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Abstract
This paper presents a reconfigurable Plug-andPlay (PnP) Model Predictive Controller (MPC)
for multievaporator vapor compression systems (VCS) where individual evaporators are per-
mitted to turn on or off. This alters the number of performance variables, actuators and
constraints. The proposed approach features structural online updates of the closed loop
system with stability guarantees, and avoids the need to commission and tune separate con-
trollers for when individual subsystems are turned on or off. To compare the performance
of the proposed approach, a more conventional switched MPC is also developed in order
to provide a benchmark design, wherein separate model representations are developed and
controllers with numerous tuning parameters are synthesized and deployed depending on the
VCS operation mode. Simulations are provided comparing the performance of the proposed
reconfigurable PnP MPC to the traditionally-designed switched MPC. Results confirm that
the reconfigurable PnP MPC maintains the same performance as the switched MPC approach
in terms of room temperature reference tracking after zones are switched on, enforcement of
critical machine constraints, and disturbance rejection. However, reconfigurable PnP MPC
requires no extra tuning or controller design effort, and can be automatically synthesized
from a single master controller design for any VCS operating mode.
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A Reconfigurable Plug-and-Play Model Predictive Controller for
Multi-Evaporator Vapor Compression Systems

Junqiang Zhou, Daniel J. Burns,† Claus Danielson, and Stefano Di Cairano

Abstract— This paper presents a reconfigurable Plug-and-
Play (PnP) Model Predictive Controller (MPC) for multi-
evaporator vapor compression systems (VCS) where individual
evaporators are permitted to turn on or off. This alters the
number of performance variables, actuators and constraints.
The proposed approach features structural online updates of the
closed loop system with stability guarantees, and avoids the need
to commission and tune separate controllers for when individual
subsystems are turned on or off. To compare the performance of
the proposed approach, a more conventional switched MPC is
also developed in order to provide a benchmark design, wherein
separate model representations are developed and controllers
with numerous tuning parameters are synthesized and deployed
depending on the VCS operation mode.

Simulations are provided comparing the performance of the
proposed reconfigurable PnP MPC to the traditionally-designed
switched MPC. Results confirm that the reconfigurable PnP
MPC maintains the same performance as the switched MPC
approach in terms of room temperature reference tracking
after zones are switched on, enforcement of critical machine
constraints, and disturbance rejection. However, reconfigurable
PnP MPC requires no extra tuning or controller design effort,
and can be automatically synthesized from a single master
controller design for any VCS operating mode.

I. INTRODUCTION

Vapor compression systems (VCS), such as heat pumps,
refrigeration and air-conditioning systems, are widely used
in industrial and residential applications. The introduction of
variable speed compressors, electronically-positioned valves,
and variable speed fans to the vapor compression cycle has
greatly improved the flexibility of the operation of such
systems (Fig. 1). This increased actuator flexibility, along
with increasing onboard computational power, enables more
sophisticated control schemes than traditional on-off logic,
or decoupled PI controllers. For example, Model Predictive
Control (MPC) of vapor compression systems offers a flexi-
ble and rigorous design process in which the constraints are
enforced during transients and can be modified as the design
evolves. Furthermore, by appropriate designs, the resulting
controller provides guarantees on feasibility, optimality, con-
vergence, transient performance and stability [1], [2].

Prior work on predictive control of multi-evaporator sys-
tems have exploited the repeated evaporators and associated
mechanical elements to identify symmetries in the underlying
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model structure [3], and in fact, similar observations under-
pin the current work. This structure has lead several groups
to propose decentralized controller architectures [4], [5],
motivated primarily by an effort to overcome computational
challenges associated with centralized approaches. However,
prior approaches consider only fixed-operation machines
where the number of active evaporators does not change.
In practice, however, many multi-evaporator systems often
experience low heat loads in localized zones such that a
particular evaporator no longer needs to provide cooling
and should be shut off while the remaining evaporators
continue to provide service. Despite the promising advan-
tages of model predictive control on vapor compression
systems, key challenges remain to extend the approach to
a multi-evaporator system where individual evaporators can
be turned on or off independently, e.g., by closing the valves
that allow refrigerant to enter the evaporator and shutting off
the associated fan. Turning subsystems on or off alters the
structure of the prediction model and changes the number
of regulated variables, actuators, sensors, and constraints. A
structural change of this nature typically requires a separate
controller for each machine operating mode (also known as
monolithic control design) [6], [7].

However, recent work has extended Youla-Kucera param-
eterization to controller structural modification which has
resulted in the flexibility to add or remove the number
of actuators and sensors from the controller during online
operation and has been termed ‘plug-and-play’ (PnP) con-
trol [7]. The PnP model predictive control has also been
developed for complex networks based on decentralized [8]
and distributed [9] approaches motivated by the time-varying
network topology in which subsystems join or leave the
network. These proposed approaches require a re-design of
the controllers to guarantee stability in response to changing
network conditions.

Considering that the control re-design for MPC typically
requires either complex online computations or deployment
of large pre-designed controller parameters into the hard-
ware, it is difficult to practically implement such algorithms
on vapor compressor machines with microprocessors having
limited computational capabilities and memory. Therefore,
this paper proposes a reconfigurable plug-and-play MPC
design by exploiting the repeated subsystem model structure
that emerges from multiple connected evaporators in parallel
to a compressor and condenser. The proposed approach
features a single control law designed for the situation when
all subsystems are turned on, and enables automatic synthesis
of controllers for operating modes when any number of



evaporators are turned off. In this way, a single controller
can be designed and tuned based on a single appropriately-
partitioned prediction model, and can scale to any combina-
tion of active evaporators in a multi-evaporator VCS. Further,
the reconfigurable MPC design is compared with a switched
MPC design both in terms of closed loop system performance
and practical implications of controller reconfiguration such
as the engineering effort required to synthesize, tune and
validate a controller for each instance of system operation.

The paper is organized as follows: Section II gives a
description of the model and associated augmentations. The
reconfigurable MPC design is proposed in Section III. Fi-
nally, simulation and comparison results against a switched
MPC design are presented in Section IV with concluding
remarks offered in Section V.

Notation: For x ∈ Rn, y ∈ Rm, we define col(x, y) :=
[xT yT ]T and ‖x‖2P := xTPx. Denote Z := {0, 1, ...}
as the set of nonnegative integer numbers. The direct-sum
of matrices G1 ∈ Rn1×m1 and G2 ∈ Rn2×m2 is denoted
as G1 ⊕ G2 :=

[
G1 0
0 G2

]
∈ R(n1+n2)×(m1+m2). Let X be a

convex polyhedral set of the form X := {x : Fix ≤ gi, i =
1, 2, ...}. Then, a soft constrained set Xε with a slack variable
ε is expressed as Xε := {x : Fix ≤ gi + ε, i = 1, 2, ...}.

Elementary matrix operation to zero out non-zero entries
in i-th row and j-th column of a matrix P ∈ Rn×m can
be obtained by pre- and post- multiplying matrices as ΘiP
and PΘj , where Θi ∈ Rn×n and Θj ∈ Rm×m are diagonal
matrices with unitary entries except i-th and j-th entry being
zero, respectively.

II. CONTROL MODEL DESCRIPTION

A. Multi-Evaporator System Model Description

This study considers a multi-evaporator vapor compression
system with N indoor units as shown in Fig. 1. In particular,
we use subscript 0 to represent the refrigerant system (e.g.,
the compressor, outdoor unit heat exchanger and associated
fan), which will be referred as “centralized system” and can
be described with an LTI model:

xe0(t+ 1) = Ae00xe0(t) +

N∑
i=0

Be0iuei(t),

ze0(t) = Ee0xe0(t), ye0(t) = Ce0xe0(t). (1)

Moreover, we use subscript i ∈ {1, ..., N} to represent
i-th zone temperature dynamics (principally the dynamics
associated with each evaporator and associated zone air),
which will be referred as “decentralized system” and can
be written as set of LTI models:

xei(t+ 1) = Aeiixei(t) +Aei0xe0(t) +

N∑
j=0

Beijuei(t),

zei(t) = Eeixei(t), ∀i = 1, ..., N, (2)

where xei , uei , zei , for i ∈ {0, 1, ..., N} represent states,
control inputs and performance outputs, respectively and ye0
represents constrained outputs of the centralized system, as
shown in Table I. To simplify the notation, we denote N :=

TABLE I
DEFINITION OF PHYSICAL SIGNALS

Signal Type Signal
Symbol

Signal
Description Units

Control
Inputs

ue0
compressor frequency (CF) Hz

outdoor (condenser) fan speed (ODF) rpm
uei cooling capacity of i-th zone (CCC) %

Performance
Outputs

ze0 discharge temperature (Td) oC
zei i-th zone temperature (Tri) oC

Constrained
Outputs ye0

discharge temperature (Td) oC
evaporating temperature (Te) oC
condensing temperature (Tc) oC

References r0 discharge temperature (Td ref) oC
ri i-th zone temperature (Tri ref) oC

{1, ..., N} as the index of decentralized-only subsystems and
N0 := {0, 1, ..., N} with respect to the entire subsystems.

Note that the performance outputs ze0 ∈ Ze0 are a subset
of the constrained outputs ye0 ∈ Ye0 , that is, Ze0 ⊂ Ye0 .
The constrained outputs only consist of variables associated
with the centralized systems, and the outputs for each zone
relate only to temperature regulation, thus they are not
enforced with constraints. The output ye0(t) ∈ Y and input
uei(t) ∈ Ui, ∀i = N0 constraint sets are compact, convex
and containing the origin in their interior.

B. Prediction Model Development

The MPC relies on linear models to predict the system
output response and to determine the optimal control inputs
that achieve the tracking of performance output and guaran-
tee that the constrained outputs remain within their bounds.
However, predicted outputs can deviate from measured val-
ues in the presence of disturbances and modeling errors. To
account for such errors, the output equations are augmented
with offset terms

ye0(t) = Ce0xe0(t) + we0(t),

zei(t) = Eeixei(t) + wei(t), ∀i ∈ N , (3)

where wei , i ∈ N0 denote the auxiliary offset states [10]
that are constant over the prediction horizon, wei(t + 1) =
wei(t). Since Ze0 ⊂ Ye0 , there exists a natural projection
He0 : Ye0 → Ze0 such that ze0(t)=Ee0xe0(t)+He0we0(t).

Remark 1: Following a standard procedure [10], a
Kalman filter observer [1] can be designed based on state
equations in (1)-(2) and output equation in (3) to estimate the
state value xei(t), i ∈ N0 and output offset value wei(t), i ∈
N0 at each sampling time. The estimated information is
used to initialize the prediction model in a receding horizon
manner.

Further, the input is expressed in incremental form [11]:

xui
(t+ 1) = xui

(t) + ∆ui(t), ∀i ∈ N0, (4)

where xui
(t) := uei(t−1). This change of variables enables

constraints on the rate of change of the control input, ∆ui ∈
∆Ui, i ∈ N0, and ensures that the minimum cost is zero,
when exactly tracking a constant reference in steady state.

Finally, the state vector is augmented with the reference
signals, i.e., the setpoints for the performance outputs, here
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Fig. 1. Refrigerant piping arrangement of a multi-evaporator vapor compression system. The main actuators in the system are (i) the compressor frequency
(CF), (ii) the outdoor (condenser) fan speed (ODF), and (iii) the electronic expansion valve (EEV). Note that in this work, an inner feedback loop computes
the EEV from a setpoint representing the desired cooling capacity. This cooling capacity command (CCC) is determined by the MPC and viewed as a
control input. The outputs of concern are the zone temperatures (Tri) and the compressor discharge temperature (Td).

the compressor discharge temperature and the zone temper-
atures. In particular, the reference zone temperature is as-
sumed to be constant over the prediction horizon, i.e., ri(t+
1) = ri(t), i = 1, ..., N , while the discharge temperature
reference is defined as a linear function of the compressor
frequency [12] that gives r0(t+1) = r0(t)+B̄r0∆u0(t). We
also add integrators to the zone temperature tracking errors

ξi(t+ 1) = ξi(t) + Ts(ri(t)− zei(t)), ∀i = N , (5)

to achieve a more aggressive integral action besides that
from the offsets in (3), hence obtaining faster convergence
especially in the presence of model errors.

By augmenting the prediction model in this manner,
the cost function is designed to minimize tracking error
and integrated error between the measured and desired
values of the performance outputs. Further considering the
augmented model, define w0 := col(we0 , r0), x0 :=
col(xe0 , xu0), z0 := r0 − ze0 , y0 := ye0 as the aug-
mented exogenous signals, states, performance outputs and
constrained outputs respectively, and the prediction model of
the centralized subsystem can be written as:

w0(t+ 1) = w0(t) +Br0∆u0(t) (6)

x0(t+ 1) = A00x0(t) +

N∑
i=0

B0ixui
(t) +

N∑
i=0

B0i∆ui
(t)

z0(t) = E0x0(t) +H0w0(t), y0(t) = C0x0(t) +D0w0(t).

Similarly, define variables wi := col(wei , ri), xi :=
col(xei , xui

, ξi), zi := col(ri − zei , ξi),∀i ∈ N , and the
prediction model of the decentralized subsystems is written
as:

wi(t+ 1) = wi(t) (7)
xi(t+ 1) = Aiixi(t) +Ai0x0(t) +Giwi(t)

+

N∑
j=0

Bijxuj
(t) +

N∑
j=0

Bij∆uj(t)

zi(t) = Eixi(t) +Hiwi(t), ∀ i ∈ N ,

where wi ∈ Rqi , xi ∈ Rni , u ∈ Rmi and zi ∈ Rpi ,∀i ∈ N0.
Although the actuator position xui ∈Xui is a subset of the
augmented state xi ∈ Xi, ∀i ∈ N0, the state xui has been
pulled out in system model (6)-(7). As will be described
later, this allows for monitoring the actuator separately under
plug-and-play process, hence maintaining the overall system
structure. Since Xui

⊂ Xi, there exists natural projections
Ωi : Xi → Xui ,∀i ∈ N0 from the augmented state xi to
the actuator position xui = Ωixi.

Finally, the subsystem models are integrated by defining
w := col(w0, ..., wN ), x := col(x0, ..., xN ) and z =
col(z0, ..., zN ), resulting in the integrated model for the
overall system:

w(t+ 1) = w(t) +Br∆u(t)

x(t+ 1) = Ax(t) +B∆u(t) +Gw(t) (8)
z(t) = Ex(t) +Hw(t), y0(t) = Cx(t) +Dw(t),

where w ∈ Rq, x ∈ Rn, u ∈ Rm, z ∈ Rp are such that q :=
n∑
i=0

qi, n :=
n∑
i=0

ni,m :=
n∑
i=0

mi, p :=
n∑
i=0

pi. The nominal

system matrices (A,B,E) have the following form:

A=


A00 +B00Ω0 B01Ω1 · · · B0NΩN
A10 +B10Ω0 A11 +B11Ω1 · · · B1NΩN

...
...

. . .
...

AN0 +BN0Ω0 BN1Ω1 · · · ANN +BNNΩN


B=

B00 · · · B0N

...
. . .

...
BN0 · · · BNN

 , E=

E00

. . .
ENN

 .
The integrated matrices (Br, G,H,C,D) are also obtained,
but they are not shown here due to the limited space. It is
important to point out that the state matrix A seems not to
preserve a lower block triangular form with the augmentation
of actuator change rate. However, it is possible to express
matrix A as A := Ao + BΩ with Ao being lower block

triangular and Ω :=
N⊕
i=0

Ωi, and such structure will be

exploited in the control synthesis.



III. RECONFIGURABLE MODEL PREDICTIVE CONTROL

Start/stop operation of the multi-evaporator VCS can be
realized by a set of switched models to represent the changes
of subsystem models, sensors and actuators, where the
switched system framework provides useful tools for PnP
analysis and control design. A switched model predictive
control was first developed in this study, based on [13], [14].
Due to the space limit, the design of the switched MPC is
not shown in the paper, whereas its simulation results will
be used as a benchmark for assessing the performance of the
reconfigurable MPC.

Although the model predictive control design based on
switched systems allows one to achieve good performance
with stability guarantees for start/stop operation of the multi-
evaporator VCS through commissioning new prediction
model and control design online, it requires calibration and
design effort for each instance of a different number of active
subsystems, and further requires storage of massive design
parameters for execution, and thus a significant amount of
memory for the microcontrollers.

For real-time implementation and production purposes,
these challenges become significant impediments for control
calibration and commissioning engineers. Therefore, starting
from the analysis of model structural changes under plug-
and-play process, this section proposes a reconfigurable
model predictive control, which only requires a single master
controller designed offline and provides a simple procedure
for online reconfiguration. Further, this method retains stabil-
ity guarantees for any realization of on/off subsystems, thus
leading to considerably reduced design/calibration effort and
memory load without compromising performance.

A. Plug-and-Play Model Representation

The PnP process for multi-evaporator VCS is characterized
by changing the number of active zones in the decentralized
subsystems (2). Hence, each zone is assigned with a switch-
ing signal ςi(t) : Z → {0, 1}, ∀i ∈ N where the binary
switching signal ςi(t) represents two operation modes for
i-th indoor unit:
• ON: ςi(t) = 1,
• OFF: ςi(t) = 0.

Since the centralized subsystem is always on unless the
entire machine is turned off, we assign ς0(t) : Z → {1}
for consistent notation. Denote ς(t) := col(ς0(t), ..., ςN (t))
the vector of switching signals such that ς(t) : Z → I :=
{1} × {0, 1} × ...× {0, 1}. Let th denote the time when the
h-th switch occurs and define Th := {th : h ∈ Z} as the set
of switching time instants. It is assumed that ς(t) is constant
over the interval [th, th+1), namely ς(t + 1) = ς(t), t ∈
[th, th+1). As a result, the centralized PnP prediction model
can be written as:

w0(t+ 1)=w0(t) +Br0∆u0(t) (9)

x0(t+ 1)=A00x0(t)+

N∑
i=0

ςi(t)B0ixui(t)+

N∑
i=0

ςi(t)B0i∆ui(t)

z0(t) = E0x0(t) +H0w0(t), y0(t) = C0x0(t) +D0w0(t).

Similarly, the decentralized subsystem can be written as:

wi(t+ 1) = wi(t) +Br0∆u0(t)

xi(t+ 1) = Aiixi(t) + ςi(t)Ai0x0(t) + ςi(t)Giwi(t)

+ ςi(t)

N∑
j=0

ςj(t)Bijxuj (t) + ςi(t)

N∑
j=0

ςj(t)Bij∆uj (t)

zi(t) = Eixi(t) +Hiwi(t), ∀ i ∈ N . (10)

The representation in (9)-(10) is motivated by the fact that
once the i-th evaporator is turned off, the corresponding i-
th actuator xui

, ∆ui, and exogenous signal wi no longer
affect the dynamics. Moreover, the coupling term Ai0 is also
cancelled, implying that the associated zone temperature is
no longer affected by the states of centralized refrigerant
system, and therefore the zone temperature evolves according
to its (unforced) natural thermal dynamics.

B. Model Predictive Control Design

Model predictive control for tracking typically consists of
a steady state characterization and receding horizon opti-
mization [15]. The steady state characterization determines,
for a given constant signal ws, a set of steady state solutions
of state and input (xs,∆us) corresponding to the desired
output zs, satisfying the system equation (8):

ws = ws +Br∆us

xs = Axs +B∆us +Gws

zs = Exs +Hws. (11)

Instead of finding the pairs (xs,∆us) corresponding to each
ws [10] by solving (11), we are interested in finding param-
eterized solutions xs = Πws,∆us = Γws for ws ∈ Ws,
where Π ∈ Rn×q,Γ ∈ Rm×q and Ws is a compact set in
Rq . Recalling that the performance output (tracking error and
integrated error) aims at zs = 0 and control input rate aims
at ∆us = 0 in steady state, the equation (11) can thus be
rewritten as: [

I −A −B
−E 0

] [
Π
0

]
=

[
G
H

]
. (12)

Solutions to (11) and (12) exist if the set of invariant zeros
of the triplet (E,A,B) is disjoint from the unitary spectrum
of the exosystem model. In particular, when the system is
over-actuated m > p (as in this case), there exists multiple
solutions and the explicit solution can be derived from
geometric characterization [16].

The reconfigurability of model predictive control is
achieved by employing a decentralized (block diagonal)
terminal cost for each subsystem, where each sub-block
can be easily included or removed from the cost functions
through simple matrix operation without need to redesign
the remainder of the terminal cost. As it will be justified
in the following, such an approach does not require to
rebuild the (switched) prediction model, allowing one to
reduce to the minimum online adjustment of the receding
horizon optimization problem and ultimately of the quadratic
programming problem.



For notational convenience, the MPC controller is for-
mulated by separating each subsystem. The MPC solves a
receding horizon optimization problem at each sampling time
t, given the switching signal ς(t), of the form

min
U,ε

Nm−1∑
k=0

N∑
i=0

ςi(t)‖zi,k|t‖2Qi
+ ς−1i (t)‖∆ui,k|t‖2Ri

+

N∑
i=0

ςi(t)‖xi,Nm|t −ΠiwNm|t‖
2
Pi

+ ‖ε‖2T (13a)

w0,k+1|t = w0,k|t +Br∆u0,k|t, w0,0|t = w0(t)

x0,k+1|t = A00x0,k|t +

N∑
i=0

B0ixui,k|t +

N∑
i=0

B0i∆ui,k|t

z0,k|t = E0x0,k|t +H0w0,k|t,

y0,k|t = C0x0,k|t +D0w0,k|t,

y0,k|t ∈ Yε, xu0,k|t ∈ U0, ∆u0,k|t ∈ ∆U0
(13b)

wi,k+1|t = wi,k|t

xi,k+1|t = Aiixi,k|t +Ai0x0,k|t +Giwi,k|t

+

N∑
j=0

Bijxuj ,k|t +

N∑
j=0

Bij∆uj,k|t

zi,k|t = Eixi,k|t +Hiwi,k|t

xui,k|t ∈ Ui, ∆ui,k|t ∈ ∆Ui, ∀ i ∈ N , (13c)

where Qi ∈ Rpi×pi , Ri ∈ Rmi×mi , Pi ∈ Rni×ni , i ∈
N0 represent stage cost on output, input and terminal
cost of i-th subsystem respectively, and Πi ∈ Rni×q

is the steady state matrix of i-th subsystem such that
xs,i = Πiws and Π := col(Π0, ...,Πn). Nm is the
prediction horizon and the optimization vector is U :=
col(∆u0,0|t, ...,∆uN,0|t, ...,∆u0,Nm−1|t, ...,∆uN,Nm−1|t).

Notice that only the cost function (13a) is modified online
under the PnP process according to the switching signal ς(t),
while the prediction models (13b)-(13c) and constraints are
kept unchanged. Considering the interconnected nature of
the overall system, it is critical to decouple the inactive
subsystem from decision making in the receding horizon
optimization. Without loss of generality, it is assumed that i-
th subsystem is turned off in the forthcoming analysis. Then,
the decoupling objective can be achieved, leveraging on the
system structure, with the following rules:

1) For i-th actuator that is shut off, it follows xui,k|t ≡
0, ∀k = 0, ..., Nm, ∆ui,k|t ≡ 0, ∀k = 0, ..., Nm − 1,
which guarantees that the decoupled i-th actuator will
have no influence on any j-th subsystem j ∈ N0.
Moreover, wi,k|t ≡ 0, ∀k = 0, ..., Nm such that the
exogenous signal wi,k|t does not affect the state xi,k|t
and the steady state solution ΠjwNm|t,∀j ∈ N0. This
can be achieved by initializing xui(t) = 0, wi(t) = 0
and imposing infinite penalty1 ς−1i (t)Ri on ∆ui,k|t in
the cost function of receding horizon optimization (13a).

1When solving the quadratic optimization, the infinity penalty is replaced
by an arbitrarily large value related to the problem condition number.

2) The constraints on xui,k|t , ∀k = 0, ..., Nm and ∆uik|t ,
∀k = 0, ..., Nm−1 are always inactive in the optimiza-
tion. This is ensured by the assumption that U , ∆U
include the origin in their interiors.

3) The predicted state xi,k|t and output zi,k|t trajectories
for i-th subsystem are not observable in the cost func-
tion, ∀t = 0, ..., Nm, which can be achieved by zeroing
out the penalty as ςi(t)Pi and ςi(t)Qi on i-th subsystem.

4) The predicted state trajectory xi,k|t, i ∈ N has no
influence on the other state xj,k|t trajectory, ∀t =
0, ..., Nm,∀j ∈ N0, j 6= i. This is guaranteed by the
interconnected structure (1)-(2), where the state of i-th
subsystem is not directly connected to that of any other
subsystems.

5) Given any ςi(t), i ∈ N0 and the corresponding block
diagonal stage cost and terminal cost matrices

Qς:=
N⊕
i=0

ςi(t)Qi, Rς:=
N⊕
i=0

ς−1i (t)Ri, Pς:=
N⊕
i=0

ςi(t)Pi,

(14)

where Qς ∈ Rp×p,Rς ∈ Rm×m,Pς ∈ Rn×n, there ex-
ists a terminal control ∆u := Kς(x−Πw) that satisfies
the stabilizing condition for the MPC controller:

(Aς +BςKς)TPς(Aς +BςKς)− Pς
� −ETQςE −KTς RςKς , (15)

where Aς , Bς are the system matrices corresponding
to the switching signal ς(t). Such terminal control
synthesis will be explored in the following section.

Following the above principles, the actuator and predicted
state trajectory for i-th subsystem that is turned off is
successfully decoupled from the online optimization without
need to rebuild the prediction model (as in the switched
models). Moreover, the cost function in the optimization
can be easily reconfigured online, without need to redesign
terminal cost Pj , j ∈ N0, j 6= i for any other subsystems
under PnP process.

C. Terminal Cost and Control Design

As discussed in the previous section, the objective is
to design a block diagonal terminal cost Pς (14) with a
structured terminal control Kς that satisfies the stabilizing
condition (15) for any combination of active subsystems.
The following proposition shows that a properly structured
terminal cost matrix and terminal controller can be used to
guarantee stability when zones are deactivated.

Proposition 3.1: Consider a terminal linear controller of
the form

∆u0 = ς0(t)K00(x0 −Π0w) +

N∑
i=1

ςi(t)K0i(xi −Πiw)

∆ui = ςi(t)Kii(xi −Πiw), ∀i = 1, ..., N, (16)



where the integrated control gain matrix Kς is expressed as

Kς =


ς0(t)K00 ς1(t)K01 · · · ςN (t)K0N

0 ς1(t)K11 · · · 0
...

...
. . .

...
0 0 · · · ςN (t)KNN ,

 (17)

and a block diagonal terminal cost Pς of the form (14). The
stability condition (15) is satisfied for any switching signal
ς(t) if the sub-matrices {Pi, i ∈ N0} and {K0i,Kii, i ∈ N0}
satisfy

(A+BK)TP(A+BK)− P � −ETQE −KTRK, (18)

for the master problem when all the decentralized subsystems
are active (P,K,Q,R) := {(Pς ,Kς ,Qς ,Rς) : ςi(t) =
1,∀i ∈ N0}.

Proof: The proof is omitted for space limitation.
Remark 2: Considering the structure of the proposed ter-

minal control (16), it is interesting to find that the centralized
control input ∆u0 feeds back the state information from all
subsystems. Conversely, since the decentralized states are not
directly connected to any other subsystems in the open loop
system, the control input ∆ui,∀i ∈ N only feeds back its
own state information.

IV. SIMULATION RESULTS

In this section, the proposed reconfigurable model pre-
dictive controller is designed according to the procedures
outlined in Section III, which consists of a master controller
designed and tuned for two evaporators turned on, and
a procedure to automatically reconfiguring when a single
evaporator is on. Additionally, a switched model predictive
controller consisting of two MPC controllers, one for a single
evaporator turned on and another for two evaporators turned
on, is designed. At switching events when an evaporator
state changes, the corresponding controller is deployed. The
performance of both controllers is compared in a simulation
of a two-zone multi-evaporator vapor compression system,
where one zone is periodically switched on and off.

The plant model used in the following simulations and the
corresponding prediction models used in the MPC designs
are derived from experimental data collected on a two-zone
home air conditioner in controlled laboratory conditions.
With fixed heat loads applied in adiabatic test chambers and
the system operating at steady state, step inputs are applied to
the actuators of the open loop system (compressor frequency,
cooling capacity commands, and outdoor fan speeds) and
measurements of the system outputs are collected, enabling
the creation of a state space model of the plant in the form
of equations (1)-(2).

In the following simulations, the sampling time of the
estimator is 1 sec, and the control inputs are updated every
60 sec. The prediction horizon has a length of 32 minutes,
while the predicted control inputs were optimized over the
first 16 minutes, and the terminal controller is used over the
remaining 16 minutes. A 240 minute simulation is conducted,
where the evaporator in zone A is on and the reference

temperature is held constant at 25oC, while the evaporator
in zone B is switched between the on and off state every
60 min with the reference temperature set at 18oC when it
is turned on.

The simulation results are shown in Fig. 2, in which
Fig. 2A shows the actuator positions and Fig. 2B shows the
performance and constrained outputs. The performance of
the proposed reconfigurable MPC method, for which reduced
zone controllers are synthesized from a master controller, is
compared to the traditional switched MPC method, where
each controller is designed offline and stored in memory. The
closed loop performance is shown to be largely similar, how-
ever, the number of system matrices stored in memory and
the design/tuning parameters required for the reconfigurable
method are substantially fewer, as illustrated in Table II.

Comparing the performances of reconfigurable MPC to
those of switched MPC, negligible difference can be ob-
served in the overall simulation results, except in slightly
smaller decreasing rates of outdoor fan (ODF) speed when
the evaporator in zone B is shut off. This may be caused by
the slightly more conservative terminal cost as computed in
reconfigurable MPC method by the required block diagonal
structure of Pς in equation (14).

In summary, the simulation confirms that the proposed
approach effectively decoupled the trajectory with respect
to zone B when it was turned off from decision making
in the receding horizon optimization through simple online
adjustment of cost function without rebuilding the prediction
model and compromising the regulation performance.

Finally, to understand the relationship between the number
of evaporators and the tuning effort and memory storage
requirement to build and solve the quadratic programming
problem, Table II shows a comparison of the size of the
system matrices to build the prediction model and of the
design parameters to build the cost function. It is apparent
that the switched MPC method yields exponential growth
in the sizes of the system matrices and design parameters
(e.g. tuning weights) as the number of evaporators increases,
and ultimately results in unrealistically large numbers for
50 evaporators (which is a typical number for commercial
multi-evaporator air conditioners).

V. CONCLUSIONS AND FUTURE WORK

In this paper, model predictive control has been inves-
tigated to control multi-evaporator vapor compression ma-

TABLE II
COMPARISON OF SYSTEM MATRICES (SM), DESIGN PARAMETERS

(DP), APPROXIMATED STORAGE LOAD (SL) BETWEEN DIFFERENT

MPC APPROACHES. THE RECONFIGURABLE MPC METHOD REQUIRES

MANY FEWER PARAMETERS TO DESIGN, TUNE AND VALIDATE.

NO. of
Zones

Real Numbers in (SM) and (DP) and
Megabytes of (SL) to Build QP Online

Switched MPC Reconfigurable MPC
(SM) (DP) (SL) MB (SM) (DP) (SL) MB

2 3.5e3 2.5e3 0.092 880 613 0.023
8 1.25e6 9.25e5 33.3 4.9e3 3.6e3 0.13

50 1.4e20 1.1e20 3.8e15 1.24e5 9.5e4 3.4



Fig. 2. Simulation of a two-zone multi-evaporator VCS where zone B is periodically switched off. Performance of the proposed reconfigurable MPC
method is compared to the traditional switched MPC method (where each controller is. The closed loop performance is shown to be largely similar,
however, the number of system matrices stored in memory and the design/tuning parameters required for the reconfigurable method are substantially fewer.

chine, particularly focusing on turning evaporators on and
off. As opposed to a switched model predictive control,
which requires the prediction model and the control system
to be reconstructed when any subsystem is turned on or off
and thus is expensive in terms of engineering calibration and
deployment of control parameters, a reconfigurable model
predictive control is proposed leveraging the system model
structure, leading to online adjustment of the control struc-
ture with stability guarantees. Principles to effectively decou-
ple the inactive subsystems from decision making (without
rebuilding the prediction model) from the optimization are
discussed, and stability conditions are proved. Simulation
studies confirmed that the proposed approach retained the
same tracking performance of zone temperatures while sig-
nificantly reducing the control design parameters and design
effort compared to the switched control design approach.
Future work will focus on the experimental validation of
the proposed approach.
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