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Abstract
Moving object segmentation in video has uses in many applications and is a particularly
challenging task when the video is acquired by a moving camera. Typical approaches that
rely on principal component analysis (PCA) tend to extract scattered sparse components
of the moving objects and generally fail in extracting dense object segmentations. In this
paper, a novel label propagation framework based on motion vanishing point (MVP) analysis
is proposed to address the challenges. A weighted graph is constructed with image pixels as
nodes and the MVP-guided approach is used to define the graph weights. Label propagation
is then performed by incorporating the graph Laplacian. In addition, a PCA result is used
to initialize the foreground/background labels. Experiments on the Hopkins data set of
outdoor sequences captured by a hand-held moving camera demonstrate that the proposed
label propagation method outperforms state-of-the-art PCA and spectral clustering methods
for a dense segmentation task. Moreover, the framework is capable of correcting mislabeled
foreground pixels and thus does not require accurate initial label assignment.

2016 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139





GEOMETRIC-GUIDED LABEL PROPAGATION FOR MOVING OBJECT DETECTION

Jiun-Yu Kao12∗ Dong Tian1 Hassan Mansour1 Anthony Vetro1 Antonio Ortega2

1 Mitsubishi Electric Research Labs (MERL),
201 Broadway, Cambridge, MA 02139, USA

2 Department of Electrical Engineering, University of Southern California,
3740 McClintock Ave., Los Angeles, CA 90089, USA

ABSTRACT

Moving object segmentation in video has uses in many appli-
cations and is a particularly challenging task when the video
is acquired by a moving camera. Typical approaches that rely
on principal component analysis (PCA) tend to extract scat-
tered sparse components of the moving objects and generally
fail in extracting dense object segmentations. In this paper,
a novel label propagation framework based on motion van-
ishing point (MVP) analysis is proposed to address the chal-
lenges. A weighted graph is constructed with image pixels
as nodes and the MVP-guided approach is used to define the
graph weights. Label propagation is then performed by in-
corporating the graph Laplacian. In addition, a PCA result
is used to initialize the foreground/background labels. Ex-
periments on the Hopkins data set of outdoor sequences cap-
tured by a hand-held moving camera demonstrate that the pro-
posed label propagation method outperforms state-of-the-art
PCA and spectral clustering methods for a dense segmenta-
tion task. Moreover, the framework is capable of correcting
mislabeled foreground pixels and thus does not require accu-
rate initial label assignment.

Index Terms— Motion segmentation, foreground / back-
ground separation, motion vanishing point, robust principal
component analysis, label propagation

1. INTRODUCTION

Foreground/background (FG/BG) segmentation is the process
of separating moving foreground objects from an independent
background scene in a video. This is essential for analyzing
the moving targets and helps achieve object detection, object
segmentation and scene understanding, which is reflected by
a vast amount of literature on motion segmentation. However,
such segmentation is still a challenging task when there exists
ego-motion due to moving camera, which is the focus of this
work.

Motion segmentation algorithms can be roughly cate-
gorized into statistical techniques, algebraic decomposition
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techniques and spectral clustering techniques. Statistical
approaches alternate between assigning trajectories to sub-
spaces and refitting subspaces to their assigned points as in
for example RANSAC methods in [1][2] and EM algorithm
in [3].

Algebraic decomposition approaches such as GPCA
[4][5] formulate motion segmentation as a problem of sub-
space separation. Robust PCA is another algebraic decom-
position - based alternative with the background scene being
modelled as a low-dimensional subspace. It has been shown
to successfully segment the foreground objects from the back-
ground [6][7] when the camera is stationary. When there exist
camera motions, global motion estimation and compensation
need to be done first in order for the low rank structure hold
for the background scene [8]. Although the segmentation
is usually successful, the extracted foreground component
highlights the edges of moving objects rather than whole
objects, specifically when the image batch size is small, e.g.
a batch of two consecutive frames. Also, small background
objects, such as electric poles in a traffic scene, have a good
chance being identified as foreground due to the limitation in
accuracy of global motion compensation.

Spectral clustering-based approaches, regarded as the
state-of-the-art in motion segmentation, first use local infor-
mation to compute the pairwise similarity between keypoint
trajectories, from which an affinity matrix is generated. Then
spectral clustering [9] is used to cluster the trajectories into
independent subspaces. One example is sparse subspace
clustering (SSC) which tries to represent each trajectory as
a sparse linear combination of the other trajectories [10].
The coefficients associated with each trajectory are used to
compute an affinity matrix, which is then used for spectral
clustering. The advantage of spectral clustering is the ability
to separate the trajectories based on underlying manifolds.
However, no semantic meaning is associated to the clusters
and the correct choice for the number of clusters is not obvi-
ous. As in spectral clustering-based approaches, we make use
of a graph derived from an affinity matrix; however, instead
of directly applying clustering on the graph spectral domain,
we propose to propagate an initial set of semantic labels over



the similarity graph, which not only achieves better manifold
separation but also directly provides a semantic interpretation
for the resulting manifolds.

In this paper, we extend the use of affinity matrix com-
puted via the motion vanishing point analysis method [11]
into a label propagation framework, where the similarity
graph serves as a geometric constraint among moving objects
and is used to propagate a set of initial labels. The initial
FG/BG labels are generated by adopting the factorized robust
matrix completion (FRMC) algorithm [8] which decomposes
a group of video frames into a low rank component corre-
sponding to the background scene and a sparse component
corresponding to the foreground moving objects. One novel
contribution of this paper lies in the proposed label propaga-
tion, which combines the advantages of FRMC and spectral
clustering. Furthermore, initially mislabeled components are
corrected based on neighboring motion information using our
proposed framework.

The remainder of this paper is organized as follows. The
concept of motion vanishing point and how to compute affin-
ity matrix is briefly reviewed in Section 2. Then the MVP-
guided label propagation framework that joins FRMC and
graph spectral clustering is proposed in Section 3. Section
4 completes the framework by providing a way to generate
initial FG/BG labels via FRMC. Experiments are conducted
in Section 5 with conclusions in Section 6.

2. MVP AFFINITY COMPUTATION

In order to capture the manifold geometry for the proposed
label propagation scheme, we adopted the motion vanishing
point analysis in [11] and use it to compute the affinity.

To illustrate the concept of a motion vanishing point, as-
sume two points lie on the same moving object under a 3D
coordinate frame, with two corresponding 3D motion vectors.
Due to the perspective effect, these two motion vectors will
intersect at a motion vanishing point at ∞ in the 3D world.
When projected onto the image plane, the two correspond-
ing motion vectors in the image plane will then intersect at a
point on the image plane as well, which is denoted as a mo-
tion vanishing point. We utilize the fact that motion vectors
of all points that belong to the same rigid object will share the
same motion vanishing point.

Consequently, as shown in Fig. 1, we can define the dis-
tance between two motion vectors associated with a pair of
pixels as the distance between their corresponding motion
vanishing points,

dp,ij = ‖Ri−Rj‖ =
√

(Rxi −Rxj)2 + (Ryi −Ryj)2 (1)

An undirected graph G = (V,E) is then constructed
which consists of a collection of vertices V = {1, 2, ..., N}
connected by a set of edges E = {(i, j, wij)},i, j ∈ V
where (i, j, wij) denotes the edge between vertices i and j
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Fig. 1. Left: Example frame from a car driving sequence in
[12]. Center: Motion vanishing point image for that frame.
Right: Representation point of a MV and perspective distance
between a pair of MVs.

having weights wij . Vertex i corresponds to pixel i. As for
the selection of edge set E, a sparse and regular connectiv-
ity is considered where each pixel is only connected to its
4 spatially neighbouring pixels. Finally, the affinity matrix
W = {wij} of the graph is computed as wij = e−β dp,ij + ε
where β = 25 and ε = 0 in this work.

3. PROPOSED GUIDING LABEL PROPAGATION

From Section 2, a graph G and its associated affinity matrix
W is built based on geometric analysis for motion vanish-
ing points, where wij reflects the pairwise similarity between
pixel i and j in terms of the corresponding motions. In con-
trast to [11], where the affinity is directly used for spectral
clustering, this paper proposes extending the use of the affin-
ity into a label propagation framework. In such a way, the
initial labels could be propagated to all pixels under the guid-
ance of graph G, which is capable of maintaining the geo-
metric constraint determined by the motion vanishing point
analysis. The proposed framework can be used with alterna-
tive initial label assignment methods as long as they provide
reasonable starting point. Section 4 will describe the initial-
ization method we choose in this work.

3.1. MVP-guided label propagation

Let f denote the vector of labels that are to be assigned and
suppose, without loss of generality, that the first l entries in f
are assigned binary labels 0 or 1. We refer to the subset of f
with known labels as fl. The remaining entries in f indexed
l + 1, · · · , N are without labels. We refer to the unlabeled
subset as fu. One efficient way to propagate labels on the
similarity graph is implemented through an iterative proce-
dure such as in [13], where the propagation is started from
nodes with initial labels in their neighborhood and the pro-
cess is repeated until convergence is reached. Furthermore,
it was demonstrated in [14] that such an iterative algorithm
could be converted to solving a graph regularization problem.
In this paper, we formulate an MVP-guided graph regulariza-
tion problem in the proposed label propagation framework.

Denote the output estimated labeling for the whole set of
pixels by f̂ = [f̂Tl , f̂

T
u ]T . Our objective is to leverage con-

sistency among the input labels and smoothness with respect



to the geometric structure of the output labels. Therefore, we
aim to minimize the difference between the output labels and
initially labeled input, i.e. minimize with respect to f̂ the sum

l∑
j=1

(f̂j − fj)
2

= ‖f̂l − fl‖
2
. (2)

Here we avoid strict equality in order to allow for a correction
of the initial labeling according to the geometric smoothness
defined by the graphical structure.

Since the underlying data manifold should be smooth, we
wish to promote the smoothness of the estimated labels with
respect to the geometry of the graph structure. Thus, we in-
troduce the following regularization term

1

2

N∑
i,j=1

Wij(f̂i − f̂j)
2

=
1

2

2

N∑
i=1

f̂2i

N∑
j=1

Wij − 2

N∑
i,j=1

Wij f̂if̂j


= f̂T (D−W) f̂

= f̂TLf̂

(3)

where D is the degree matrix and L , D−W is the combi-
natorial Laplacian matrix associated with G.

Therefore, we formulate the label propagation problem as
the following box constrained minimization problem

f̂ = arg min
f̂
‖f̂l − fl‖

2
+ λf̂TLf̂ , s.t. 0 ≤ f̂ ≤ 1 (4)

where λ is a regularization parameter.

3.2. Proposed solution

Problem (4) can be recast as the constrained least-squares
problem as follows,

f̂ = arg min
f̂

∥∥∥∥( fl
0N×1

)
−
(
Il 0l×(N−l)

λL

)
f̂

∥∥∥∥
subject to 0 ≤ f̂ ≤ 1

(5)

which can be readily solved by a multitude of available opti-
mization toolboxes, e.g., MATLAB Optimization Toolbox.

The estimated labels f̂ assign a continuous valued label
between 0 and 1 for every node (i.e. pixel). The larger the f̂j
is, the more likely pixel j belongs to the moving foreground
in that picture.

The selection of λ plays an important role in controlling
the tradeoff between graph-based smoothness and sample
consistency. Fig. 2 shows the impact of choosing differ-
ent values of λ. We observe that, with a smaller λ, the
consistency to the initial labels is more favoured than the

Fig. 2. From left to right: Solve (5) with λ = 10, λ = 100
and λ = 1000 on cars1 sequence.

smoothness on the graph, and thus has less capability of
correcting those initially mislabelled pixels, e.g. the electric
pole behind the car. Conversely, using larger λ will favour to
maintain the smoothness of estimated labels over the graph
and it is inclined to adjust those mislabelled initial pixels.
In this work, we choose λ to be 103 for all the following
experiments considering the initial label quality. However, it
is worth mentioning that the selection of lambda may depend
on the the means by which the graph is constructed and/or the
scheme used for initial label assignment; the approach used
in this work is discussed in the next section. For instance, if
the initial FG/BG label assignment is quite reliable, then λ
should be assigned a smaller value.

4. INITIAL FG/BG LABEL GENERATION

To complete the proposed MVP-guided label propagation
framework, we need an approach to assign initial labels. Here
we adopt a factorized version of typical PCA approach as in
[8], which solves the following problem,

min
L,R,S

1

2
‖L‖2F +

1

2
‖R‖2F +µ‖S‖1 s.t. b = A(LRT +S) (6)

where LRT represents the factorized low rank component,
and S denotes the sparse component. The above optimization
problem can be solved with the scheme proposed in [8]. And
the component S of the solution is used to determine whether
a pixel belongs to the foreground or background.

Here we propose to generate a set of supervised labels
of FG/BG using the following method. For an m × n im-
age, we define the label vector for an image as f , where f ∈
{0, 1, u}mn. For a pixel j in the image, fj ∈ {0, 1, u} respec-
tively represents the j-th pixel to be labelled as background,
labelled as foreground, or unlabeled. Given the sparse compo-
nent S from FRMC and a threshold value T , we have fj = 1
if Sj ≥ T where Sj is the j-th element of S. In other words,
we label those pixels with large values in the sparse compo-
nent as the foreground similar to the example shown in Fig. 3.
Notice that since FRMC generally outputs scattered pixels,
these foreground labels are also scattered. It is worth not-
ing that simply thresholding S does not necessarily provide a
foreground map since some background objects can still have
large values in S.

As for the generation of background labels, any heuristic
which selects a subset Γ of pixels out of the set of pixels with-
out sparse components, i.e. {j : Sj 6= 0}, can be used. For



Fig. 3. Left: Original picture. Center: Sparse component S
output from FRMC, S ∈ [0, 255]. Right: Initlal label assign-
ment: Squares: Backgrounds. Circles: Foregrounds.

example, the pixels belonging to the n columns and rows at
the frame boundaries with no sparse components can be used
as shown in Fig. 3. In a more advanced scenario, texture or
motion information may also be included as criterion to select
the subset Γ. In any case, given a Γ, we have fj = 0, ∀j ∈ Γ,
which act as the background label.

5. EXPERIMENTS AND DISCUSSIONS

5.1. Experimental setup

We apply the proposed framework to Hopkins 155 Dataset
[15]. Ten traffic sequences, cars1-cars10, in the dataset that
consist of vehicles moving on the street while the scenes are
taken by a hand-held moving camera are used. We encode the
raw video sequences using the H.265/HEVC test model [16]
with default encoding settings. Motion vectors with quarter
pixel accuracy are extracted, such that, every motion vector
corresponds to a 4× 4 pixel block.

For the performance comparison, we first show the seg-
mentation provided by the FRMC algorithm as a represen-
tative algebraic decomposition-based approach. The second
benchmark is generated using graph spectral clustering on the
same affinity computed utilizing the MVP concept as in [11].

5.2. Experimental results and discussions

Fig. 4 shows our experimental results on five sequences.
First, we observe that our proposed method is able to signif-
icantly adjust those pixels mislabeled as foreground in the
background scene compared to using only FRMC, such as
the electric pole and non-moving cars. This advantage occurs
naturally due to our label propagation scheme because the
initially mislabeled pixels are adjusted via the smoothness
constraint among their neighbors with large affinity, i.e. ex-
periencing the same motion. Moreover, our proposed method
removes all scattered labels that are visible in the FRMC out-
put. It is also clear that the interiors of the moving objects can
be compactly labelled as foreground with our method while
with FRMC alone only the edges are labelled as foreground.

On the other hand, our proposed framework also outper-
forms the clustering-based method of [11] in several ways.
First, clustering-based methods usually cannot provide se-
mantic meanings to the resulting clusters. However, in our
method, as we have the labels generated from sparse and low
rank component of data, the resulting separated manifolds

Fig. 4. From left to right: Original image, result of using
only FRMC as in [8], result of spectral clustering with same
affinity defined as in Section 2 [11] and result of our proposed
label propagation with FRMC.

possess semantic meaning as FG/BG. Furthermore, the selec-
tion for the number of clusters is not obvious. Using a small
cluster number (such as 2) will not be able to accommodate
the variances introduced by the noise or camera motion and
thus lead to a failed segmentation. For the benchmark shown
here, the number of clusters is set to be the number of dif-
ferent motions in the scene plus 2. Although the foreground
objects are generally successfully separated, it has a problem
with over-segmenting the background. Last but not least, the
foreground objects detected via our approach have sharper
boundaries compared to simple spectral clustering. We at-
tribute this to correctly detecting the boundaries of foreground
pixels from FRMC by the proposed initial label generation
scheme.

6. CONCLUSION

In this work, a geometrically-guided label propagation frame-
work is proposed to segment moving foreground from back-
ground. Our approach performs well with scenes containing
significant global motion, such as scene acquired by hand-
held moving cameras. An initial label assignment is first real-
ized by a conventional PCA-based method, then a geometric
constraint is implemented through the graph affinity that is
later embedded into the label propagation scheme. Exper-
iments show that the proposed framework outperforms the
PCA method and a spectral-only clustering method. Applying
the approach on sequences with even faster camera motion is
subject to future work.
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