015.

[31] J. E. Guyer, D. Wheeler, and J. A. Warren, “FiPy: Partial
differential equations with Python,” Computing in Science and
Engineering, vol. 11, no. 3, pp. 6–15, 2009. [Online]. Available:
http://www.ctcms.nist.gov/fipy

[32] P. F. Linden, “The fluid mechanics of natural ventillation,” Annual
Review of Fluid Mechanics, vol. 31, pp. 201–238, 1999.

[33] S. Nabi, “Buoyancy-driven exchange flow with applications to archi-
tectural fluid mechanics,” Ph.D. dissertation, University of Alberta,
2015.

[34] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[35] Theano Development Team, “Theano: A Python framework for fast

computation of mathematical expressions,” vol. abs/1605.02688, May
2016.

[36] F. Pedregosa et al, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research (JMLR), vol. 12, pp. 2825–2830, 2011.

http://www.ctcms.nist.gov/fipy
https://github.com/fchollet/keras

	Title Page
	page 2

	
	INTRODUCTION
	PDE CONTROL AS A MARKOV DECISION PROCESS
	Deep Fitted Q-Iteration
	EXPERIMENTS
	CONCLUSIONS AND FUTURE WORK
	References

