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Abstract
In many construction, facility management, and inspection tasks, dimensional analysis of ge-
ometric features and artifacts is significant for spatial analysis and decision making. Tasks
such as as-built geometry modeling and robotic workspace generation need to efficiently in-
terpret critical dimensions of specific objects (e.g., diameter of a pipe, width of an opening) in
a potentially cluttered environment based on data gathered from various positions. Thispa-
per presents a user-guided dimensional analysis approach to automatically acquire geometric
information from a single frame of an RGB-D sensor. In the first step, an RGB-D sensor
is used to capture three-dimensional (3D) point clouds of building environments. Then, by
extracting planes and performing geometric analysis, the dimensional information of objects
of interest is obtained from a single frame. The designed user guidance system evaluates the
completeness of the acquired data, and then provides interactive guidance for moving the
sensor to acquire complete data, from which stable and accurate geometric measurements
can be obtained. The proposed method has been tested on hallways, door frames, and stairs
in a building environment. The experimental results demonstrate that the method offers sig-
nificant promise in enabling dimensional analysis in a wide variety of realtime measurement
contexts.
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ABSTRACT 

 

In many construction, facility management, and inspection tasks, dimensional analysis of 

geometric features and artifacts is significant for spatial analysis and decision making. Tasks 

such as as-built geometry modeling and robotic workspace generation need to efficiently 

interpret critical dimensions of specific objects (e.g., diameter of a pipe, width of an opening) 

in a potentially cluttered environment based on data gathered from various positions. This 

paper presents a user-guided dimensional analysis approach to automatically acquire 

geometric information from a single frame of an RGB-D sensor. In the first step, an RGB-D 

sensor is used to capture three-dimensional (3D) point clouds of building environments. Then, 

by extracting planes and performing geometric analysis, the dimensional information of 

objects of interest is obtained from a single frame. The designed user guidance system 

evaluates the completeness of the acquired data, and then provides interactive guidance for 

moving the sensor to acquire complete data, from which stable and accurate geometric 

measurements can be obtained. The proposed method has been tested on hallways, door 

frames, and stairs in a building environment. The experimental results demonstrate that the 

method offers significant promise in enabling dimensional analysis in a wide variety of real-

time measurement contexts.  
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Introduction 

Three-dimensional (3D) geometry and, in particular, dimensional information about the built 

environment is required in a wide range of civil infrastructure applications (Bosché 2010). During 

the construction phase, dimensional information must be monitored on site so that the work can 

meet the requirements of the design and specifications. During the maintenance phase, dimensional 

information is necessary to check whether the built environment remains consistent with existing 

building codes and to quantify any developed flaws (e.g. deformations). In addition, in the context 

of construction automation, dimensional information is useful for any robot performing tasks in the 

construction or built environment. For example, a door installing robot must consider the actual size 

of the door frame on a construction site instead of the designed size due to potential tolerance 

discrepancies. Given such dimensional information, the robot is able to install a door correctly and 

ensure that it can fit the panel in a frame accurately. In addition, the dimensions of any openings are 

significant for an autonomous robot while moving in indoor environments.  For example, when 

passing through a door, a robot has to detect the dimension of the opening space so that it can make 

an informed choice about whether to directly go through this door or to find another way. 

 

Traditionally, dimensional information in the built environment is manually obtained by tape 

measurements, which is labor intensive and has limited accuracy. With the rapid development of 

sensors for capturing 3D point clouds, geometric models of the civil infrastructure can be obtained 

rapidly and accurately, thereby making the automatic retrieval of infrastructure dimensions a 

possibility. In order to obtain accurate dimensions of civil infrastructure, laser scanners are widely 



 

 

used to capture high-accuracy 3D point clouds to build 3D models that contain detailed dimensional 

information (Bennett 2009; Huber et al. 2010; Xiong et al. 2013). However, Tang et al. (2010) 

pointed out that this process is usually time-consuming and not fully automated.  

 

Instead of using 3D laser scanners, RGB cameras (Bae et al. 2014; Brilakis et al. 2011; 

Golparvar-Fard et al. 2011) can be used to capture a series of images that are then processed using 

structure from motion (SFM) to generate 3D point clouds. This method is able to obtain point clouds 

for large-scale scenes and has a shorter data acquisition time compared to methods that use laser 

scanners. Another commonly used method to obtain colored 3D point clouds is to employ stereo 

cameras that are composed of two RGB cameras (Fathi and Brilakis 2011) or to utilize RGB-D 

cameras consisting of an RGB camera and a depth camera (Chen et al. 2015; Zhu and Donia 2013). 

One of the benefits of utilizing stereo or RGB-D cameras is that these cameras enable obtaining 

point clouds from single frames and thus performing data analysis in real time. Moreover, colored 

3D point clouds provide the opportunity to extract semantic information compared to point clouds 

generated from laser scanners (Golparvar-Fard et al. 2011). Therefore, stereo or RGB-D cameras are 

well suited for geometry and dimension interpretation from 3D point clouds in contexts where 

human users or robots need to interact with the built environment in real time. 

 

In this paper, we propose a user-guided dimensional analysis approach that is able to compute 

dimensions in indoor built environments using a color and depth (RGB-D) sensor. The method 

performs dimensional analysis on a single frame obtained from an RGB-D sensor to achieve high 



 

 

computational efficiency and to avoid error accumulations in multi-frame registration.  Due to the 

limited field of view and measurement range of the sensor, a single frame cannot guarantee that all 

dimensional information of interest can be computed. Therefore, a knowledge-based user guidance 

system is developed to guide a user (or a robot) to move the sensor to a better position so that 

complete data suitable for dimensional analysis is collected. After a complete frame data is collected, 

the geometric analysis is performed to obtain the necessary dimensional information.  

 

The remainder of the paper is organized as follows: Section 2 reviews related work and outlines 

its limitations. Section 3 describes the designed method in detail. Section 4 describes the conducted 

experiments and the obtained results. Finally, Section 5 draws conclusions and discusses ongoing 

and future work. 

 

Previous Work 

In the context of getting dimensional information from built environments, several research 

studies have focused on creating 3D models by using high-end 3D laser scanners (2D rotational 

laser scanners or terrestrial laser scanners), which can provide accurate and rich 3D point clouds of a 

large environment. Budroni and Boehm (2010) used a plane sweep algorithm and a priori 

knowledge to segment point clouds into floors, ceilings, and walls, and created a 3D interior model 

by intersecting these elements. Since this method utilized the Manhattan-world assumption to obtain 

rectangular primitives for objects, it failed to handle complicated geometric primitives or 

complicated structures. Nüchter and Hertzberg (2008) used semantic labeling to find coarse scene 



 

 

features (e.g., walls, floors) of indoor scenes from point clouds obtained by a 3D laser scanner. They 

employed common-sense knowledge about buildings to label planar surfaces as wall, floor, ceiling, 

and door. Díaz-Vilariño et al. (2015) combined laser scan data and high-resolution images to detect 

interior doors and walls and automatically obtained optimized 3D interior models. Instead of 

primarily utilizing planes from point clouds, Dimitrov and Golparvar-Fard (2014) presented a new 

method to segment point clouds into non-uniform B-spline surfaces for as-built modeling.  

 

In addition, several researchers have also used high-accuracy laser scanners to obtain 3D models 

of dynamic construction environments and equipment. Wang and Cho (2015) designed a smart 

scanning system to rapidly identify target objects and update the target’s point clouds. They then 

used concave hull surface modeling algorithms to get a 3D surface model. Cho and Gai (2014) used 

laser scanners to obtain 3D point clouds of the environment and identified 3D target models by 

comparing them to a model database. The field results of these two papers demonstrated that the 

method could improve productivity and safety in heavy construction equipment operations. Brilakis 

et al. (2010) explored a framework for automated generation of parametric building information 

models (BIMs) of constructed infrastructure from hybrid video and laser scanning data. They 

developed several automated processes for generating BIMs from point clouds, for example, 

automated generation of colored point clouds from video and laser scanner data, and automated 

identification of most frequently occurring objects.  A drawback of these approaches that use high-

end 3D laser scanners is that they need professional setup and operation (e.g., attaching markers in 

the environment for registering point clouds). Moreover, the post-processing methods used to 



 

 

extract 3D models from point clouds are time-consuming and labor intensive since such sensors 

typically obtain millions of points to represent surfaces as point clouds. 

 

Instead of using high-accuracy laser scanners, simultaneous localization and mapping (SLAM) 

techniques have been widely used for registering multiple 3D frames and obtaining 3D models of 

large-scale environments with affordable sensors (e.g. low-cost RGB-D sensors, cameras). 

Newcombe et al. (2011) presented KinectFusion, which employed an iterative closest point (ICP) 

algorithm to register a current depth map to a global model reconstructed by fusing all previous 

depth maps. Taguchi et al. (2013) proposed the point-plane SLAM system that uses both points and 

planes as primitives to achieve faster correspondence search and registration of data frames, and to 

generate 3D models composed of planar surfaces. Cabral and Furukawa (2014) proposed a method 

for reconstructing a piecewise planar and compact floor plan from multiple 2D images, which 

provides an improved visualization experience albeit with fewer geometric details. Although the 3D 

models generated by these methods enable dimensional analysis in large-scale environments, the 

accuracy is limited due to drift error accumulations in multi-frame registration.  

 

Unlike previous work, the method described in this paper aims to obtain dimensional information 

of indoor scenes from a single frame of an affordable RGB-D sensor. The proposed single-frame 

approach avoids the error accumulation problems inherent in multi-frame registration. In order to 

overcome the limitations of a single frame, such as the limited field of view and measurement range, 



 

 

this paper describes a user guidance system that provides directional feedback for the user to obtain 

complete data suitable for dimensional analysis. 

 

The most relevant prior work to our paper is Kim et al. (2012) which presented a hand-held 

system for real-time interactive acquisition of residential floor plans. The system described in that 

paper integrates an RGB-D sensor, a micro-projector, and a button interface to help the user capture 

important architectural elements in indoor environments. Instead of obtaining the floor plan of a 

building using a SLAM technique as in Kim et al. (2012), the method in this paper focuses on 

obtaining dimensional information of specific objects in indoor environments from a single frame. 

Moreover, the designed user guidance system guides the user in observing essential components for 

specified scenes. 

 

The proposed user guidance system was inspired by Richardson et al. (2013) and Bae et al. 

(2010). Richardson et al. (2013) presented a user-assisted camera calibration method that suggests 

the position of calibration targets in the captured images to obtain reliable, stable, and accurate 

camera calibration results.  Bae et al. (2010) proposed the computational rephotography system that, 

given a reference image, guides the user to capture an image from the same viewpoint. In order to 

obtain accurate dimensional information from a single frame of an RGB-D sensor, the proposed user 

guidance system evaluates the completeness of the current frame and then instructs the user to move 

the sensor to get improved results for the application. Using basic guidance, the proposed system 



 

 

can lead a non-expert user through the steps necessary to obtain complete data and thus accurate 

dimensional measurements. 

 

Dimensional Analysis – Technical Approach 

In this paper, the focus of the dimensional analysis is on civil infrastructure with planar surfaces 

in indoor environments using an RGB-D sensor. The proposed framework is shown in Fig. 1. Firstly, 

one frame of 3D point clouds (for example Fig. 1 (a)) is acquired by an RGB-D sensor. Then, the 

preprocessing is conducted on the point clouds to extract planar surfaces and compute topological 

relationships of these planes (Fig. 1 (b)). Based on the planes and their topological relations, the 

geometric analysis is performed to compute the initial dimensions of the scene (Fig. 1 (c)). 

Combining the scene type and the initial dimensional measurements, the user guidance system 

evaluates the completeness of the current frame and dimensional measurements. If the data frame 

does not contain all components for computing the dimensions, the user guidance system provides 

instructions for moving the sensor to get a complete frame and thus accurate dimension 

measurements.  Therefore, a new frame data (Fig. 1 (d)) is captured by the sensor. The same 

processes, i.e. preprocessing (Fig. 1 (e)) and geometric analysis (Fig. 1 (f)), are performed to acquire 

new dimensions, which have a higher quality and are used as the final dimension estimation results. 
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(a) One frame of 3D point clouds

(b) Preprocessing results

(c) Initial dimension estimation

(d) Another frame of 3D 

point clouds

(e) Preprocessing results

(f) New dimension estimation

Shape Template  

Fig.1. System Framework 



 

 

Data Preprocessing  

In this paper, it is assumed that the object of interest is composed of, supported by, or surrounded 

by planar surfaces. Since the proposed method is intended for dimensional analysis of indoor scenes, 

this assumption is reasonable as the common objects in indoor scenes have planar surfaces. Based 

on this assumption, the geometric analysis is performed to obtain dimensional information of 

specific infrastructure elements.  

 

In order to extract planar surfaces efficiently, the fast plane extraction algorithm for organized 

point clouds proposed by Feng et al. (2014) is employed. This algorithm first segments the point 

clouds into groups and uses them as nodes to create a graph. Then, an agglomerative hierarchical 

clustering is performed on this graph to merge nodes on the same plane. Finally, the planes are 

refined by pixel-wise region growing.  

 

This paper focuses on estimating dimensions by utilizing plane topological relationships, which 

enables us to obtain robust and accurate measurements. Therefore, once all the planes are extracted 

from the point clouds, the topological relationships among these planes are estimated based on the 

plane parameters. Four types of plane topological relations of interest are defined as follows: 

· Parallel: if the normal vectors of two planes are parallel to each other, the two planes are 

parallel planes. 

· Coplanar: if two planes have the same geometric parameters, they are coplanar planes. 

Coplanar planes are also parallel planes. 



 

 

· Intersecting: if two planes are not parallel to each other, they are intersecting planes. 

· Perpendicular: if the normal vectors of two planes are perpendicular (orthogonal to each 

other), the two planes are perpendicular. 

 

It should be noted that due to the uncertainty in sensor measurements, these relationships are 

approximately ascertained. For example, if the angle of the normal vectors between two planes is 

less than a specified α degrees, they are considered as parallel planes (α is empirically set as five to 

avoid classifying non-parallel planes as parallel due to large α or failure in detecting the parallel 

plane relationship). 

 

Geometric Analysis 

If all the measurements from the sensor were perfect, the dimensional information could be 

directly computed based on the geometric representations of the infrastructure. However, the sensor 

measurements have uncertainty inevitably and thus the geometric representations estimated from the 

point clouds are not perfect. In order to get robust and accurate dimensional information, least 

squares methods are utilized to mitigate measurements uncertainty. In this paper, based on the scene 

types and experimental scenarios, the distance between two parallel planes and the distance between 

boundary points of coplanar planes are of interest. In addition, these two distances are also of 

interest in general for indoor environments which contain many regular planar surfaces. Methods for 

these two distance computations are proposed to obtain robust estimation. 

 



 

 

Distance between Parallel Planes 

After extracting the planes, the plane parameters are estimated from the points by least squares. 

Given the set of points !"
# = $%"

#, &"
# , '"

#(, ) = 1, … , * assigned to Plane +, whose parameters are 

represented by - = [." , /" , 0" , 2"]3 , the plane equation ."%"
# + /"&"

# + 0"'"
# + 2" = 0  needs to be 

satisfied for all the * points. Thus, a homogeneous system can be constructed as 

 

 6- = 0 (1) 

 

where the matrix 6 can be constructed by stacking the row vectors $%"
# , &"

# , '"
# , 1(. In order to get the 

least squares estimation, one possible solution is to perform singular value decomposition (SVD) 

(Mandel, 1982) on the matrix 6 and then the plane parameters - can be extracted from the results of 

SVD. By the SVD theory a 7 × 8 real matrix 6 can be decomposed as 6 = 9:;3 where 9 is  a 

7 × 7 unitary matrix (i.e. 993 = <), > is a 7 × 8 diagonal matrix with non-negative values, and ; 

is a 8 × 8 unitary matrix. In order to find a least-squares solution, by imposing the constraints 

‖-‖ = 1, the solution aims to minimize ‖6-‖. As the rank of 6 is 8 (7 > 8 for our data), the 

solution of Equation (1) is the last column of ;. 

 

Since it is assumed that there exist parallel plane sets, the plane parameter estimation results can 

be made more accurate by using this prior information. Suppose Plane + and Plane A are parallel to 

each other and the sets of points assigned to these planes are given as !"
#, ) = 1, … , * and !B

C , D =



 

 

1, … , E. To enforce the parallel constraint, Plane + and Plane A share the same normal vector and the 

equations are defined as 

 

  .%"
# + /&"

# + /'"
# + 2" = 0

.%B
C + /&B

C + 0'B
C + 2B = 0

 (2) 

 

Then a homogenous system similar to Equation (1) can be constructed with - = $., /, 0, 2" , 2B(
3
 and 

the matrix 6 constructed by stacking $%"
# , &"

# , '"
# , 1,0( and $%B

C , &B
C , 'B

C , 0,1(. Therefore, by using SVD 

the plane parameters of parallel planes are computed using all the points on the planes.  

 

Once the plane parameters are obtained, the distance 2"B between the parallel planes is calculated 

directly based on the plane parameters as 

 

 
2"B =

|2" − 2B|

√.I + /I + 0I
 

(3) 

 

Distance between Boundary Points of Coplanar Planes 

The coplanar planes boundary points refer to boundary points that are located between the two 

coplanar planes. For example, when measuring the width of the door while the door height is too 

high to be observed, the points on the wall near the door will be captured as two coplanar planes. To 

obtain the width of the door, the door frame points are extracted and used as the coplanar planes 



 

 

boundary points. In this context, the door width is the distance between boundary points of two 

coplanar planes as shown in Fig. 2 (a).  

  

(a) Coplanar plane points (b) Boundary points of coplanar points 

  

(c) Coplanar plane boundary points (d) Line fitting and distance computations 

Fig. 2. Estimation of the distance between two coplanar planes 

 

In order to automatically find door frames, firstly the topological relationships between extracted 

3D planar surfaces are estimated based on the plane fitting results. After detecting the coplanar 

planes, all the coplanar planes are rotated based on the plane parameters to make sure that the 

normal of the plane is parallel to the new Y axis and all Y values of the rotated points are almost the 

same. Then the boundary points (Fig. 2 (b)) of the two planar surface, JKL and JKI, are separately 



 

 

extracted by using the 2D alpha shape algorithm (Bernardini and Bajaj 1997). The 2D alpha shape 

algorithm moves a circle at a radius of M in the space while the circle must only contain points on its 

boundary and no points are allowed inside of the circle. Those points that allow the circles are the 

boundary points extracted by the 2D alpha shape algorithm. Based on the boundary points of each 

surface, the coplanar planes boundary points NKL and NKI (Fig. 2 (c)), are obtained by utilizing a 

nearest points searching method. Finally, as shown in Fig. 2 (d) a pair of parallel lines DL and DI are 

fitted from  NKL and NKI using the similar method in the previous section. The two 2D lines are 

defined as  

 

 .%L
" + /'L

" + 0L = 0
.%I

B + /'I
B + 0I = 0

 (4) 

 

where [., /, 0L]  and [., /, 0I]  are respectively the geometric parameters of the two 2D lines of 

NKL and NKI, and O%L
" , 'L

" P is the +-th point of NKL while O%I
B , 'I

BP is the A-th point of NKI. Therefore, 

a homogeneous system described by Equation 1 can be obtained where - = [., /, 0L, 0I] and 6 is 

constructed by stacking [%L
" , 'L

" , 1,0] and [%I
B , 'I

B , 0,1]. Based on the geometric parameters of the two 

2D lines, the distance 2LI between the two lines is computed as the following 

 

 
2LI =

|0L − 0I|

√.I + /I
 (5) 

 



 

 

In this paper 2LI is viewed as the distance between the two coplanar boundary points. 

 

Algorithm 1 Extract Coplanar Planes Boundary Point 

1 function EXTRACTBOUNDARY(JKL, JKI) 

2     NKI =  EXTRACTEACHBOUNDARY (JKL, JKI) 

3     NKL =  EXTRACTEACHBOUNDARY (JKI, JKL) 

4     return (NKL, NKI); 

  

5 function EXTRACTEACHBOUNDARY(JKL, JKI) 

6      is_searched[ 1:size(JKI)] = false; 

7     for each  ST ∈ JKL do 

8         // Search the nearest point to ST in JKI 

9         ) = search_nearest_point(JKI, ST);   

10         is_searched[)] = true; 

11     end for 

12     for each +=1:size(JKI) do 

13          if is_searched[+] = true then 

14             NK.add(JKI [+] ); 

15          end if 

16     end for 

17     return NK 

 



 

 

In order to automatically extract the coplanar planes boundary points, a nearest point searching 

method (Algorithm 1) is proposed. The boundary points of the two planes, JKL  and JKI , are 

separately extracted and used as input for that algorithm. For the first plane, for each point in JKL, 

the nearest point in the second plane boundary points JKI is searched (Algorithm 1 Lines 7-11). 

After iterating all the points on the first plane, the points in JKI that have been searched as the 

nearest points, NKI, belong to the coplanar boundary points from the second plane (Algorithm 1 

Lines 12-16). By repeating the process for the second plane, the coplanar planes boundary points on 

the first plane, NKL, can be also found.  

 

 

This method utilizes the nearest neighbor search strategy to approximately find the coplanar 

planes boundary points. Since it employs the boundary points of each plane and the nearest neighbor 

search, it tends to prefer the point that is located closer to the other plane and thus to find a subset of 

the true coplanar planes boundary points. However, these points are sufficient for computing the 

distance between two coplanar planes as they are extracted from the boundary points of the two 

planes. In addition, this method utilizes the boundary points of the two coplanar planes, which 

reduces the computation time.  

 

User Guidance 

The goal of the user guidance system is to generate instructions for moving the sensor to poses 

where the sensor can capture complete frames that contain all necessary elements of the scene and 



 

 

yield accurate and robust measurements.  In this paper, a complete frame denotes a single frame that 

includes all necessary components of the infrastructure features of interest. For example, a complete 

frame for a typical hallway contains the ground floor, the ceiling, and the two walls. The user 

guidance utilizes the prior knowledge of the scene, i.e. the scene type (box shape, opening structure, 

or parallel structure), the gravity direction, the shape template (which contains the topological 

relations between planar surfaces of the scene), etc., to identify whether a complete frame is 

captured by visualizing and checking the topological relations of planar surfaces.  

 

 

Algorithm 2 Generate User Guidance for a single frame 

1 function GENERATEUSERGUIDANCE(VW.7X,YW.Z+T&, /.\XD+8X^X8\_WK_\X\) 

2     TX7SD.TX =  GetSceneTemplate(\0X8X`&SX) 

3     \ℎ.SX = GeneateHypothesisShape (VW.7X, TX7SD.TX, YW.Z+T&) 

4     +\J_7SDXTX = Compare(TX7SD.TX, \ℎ.SDX) 

5 if +\J_7SDXTX == false do 

6        b\XWcb+2.80X = ComputeGuidance(/.\XD+8X^X8\_WK_\X\) 

7     end if 

8 return b\XWcb+2.80X 

 

Before using the sensor to collect data, it is assumed that the scene type is chosen by the user and 

there exists corresponding geometric and topological information of planar components. For a single 



 

 

frame, the system tries to identify the components of a scene and recover a hypothesis shape which 

is used for generating the user guidance for moving the sensor (Algorithm 2 Line 3). The system 

checks the completeness of the current frame by comparing the shape template and the hypothesis 

shape (Algorithm 2 Line 4). In order to generate quantitative guidance for the user, the user 

guidance system utilizes some of the sensor poses that are able to observe complete frames as 

baseline sensor poses. When an incomplete frame is obtained, by comparing the current sensor pose 

with the baseline sensor poses (Algorithm 2 Line 6), the user guidance proposes quantitative 

movement suggestions of the sensor to the user. The generated guidance describes the sensor 

movement suggestions in terms of translation and rotation of the sensors with respect to the default 

sensor coordinate system. In the text, for the sake of illustration, simple cases of user guidance are 

used and the user guidance is described in words that are more user-friendly for human users. The 

user guidance generation stops if a complete frame is observed. The detailed user guidance system 

will be described for three general cases - box shape, opening structure, and parallel structure. 

 

Box Shape 

A box shape is defined as the shape that contains two sets of two parallel planes while the two 

sets are perpendicular to each other. As shown in Fig. 3 (a), Plane d and J are parallel to each other, 

so are Plane N and e. Moreover, Plane d is perpendicular to Plane e. The solid lines in Fig. 3 (a) 

denote the intersection lines between two intersection planar surfaces. A typical example of a box 

shape is a hallway in indoor scenes and this paper uses a hallway as an example to illustrate the 

method. To get the dimension of this structure (the width and height of the hallway), the points from 



 

 

all the four planes (d, N, J,  and e) should be observed by the sensor. Therefore, the sensor at the 

baseline poses should be in the center of the hallway and almost horizontal with its view direction 

parallel to Plane d. When the sensor acquires an incomplete frame which does not contain data from 

all the four planes, the user guidance will identify the incompletion of the frame and provide user 

guidance for moving the sensor to capture sufficient points from all the four planar surfaces.  

 

Since a typical hallway (composed of two walls, a ceiling, and a ground floor) is usually 2~3 

meters high, an RGB-D sensor like Kinect is able to capture points from at least three planes of that 

hallway. When the sensor is too high away or too close to the ground floor, the ceiling or the ground 

floor cannot be observed by the sensor. If one planar surface is not obtained in the data, the 

geometric analysis is performed based on the partial data. Based on the prior information (i.e. the 

scene type, the related shape template and baseline sensor poses) and the captured data, the 

hypothesized shape is reconstructed to evaluate the completeness of this frame so as to guide the 

user.  

    

(a) The box shape template 

 

(b) An incomplete frame and 

dimension measurements 

 

(c) The hypothesis shape 

and the user guidance 

 

(d) A complete frame and 

new dimension 

measurements 

Fig. 3. Box shape user guidance 

 



 

 

Fig. 3 shows an example of the user guidance for a box shape. Fig. 3 (a) displays a priori 

knowledge about the box shape template, where gray shapes denote planar surfaces. This shape 

template also contains geometric and topological information of all the four planes. As shown in Fig. 

3 (b), Plane e (i.e., the ground floor) is not detected in the data because it is too close to the sensor 

(closer than the minimum measurement distance of the sensor). Based on the observed planes and 

the shape template, the user guidance system generates a hypothesis box shape from that frame.  

Since the ceiling and the two walls are measured in the data, the intersection lines between the three 

planar surfaces can be derived, as denoted by the two solid lines (in fact horizontal) in Fig. 3 (c).  By 

vertically extending the end points (which are computed according to the line equation and the 

measured point clouds) of the two solid lines, the two vertical dotted lines are hypothesized and the 

other end points of the dotted lines are found based on their equations and the point clouds. The last 

two dotted lines are created by extending the end points while keeping it parallel to the two 

horizontal solid lines. Hence, the box shape (the red lines in Fig. 3 (b)) is constructed for this frame 

and an abstract template (Fig. 3 (c)) is also created. However, the height is not accurate since it is 

computed by hypothesizing the vertical dotted lines and their end points. By comparing the shape in 

Fig. 3 (c) and the shape template in Fig. 3 (a), the system identifies the fact that Plane e is not 

observed and then the user guidance system compares the current sensor pose with baseline sensor 

poses of the box shape and generates guidance for the user to move the sensor higher to obtain the 

accurate height. 

 



 

 

Since the system detects that there are no points from Plane e, the system instructs the user to 

move the sensor higher in order to get points from Plane e, the floor. By following the guidance, the 

sensor is moved higher and then a new and better frame is obtained as shown in Fig. 3 (d). In this 

frame, all the four planes can be extracted from the point clouds and a box shape similar to the 

template can be constructed without using any hypothesis. Thus, both the height and the width of the 

hallway can be computed by geometric analysis.  

 

It should be noted that by assuming the sensor is held almost horizontally, even though only one 

plane is observed, the user guidance system is still able to generate user guidance for moving the 

sensor to find complete frames. For example, if Plane d is observed, based on the sensor pose 

assumption, the user guidance system will identify that at least a wall is captured and provide 

guidance for moving or rotating the sensor right or left to capture more data. Similarly, if two planes 

are captured by the sensor, the user guidance system works well too. 

 

Opening Structure 

An opening structure is defined as an opening in a planar surface, i.e., a rectangular hole within a 

planar surface. In this paper, a door frame that is indented in a wall is used as an example of an 

opening structure. Since most doors in this paper are located in the hallways, it is difficult to obtain 

both its width and height as the sensors cannot move as far from the door as possible when it is 

facing the door. Therefore, this paper currently focuses on estimating the width of a door. As shown 

in Fig. 4 (a), Plane d and Plane N are vertical walls and they are on the same plane (their topological 



 

 

relation is coplanar). In order to get accurate width of the opening, the two planes d and  N are 

necessary to provide constraints to reconstruct the shape of the opening. Thus, the user guidance is 

implemented to ensure that the two planes are observed by the sensor at an optimal pose, where the 

sensor at the baseline poses is almost horizontal and its view direction is orthogonal to Plane d 

and N, and moreover, it is close to the center of the opening. 

 

Fig. 4 displays an example of the user guidance for an opening shape. The opening shape 

template is shown in Fig. 4 (a), where gray shapes denote planar surfaces and solid lines are 

components of the shape.  For example, if Plane N is not captured in the data, a candidate wall is 

identified as follows: first the centroids of Plane d and Plane J are projected onto a line that passes 

the sensor position and is perpendicular to both Plane d and J; since the projected point of the wall 

should be closer to the sensor compared to that of a door, Plane d is detected as a candidate wall. By 

assuming the door width, the system can still reconstruct an estimated shape as shown in Fig. 4 (b). 

Here the vertical solid line is estimated by fitting a line using the boundary points between the two 

parallel surfaces, while the vertical dashed line is hypothesized from the door width assumption. By 

comparing Fig. 4 (c) and (a), the user guidance system identifies that another wall, i.e., Plane N, is 

missing in the current frame. Therefore, using the baseline poses, the system instructs the user to 

move the sensor right so that the data of Plane N can be observed by the sensor. In this way, a new 

frame with better quality data that contains Plane d and N is obtained (Fig. 4 (d)). Thus, the door 

width is computed using the method for estimating the distance between boundary points of 

coplanar planes.  



 

 

  

 

 

(a) Opening structure user 

guidance 

(b) An incomplete frame 

and dimension 

measurements 

(c) The hypothesis shape 

and the user guidance  

(d) A complete frame and 

new dimension 

measurements 

Fig. 4. Opening structure user guidance 

 

It should be noted that for the simplicity of illustration, in Fig. 4 only translation related user 

guidance is discussed. In fact, by comparing with the baseline poses, the user guidance also 

produces sensor movement guidance in terms of orientation. For example, using the incomplete 

frame in Fig.4 (b) as an example, the normal vector fg of the candidate door plane, i.e. Plane J , is 

on the right of the view direction hijkif fg and hijk are both pointing to the door. To make and 

fg and hijk point to the same direction, the sensor should be rotated right in order to approach the 

baseline poses for observing complete frames.  

 

Parallel Structure 

A parallel structure is composed of multiple parallel planes. In this paper, the stair is used for an 

example of parallel structures. The critical dimensions of a parallel structure are the distances 

between parallel planes. For stairs, interesting dimensions are defined as follows (Fig. 5): the width 



 

 

is defined as the distance between two consecutive vertical planes and the height is defined as the 

distance between two consecutive horizontal planes.  

 
 

(a) The definition of stair width and height in a side view 

of a stair. 

(b) The definition of stair width and height in a typical 

stair. 

Fig. 5. Stair dimensions 

 

There are two reasons for using parallel planes in the dimension definition. Firstly, for most 

applications in robotics and civil engineering, the dimensions defined in this way are sufficient even 

though stairs usually contain some protruding parts, for example, stair nosing (the protruding part of 

a tread), and bump to avoid slipperiness on the tread.  Secondly, from a practical perspective, it is 

complicated to fit a perfect rectangle for point clouds since the sensors usually fail to obtain all 

points of edges. Moreover, the methods utilizing least squares estimation to fit a rectangle to point 

clouds are inclined to obtain a smaller rectangle compared to the ground truth. Therefore, we use the 

distance between two parallel planes to define the dimensions of interest and this definition also 

provides hints for the subsequent user guidance.  

 



 

 

In order to obtain the width and height of the stairs, two sets of parallel planar surfaces must be 

presented in the point clouds. Since the width and height of a stair are close to each other, the sensor 

is able to get sufficient points from both horizontal and vertical planes if its view direction is around 

45 degrees with respect to both the horizontal and vertical planes of stairs. Based on this principle, 

the user guidance system estimates its orientation with respect to the stairs and then provides 

corresponding instructions for moving the sensor to get more vertical and horizontal planes.  

   
 

(a) The parallel structure 

template 

(b) An incomplete frame  (c) The hypothesis shape (d) A complete frame and  

Fig. 6. Parallel structure user guidance 

 

Fig. 6 shows an example of the user guidance system for the stair. The template of the stair is 

shown in Fig. 6 (a). In Fig. 6 (b) several vertical planar surfaces and a horizontal planar surface are 

observed in that frame. In this case, only the width of the stair is able to be computed from the 

vertical surfaces by the geometric analysis. Based on the assumption of the shape template (Fig. 6 

(a)) and the frame data, the height of the stair can be approximately computed by estimating the 

height of several vertical planar surfaces. Thus, as shown in Fig. 6 (c), an instantiation of the shape 

template based on the data is derived from the frame data while the width has a good accuracy and 



 

 

the height has a poor accuracy. Based on Fig. 6 (c) and the relative position and orientation of the 

sensor with respect to the stairs, the user guidance system provides guidance for moving the sensor 

to a better position with a better orientation. In this case, the sensor should be rotated toward the 

ground in order to obtain more points from the horizontal planes (Fig. 6 (d)). 

 

Experiments and Results 

Experimental Setup and Sensor Calibration 

In the conducted experiments, a Kinect for Xbox 360 sensor is used as the RGB-D sensor to 

obtain 3D point clouds of indoor scenes. This sensor can capture images with a resolution of 

640x480 and work at a frame rate of 30 fps.  The suggested operation range of this sensor is 0.8 to 

5.0 meters and the depth resolution decreases quadratically with increasing distance from the sensor 

(approximately 7cm at the range of 5m) (Khoshelham and Elberink 2012). 

 

The RGB-D camera has an infrared (IR) camera and a color (RGB) camera. With the assistance 

of an IR laser emitter, the IR camera is able to get a depth image of the environment. Meanwhile, 

the RGB camera is able to capture a color image.  By using the intrinsic parameters of the two 

cameras and the relative transformation between the two cameras, the colored 3D point clouds can 

be computed from the color image and the depth image. When the Kinect sensor is factory-

assembled, the IR sensor and the RGB camera are fixed relative to each other and thus there exist 

default parameters for the two cameras, including the intrinsic parameters and their transformation 

matrix. However, due to imperfections in the manufacturing process, these default parameters 



 

 

cannot be expected to be exact for all Kinect sensors. Therefore, it is necessary to calibrate the 

Kinect sensor if it is used for applications that require high and repeatable accuracy. The sensor 

calibration in this paper aims to obtain intrinsic and extrinsic parameters of the Kinect sensor and 

thus obtain accurate 3D colored point clouds from the sensor. By viewing the Kinect as a stereo 

system, a stereo camera calibration method is utilized to calibrate the Kinect and obtain its intrinsic 

parameters, and the extrinsic parameters between its IR camera and RGB camera.  

 

The sensor is calibrated before gathering data. During the calibration, the IR emitter is covered 

by an opaque object and thus the IR sensor can obtain intensity instead of depth. To enable the IR 

sensor to capture a bright image, a lamp is used to provide more illumination for the calibration 

markers. In addition, to enable higher marker detection results, a fiducial marker system based on 

AprilTags (Olson 2011) is used instead of traditional checkboard for calibration. Based on multiple 

pairs of images by the IR sensor and the RGB sensor, the calibration obtains the parameters of the 

stereo system.   

 

To fully utilize the knowledge of the measured indoor environment, during the experiments the 

sensor should be held almost horizontally to the extent possible by the user, which ensures that the 

gravity direction is consistent with the assumption used in recognizing components of scenes. The 

sensor can be tilted a little bit as a tolerance (±15m within the desired gravity direction) is added to 

check the gravity direction. Within this context, for a hallway, the floor is almost horizontal while 

the wall is almost vertical in the point clouds. This assumption is reasonable in terms of the potential 



 

 

applications. For a robotic platform, it is easy to mount the sensor in this position. For a user holding 

the device, the sensor can be easily adjusted to meet this assumption. 

 

Regarding the user guidance, the scene type, i.e. box shape, opening structure, or parallel 

structure, is selected by the user. The user guidance utilizes the shape template of the scene and 

geometric analysis to identify these planar components and the completeness of the frame. If the 

frame is incomplete, the system will generate user guidance and prompt it in the command window 

for the user. The correctness of the generated user guidance is highly dependent on the geometric 

analysis results, especially the components detection results for the specific scene type. For example, 

when observing the door, if one frame only contains the partial data from a cuboid recycle bin and 

the wall, the system will identify the wall as a candidate door while viewing the recycle bin as a 

candidate wall. In this context, the user guidance provided by the sensor will not be able to help find 

the correct door. In summary, for the current implementation, if the observed scene matches the 

designated shape template and the components identification is correct, the system can generate 

correct user guidance. 

 

Average Geometric Measurement Accuracy 

To evaluate the geometric measurement accuracy, multiple complete frames are acquired by 

moving the sensor to different positions in order to obtain data at different viewpoints. The average 

values over all the measurements from those complete frames are used to demonstrate the accuracy 

and performance of the sensor in estimating the dimensions. The ground truth of the dimensional 



 

 

information is obtained using a tape measure by a carpenter having ten years of construction 

experience. The error of this system is calculated by subtracting the average value from the ground 

truth. 

 

In terms of a hallway structure, the method is tested on ten hallways in four different buildings. 

The overall accuracy of the widths and the heights of the hallways is shown in Table 1. The mean 

absolute error of the width measurement is 22mm while that of the height is 36mm. Considering the 

accuracy of the Kinect sensor, it can be concluded that this method is able to obtain accurate 

hallway width and height. The standard deviations of the absolute errors of the width and height 

measurements are 15mm and 24mm respectively. As shown in Table 1, the width measurement 

usually has a lower error and relative error compared to the height and moreover, the standard 

deviation of the width measurement is smaller than that of the height measurement. The reason is 

that the width of a hallway is usually less than its height and Kinect tends to obtain low-quality data 

from the ceiling or the floor because the uncertainty of the sensor goes up as the distance increases.   

 

Table 1. Absolute errors and relative errors of hallway width and height measurements. Avg. and 

Std. denote average value and standard deviation of each column respectively. 

ID 

Error (mm) Relative Error 

Width Height Width Height 

Hallway 1 32 15 1.79% 0.59% 



 

 

Hallway 2 33 55 1.81% 2.26% 

Hallway 3 23 77 0.94% 2.65% 

Hallway 4 48 27 1.96% 1.10% 

Hallway 5 24 41 0.99% 1.67% 

Hallway 6 4 15 0.16% 0.57% 

Hallway 7 1 3 0.05% 0.11% 

Hallway 8 32 50 1.33% 1.82% 

Hallway 9 17 68 1.12% 1.98% 

Hallway 10 4 12 0.20% 0.49% 

Avg. 22 36 1.04% 1.32% 

Std. 15 24 0.67% 0.82% 

 

For door frames, the method is tested on ten door frames in different buildings. The overall 

accuracy of the width of doors is shown in Table 2. The mean absolute error of the door width 

measurements is 16mm, which shows that the method measures door width with high accuracy. The 

standard deviation of the absolute errors is 14mm, which reflects the stability of this method in 

measuring door width.  

 



 

 

Table 2. Absolute errors and relative errors of door width. Avg. and Std. denote average 

value and standard deviation of each column respectively. 

ID Error (mm) Relative Error  

Door 1 9 0.98% 

Door 2 39 4.25% 

Door 3 4 0.38% 

Door 4 5 0.55% 

Door 5 19 2.08% 

Door 6 11 1.20% 

Door 7 41 4.50% 

Door 8 20 2.19% 

Door 9 5 0.55% 

Door 10 2 0.22% 

Avg. 16 1.69% 

Std. 14 1.49% 

 

For stairs, the method is tested on ten stairs in different buildings. The mean absolute errors of 

the width and the height of these ten stairs are 4mm and 15mm respectively while the standard 

deviations are 4mm and 9mm as shown in Table 3. Compared to the accuracy of Kinect, these errors 

demonstrate that using parallel planes to compute dimensions is able to get an accurate and stable 

estimation. In addition, compared to the dimension measurements of hallways and doors, the stair 



 

 

dimension measurements have a lower mean absolute error and standard deviation. This is partly 

due to the fact that the stair width and height estimated from a single frame are usually computed 

using multiple planes while the width and height of a hallway and the width of a door are estimated 

using two planes from a single frame.  

 

Table 3. Absolute errors and relative errors of stair width and height measurements. Avg. and Std. 

denote average value and standard deviation of each column respectively. 

ID 

Error (mm) Relative Error 

Width Height Width Height 

Stair 1 4 11 1.43% 5.97% 

Stair 2 6 24 2.12% 13.03% 

Stair 3 2 10 0.68% 6.18% 

Stair 4 15 28 5.91% 14.30% 

Stair 5 0 5 0 2.72% 

Stair 6 1 14 0.36% 7.41% 

Stair 7 5 4 1.62% 2.25% 

Stair 8 2 11 0.65% 6.42% 

Stair 9 10 4 3.48% 2.22% 

Stair 10 29 1 11.30% 0.55% 



 

 

Avg. 7 11 2.76% 6.13% 

Std. 8 8 1.62% 4.30% 

 

Even though the mean absolute errors of the stair height and width are lower than those of 

hallway and door dimensions, both the relative errors of the stair width and height (2.67% ad 6.13%) 

are larger than those of the hallway and door dimension. This is mainly because the absolute values 

of the stair height (~180mm) and width (~300mm) are smaller compared to door width (~1,000mm), 

hallway width (~2,000mm), and hallway height (~2,500mm).  

 

The developed methods are implemented in C++. The Point Cloud Library (PCL 2016) is utilized 

for capturing 3D point clouds from the Kinect sensor. The Computation Geometry Algorithms 

Library (CGAL 2016) is used for geometry computation. For the three cases, hallway, door, stairs, 

the average frame processing time are 0.03s, 0.8s, and 0.07s respectively. The experiments were 

conducted on a desktop with Intel Core i7-4790K CPU of 4.00GHz and RAM of 16GB. The 

implementation does not employ any multi-threading or GPU techniques. The door frame takes 

longer time because many geometric operations (e.g. boundary extraction) are performed in data 

analysis. However, using multiple threading techniques, the processing time can be improved and 

thus the system will be feasible for real-time applications.  

 



 

 

Relations between Sensor Poses and Dimension Measurements 

To obtain complete frames of a scene, sensor poses (orientations and positions) have many 

options. This section will evaluate relations between sensor poses and the accuracy of dimension 

measurements for the three scenes. As aforementioned, the user guidance system generates 

instructions about moving the sensor’s position and orientation. The hallway which has larger 

dimensions compared with the other two is used to evaluate the effect of sensor positions on the 

dimension measurement errors while the stairs to evaluate the effect of sensor orientations on the 

dimension measurement errors.  

 

In terms of the hallway case, as the height of a hallway is usually larger than the width, we 

primarily evaluated the errors of height measurements corresponding to positions of the sensor by 

only varying the height of the sensor. We held the sensor horizontally, and vertically moved the 

sensor from a position close to the ground floor to a position close to the ceiling. Thus, the sensor 

poses in this way are assumed to have only variations in height. To obtain the relations between the 

sensor position and the error of the height measurement, the absolute distance difference 2∗ between 

the distance from the sensor to the ground floor and that from the sensor to the ceiling is computed. 

If the sensor is near the center of the hallway, the absolute difference 2∗  is near zero. On the 

contrary, if the sensor is close to the ground floor or the ceiling, 2∗ is larger and approaches the 

height of the hallway. For this hallway whose height is 2.91 meters, when the absolute difference 2∗ 

is larger than 2.6 meters, the sensor cannot observe any complete frames. As shown in Fig. 7, the 

average absolute error of height measurement increases as the absolute distance difference 2∗. This 



 

 

is partly due to the fact that when the sensor is far away from the hallway center, it captures many 

lower quality points that are far away from the sensor. For example, when the sensor is close to the 

ground and far from the ceilings, the ceiling points will have larger uncertainty compared to the 

ground points. These points with large uncertainty might lead to large errors in dimension 

measurements. In addition, as shown in Fig. 7 when the absolute distance difference 2∗ is less than 2 

meters, the absolute error of height measurement has less variance compared to that within 2 and 2.5 

meters. Thus, it is concluded that when the sensor is close to the center of a hallway it tends to 

provide robust and accurate hallway height estimation.  However, it should be noted that if the 

sensor is located away from the center of a hallway, it does not necessarily indicate that higher 

accuracy dimensional measurements cannot be obtained. For example, when the absolute distance 

difference 2∗ is within 2 and 2.5 meters some of the absolute errors of height measurement are 

pretty accurate (less than 10mm). This is because the dimension measurements are computed using 

least squares estimation which mitigates large uncertainty of some points. Therefore, even though 

some points have higher uncertainty (which is still centimeter level), they do not dominate the least 

squares estimation results, i.e. dimension measurements in this paper. This is also indicated in Fig. 7 

by the fact that the average height measurement errors of different ranges are within 20mm.  



 

 

 

Fig. 7. Absolute error of measurements corresponding to absolute distance difference 2∗ between 

the distance from the sensor to the ground floor and that from the sensor to the ceiling. 

 

For stairs, we collected data by only varying the view direction of the sensor to evaluate whether 

the sensor’s orientation can improve the accuracy of dimensional measurements. We manually held 

the sensor horizontally and then rotated the sensor to change its view direction. From this dataset, 

the complete frames are extracted and their errors against the sensor orientation are shown in Fig. 8.  

To obtain complete frames, the sensor’s orientation with respect to the horizontal surfaces of the 

stairs should be greater than 18p and less than 73p . The results show that the errors are within 

20mm and the dimension measurements have similar errors given that the error of Kinect point 

measurement is also on the order of centimeters. In addition, Fig. 8 demonstrates that the sensor 



 

 

orientation does not significantly affect errors of dimension measurements. This is also due to the 

sensor uncertainty and the dimension estimation method. 

 

Fig. 8. Error of dimensions corresponding to sensor orientations for completed stair frames. 

 

Conclusions and Future Work 

In this paper, a user-guided dimensional analysis method for indoor building environments is 

introduced. The system uses a single frame from an RGB-D sensor to obtain the dimensions of an 

indoor scene by extracting planes and performing the geometric analysis. To overcome the 

disadvantage of the single frame data, a user guidance strategy is employed to provide guidance for 

better sensor poses in order to acquire complete data frames. Experimental results show that this 

method can obtain accurate dimensions of hallways, doors, and stairs with centimeters error. The 

user guidance system is able to provide useful guidance for moving the sensor to obtain complete 



 

 

frames. The experimental results also demonstrate that due to the uncertainty magnitude of the 

sensor and the dimension estimation method, when complete frames are captured the sensor poses 

have little effect on dimension measurements accuracy. Since the current user-guidance system only 

guides the user to obtain complete frames, future work will explore how to systematically 

investigate the relations between various sensor poses and the dimension measurement accuracy in 

order to generate guidance for better frames in terms of high accuracy dimension measurements.  

 

Due to the sensor, i.e. RGB-D cameras, used in the experiments, this research has two main 

limitations. Firstly, the RGB-D sensors do not function well in outdoor environments because the 

ambient IR affects the functionality of the IR sensor. Secondly, the RGB-D cameras have limited 

accuracy which is not sufficient for some construction tasks especially during the construction phase 

(e.g., door installation). To overcome these two limitations, different sensors can be utilized to 

replace RGB-D cameras. For example, a stereo camera system can be used to get 3D point cloud in 

both indoor and outdoor environments. For those applications requiring high accuracy, more 

accurate sensors (e.g., laser scanners) can be adopted to acquire 3D point clouds. When different 

sensors are used, if the scene is the same, some minor changes needs to be made according to the 

property of sensors. Future work will investigate using stereo camera systems for measuring 

dimensions of civil infrastructure elements in both indoor and outdoor environments. Another 

limitation of the paper is that it can be only applied to infrastructure elements composed of planar 

surfaces. Future work will explore the design of corresponding geometric analysis and user guidance 

system for scenes containing non-planar surfaces. 
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