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Abstract

We analyze brain waves acquired through a consumer-grade EEG device to investigate its
capabilities for user identification and authentication. First, we show the statistical signifi-
cance of the P300 component in event-related potential (ERP) data from 14-channel EEGs
across 25 subjects. We then apply a variety of machine learning techniques, comparing the
user identification performance of various different combinations of a dimensionality reduction
technique followed by a classification algorithm. Experimental results show that an identifi-
cation accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition,
we demonstrate that the user identification accuracy can be significantly improved to more
than 96.7% by joint classification of multiple epochs.
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High-Accuracy User Identification Using EEG Biometrics

Toshiaki Koike-Akino, Ruhi Mahajan, Tim K. Marks, Ye Wang, Shinji Watanabe, Oncel Tuzel, and Philip Orlik

Abstract— We analyze brain waves acquired through a
consumer-grade EEG device to investigate its capabilities for
user identification and authentication. First, we show the
statistical significance of the P300 component in event-related
potential (ERP) data from 14-channel EEGs across 25 subjects.
We then apply a variety of machine learning techniques, com-
paring the user identification performance of various different
combinations of a dimensionality reduction technique followed
by a classification algorithm. Experimental results show that
an identification accuracy of 72% can be achieved using only
a single 800 ms ERP epoch. In addition, we demonstrate that
the user identification accuracy can be significantly improved
to more than 96.7% by joint classification of multiple epochs.

I. INTRODUCTION

Biometrics based on neurological signals such as the
electroencephalogram (EEG) have been of recent interest
in the literature. Compared to commonly used biometrics
such as fingerprint, palm vein, and iris recognition, EEG-
based biometrics may be less possible to forge [1]. There is
a plethora of research demonstrating the potential of EEG
for user identification (one-to-many matching) as well as for
authentication (one-to-one matching) of a given person in
a pool of multiple people [2]-[6]. In this proof-of-concept
study, we limit the scope of analysis to identification, because
the extension to authentication is straightforward.

Many studies have reported applying various signal pro-
cessing and machine learning techniques to EEG data for
user identification and authentication, with varying accuracy.
He et al. [7] used autoregressive features and a naive Bayes
(NB) classifier, achieving a half total error rate (HTER)
of 6.7% for authentication on 4 subjects. Marcel et al. [2]
implemented a statistical framework with a Gaussian mixture
model (GMM) and maximum a posteriori (MAP) estimation
for authenticating 9 subjects, achieving an HTER as low as
6.6%. Palaniappan [8] used a linear discriminant analysis
(LDA) classifier to achieve 100% accuracy in classifying 5
subjects, whereas Nguyen et al. [9] used a support vector
machine (SVM) to obtain an error rate below 7.6%.

Most of these studies used either clinical-grade or high-
density EEG systems with access to 32, 64, 128, or even
more channels of EEG data. While these high-cost EEG
systems can provide good space-time resolution of brain
activities, the mobility of the user can be too restricted for
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Fig. 1. General EEG-based user identification/authentication framework.

real-life scenarios, and lengthy setup time may be required.
For consumer-grade EEG devices, only a few studies have
reported high performance [1], [10], [11]. Ashby et al. [10]
showed high classification accuracy near 100% for 5-subject
authentication with low-cost EEG sensors. More recently,
Abo-Zahhad et al. [1] and Chuang et al. [11] reported more
than 99% accuracy by using single-channel EEG data, for
10- and 15-subject authentication, respectively.

In this study, we demonstrate the feasibility of using a
consumer-grade wireless EEG device, the Emotiv EPOC, for
user identification in natural environments. Fig. 1 illustrates
a general EEG-based identification/authentication system.
Compared to existing literature, we focus on event-related
potential (ERP) data, rather than EEG spectrograms, to
analyze the impact of channel selection and dimensionality
reduction techniques on classification accuracy. Our contri-
butions are five-fold: 1) we show statistical significance for
target vs. non-target P300 components in ERP data; 2) we
compare dimensionality reduction techniques including prin-
cipal component analysis (PCA) [12], partial least-squares
(PLS) [13], and channel selection for feature extraction;
3) we compare a number of widely used classifiers in
machine learning [14], specifically, LDA, quadratic discrim-
inant analysis (QDA), NB, decision tree (DT), k-nearest
neighbors (k-NN), SVM, logistic regression (LR), and deep
neural network (DNN); 4) we demonstrate that more than
96% accuracy can be achieved for larger-scale 25-subject
experiments; and 5) our analysis suggests that even larger-
scale systems are feasible using multi-epoch classification.

II. METHODOLOGY
A. Event-Related Potential (ERP)

An event-related potential (ERP) is an EEG signal time-
locked to a specific motor, cognitive, or sensory event. The
components of an ERP waveform are usually categorized
as sensory/exogenous (peaking up to ~100 ms after the
stimulus) and cognitive/endogenous (peaking up to 600 ms
after the stimulus) [15]. The endogenous components repre-
sent how the stimulus information is processed, whereas the



exogenous components are mainly governed by the stimu-
lus characteristics. In this paper, we focus on endogenous
components, in particular the P300 component, which is a
positive peak that occurs roughly 300 ms after stimulus onset.

The P300 component can provide information about how
a subject reacted to a stimulus. We implement a commonly
used oddball paradigm [16] to elicit the P300, in which the
subject is instructed to respond to (relatively rare) target
stimuli and ignore non-target stimuli. Our approach is to
identify features and inter-subject variations in this stimulus
response to perform identification.

B. EEG Data Acquisition

To record the brain activities from participants, we used
a l4-channel referential montage-based commercial EEG
device, the Emotiv EPOC (which is regarded by [17] as the
best low-cost EEG device in terms of usability). Real-time
EEG data were monitored at a rate of 128 samples/second.

EEG data were collected from 25 healthy adults, based on
the international 10-20 standard electrode locations at AF3,
AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, Ol, and
02, depicted as green-filled circles in Fig. 2(a). The data
were acquired in a naturalistic setting: a typical office envi-
ronment, without any specific isolation from office workers.
Each subject performed either one session (4 subjects) or
two sessions (21 subjects) of the experimental task. Subjects
with two sessions removed the headset and took a break
(15-60 min.) between the sessions. All procedures were
in accordance with the ethical standards of the responsible
committees on human experimentation and with the Helsinki
Declaration of 1975, as revised in 2000. Written informed
consent was obtained from all participants prior to this study.

C. Experimental Protocol

In this paper, we focus on a card counting task. This
is only one of many tasks that can be used for identifica-
tion/authentication (for example, [11] found other tasks such
as breathing to be more effective). Our goal is not to select
the optimal experimental protocol, but rather to demonstrate
the effectiveness of our statistical analysis and classification
approach. We leave investigation of the relative effectiveness
of various experimental protocols to future work.

Fig. 2(b) illustrates our experimental protocol, in which
five Zener cards [18] are sequentially displayed in random
order on a computer screen. Prior to data acquisition, par-
ticipants are asked to select any one of the five Zener cards,
which we refer to as the farget card in this study. The task
of the participant is to count how many times their target
card appeared on the screen. At the end of the experiment,
participants are asked how many times their target card
appeared, to verify that they performed the counting task.
As depicted in Fig. 2, each card (target or non-target) is
displayed for 200 ms, with an inter-stimulus interval of
800 ms. One session lasts about 4.2 min., leading to about
250 trials (i.e., ~ 50 presentations of each Zener card).
Participants are instructed to refrain from moving their body
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Fig. 2. Experiment protocol with Zener cards [18] displayed on the
main screen. The real-time EEG data are captured and monitored on the
experimenter’s screen using the Emotiv Testbench software.

and eyes during the experiment by fixating eyes on the center
dot on the screen during the 800 ms inter-stimulus interval.

D. Extracting Features with Reduced Dimensionality

To investigate the event-related EEG dynamics, epochs
are time-locked to the stimulus presentation. Each epoch is
recorded beginning 100 ms pre-stimulus and ending 700 ms
post-stimulus presentation. To remove ocular artifacts, we
used the blind source separation canonical correlation anal-
ysis (BSS-CCA) in the AAR toolbox [19]. After artifact
removal (rejection ratio was 4.22%), we obtained 12,139
epochs in total, each with a duration of 800 ms.

The raw 14-channel ERP data for a single epoch have a
size of 103 x 14 = 1442 dimensions. Dimensionality reduc-
tion of these ERP data is beneficial both to facilitate real-
time applications and to improve classification performance.
As shown in [11], even data from just a single channel
may be useful for identification/authentication. The most
basic dimensionality reduction is to simply select a subset
of the 14 channels. We also consider the more sophisticated
dimensionality reduction techniques PCA [12] and PLS [13].

PCA projects the measurement data via an orthogonal
transform onto a space in which the data components are
uncorrelated. The components are the dominant eigenvec-
tors (corresponding to the largest eigenvalues) of the data
covariance matrix, without considering class labels. In con-
trast, PLS tries to find projection vectors that maximize the
covariance between the projected data and the class labels.

E. Machine Learning for Classification

We compare the effectiveness for user identification of sev-
eral machine learning classification algorithms: LDA, QDA,
NB, DT, k-NN, SVM, LR, and DNN [14]. The classifiers of
LDA, QDA, and (Gaussian) NB are based on an assumption
that the ERP data from each subject are normally distributed.
Compared with QDA, LDA adds an additional assumption
that the covariance of each class is identical, leading to lower-
complexity classifications. For LDA, we adopt no shrinkage
and no threshold offset in this paper, because they provided
almost no performance improvement. Like QDA, NB allows
classes to have non-identical covariance; the key assumption
of NB is that the measurement variables are assumed to be
conditionally independent given the class label. The DT is a



nonparametric classifier using a set of simple rules with no
explicit assumptions about the data distribution. The method
k-NN is also non-parametric, and one of simplest machine
learning algorithms. We chose the number of neighbors k =1
(simple nearest neighbor), as it worked the best. For multi-
class SVM classifier, we use multiple linear SVMs based on
a one-vs.-one method, since other variants such as Gaussian-
kernel SVM and one-vs.-all did not perform better. We also
consider LR as alternative to NB and linear SVM. Our DNN
has 2 hidden layers (1000 rectified linear units each), trained
using an adaptive-moment stochastic gradient method.

III. DATA ANALYSIS RESULTS
A. Significance Test

It is known that the P300 component is typically most
prominent at the Fz (frontal), Cz (central), and Pz (parietal)
midline scalp electrode locations, shown as white-filled cir-
cles in Fig. 2(a). However, the Emotiv EPOC headset does
not provide direct access to these locations. To access these
scalp locations indirectly, we averaged the channel pairs F3
and F4 (which we refer to as F), AF3 and AF4 (AF), Ol
and O2 (O), and P7 and P8 (P). We used these four electrode
pairs to test for statistically significant differences between
the P300 responses for target vs. non-target stimuli. Fig. 3
shows the grand average ERP for all 12,139 epochs of all
subjects (with no specific processing to account for inter-
subject variability) for these four averaged pairs of channels
(F, AF, O, and P). Statistically significant differences, found
using a paired #-test with Bonferroni correction (with n =
4) at a significance level of o = 0.10, are indicated by
black rectangles below the ERP plots in Fig. 3. There is
a significant difference between the target and non-target
stimuli responses, especially for F and AF channels from
400-600 ms, which may correspond to the P300 component.
The P and O channels have more complicated characteristics,
yet a statistically significant difference is still observed.

The ¢-test for all 12,139 epochs of 25 participants showed
statistical significance in the F, AF, O, and P channels. In
fact, when we jointly analyze the statistics across all 14
channels at once, the required number of epochs needed to
observe statistical significance can be decreased, as shown
in Fig. 4. This figure shows p-value of Hotelling’s r>-test
for 14-channel ERPs. Here, we randomly select 50, 100,
or 200 epochs from the set of all target epochs, and the
same number from the set of all non-target epochs. It can
be seen that the p-value can run below a significance level
of o¢ =0.10 for 100 epochs at around 500 ms. Since there
are 25 subjects, this indicates that 4 epochs per subject are
sufficient to statistically differentiate ERPs for target versus
non-target events using P300 components.

B. Dimensionality Reduction

Fig. 5 shows the percentage of variance explained by
a limited number of components extracted using PCA or
PLS. Observe that for PCA, about 7% of the principal
components (100 components out of 1442 original feature
dimensions) explain 90% of the data variance. Although PLS
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Fig. 4. p-value of Hotelling’s r>-test for joint 14-channel statistics with
limited number of epochs.

accounts for a slightly lower percentage of the variance in the
measurement data (X) than PCA, PLS can be more effective
for regression because it is designed to explain the variance
in the class label (Y). Using PLS, 65% of the variance in Y
can be explained by 100 components, with almost no loss in
the explained variance of X compared to PCA.

The impact of the reduced dimensionality is evaluated
using several classifiers in Fig. 6, which plots the user-
identification error rate (in a 10-fold cross-validation) as a
function of the number of dimensions in the reduced data.
Here, PLS is used to reduce the dimensionality of the data
from the original 1442 dimensions for all epochs (including
targets and non-targets). For two of the classification methods
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(LDA and QDA), the performance curves with PCA are also
presented for comparison. Comparing these two dimension-
ality reduction techniques, it is seen that PLS outperforms
PCA as input to both of the classification algorithms, LDA
and QDA. More importantly, the results demonstrate that
dimensionality reduction is of great importance to achieve
higher classification accuracy, in particular when the avail-
able training data are limited (e.g., 12,139/25 ~ 486 epochs
per subject in our data set). The best performance, near 72%
accuracy, was obtained by QDA after using PLS to reduce the
number of dimensions to 100. In our analysis, non-parametric
classifiers, i.e., DT and k-NN, performed worse than other
methods. In addition, SVM had almost no advantage over
simpler methods of LDA, QDA, and NB. Although DNN
shows relatively good performance, QDA outperforms DNN
because the number of ERP measurements in our experiment
was not large enough for deep learning. From this result, we
focus on QDA for the following analyses.
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Fig. 7 shows the performance of QDA classification with
PLS dimensionality reduction when we select a subset of
channels from the original 14 channels. Among the O, F, P,
and AF channels, the O channels (O1 and O2) were shown to
be the most effective electrodes for classification. This may
be because our experiments are based on visual stimuli. The
P channels were slightly better than the AF and F channels.
The reason may lie in the fact that both the O and P channels
have relatively complicated ERP dynamics, as is evident in
Fig. 3, which might facilitate user identification. However,
the combination of the O and P channels was not noticeably
more effective than the combination of the O and F channels.
The 8-channel combination of the O, F, P, and AF channels
approaches the accuracy of the full 14-channel case.

C. Joint Classification of Multi-Epoch ERP

The above-mentioned 72% accuracy achieved using only
a single epoch (800 ms) of data is remarkable for 25-
subject identification, in comparison to previous work in the
literature. For example, 150 seconds of total data were used
with fewer subjects in [10], while 5-second spectrograms and
about 10-second ERP (for 15 eye blinks) were used in [11]
and in [1], respectively. The advantage of longer-duration
EEG data is analyzed in Fig. 8, where we perform PLS
dimensionality reduction on concatenated multiple epochs
(with 4-times bootstrapping), followed by LDA or QDA for
joint classification of multiple epochs. It was revealed that
this multi-epoch classification can significantly improve clas-
sification accuracy. For example, LDA can achieve 96.7%
accuracy with 16-epoch (12.8 seconds) classification.

Note that QDA performance degrades considerably for
more than 200 components (as is evident in Figs. 6, 7, and
8). This is because LDA estimates a single covariance matrix
(identical for all subjects), whereas QDA must estimate a
separate covariance matrix for each subject. Thus, QDA
can use only 1/25 as much data as LDA to train each
covariance matrix. This leads to rank deficiency of QDA’s
subject-specific data covariance matrices when the data are
represented using high-dimensional features.
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We now discuss the impact of the number of subjects to
be identified. In Fig. 9, the error rates obtained by LDA and
QDA are plotted as a function of the number of subjects
(100 PLS components). Note that the error rate is nearly
linear with respect to the number of subjects to identify.
Thus, building a large-scale user-identification system may
be challenging. Nevertheless, multi-epoch classification is a
viable countermeasure, since the error rate can be decreased
almost exponentially as a function of the number of epochs
(e.g., 52.0, 37.9, 22.1, 10.4, and 4.9% error rates for 25-
subject LDA with 1, 2, 4, 8, and 16 epochs, respectively).

IV. CONCLUSION

We analyzed the use of ERPs for identification and authen-
tication using a low-cost EEG headset. In our experiments,
the r-test and >-test showed statistical significance in the
P300 components of target vs. non-target stimulus response.
We also demonstrated that dimensionality reduction plays an
important role for classification. Through the comparison of
several dimensionality reduction techniques and classifica-

tion algorithms, we found that using only a single 800 ms
epoch, PLS dimensionality reduction followed by QDA
classification achieves 72% accuracy for 25-subject identi-
fication from EEG biometrics. Moreover, we demonstrated
the significant advantage of multi-epoch classification, which
can almost exponentially decrease error rates to achieve
near 100% accuracy. The impact of channel selection for
lower-cost sensing and the impact of the number of users
for large-scale identification were also discussed. This study
paves the way for future investigation of real-time EEG-
based biometrics techniques using a wireless EEG device
in non-clinical settings. More efficient experimental protocol
design remains as future work.
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