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Abstract
A cooperative wireless network, where a cluster of K single-antenna transmitters jointly serve
a single-antenna receiver, is considered. Each transmitter is connected to the control unit
(CU) via independent but unreliable backhaul links. The CU sends a common message to
each transmitter over backhaul links, which upon successful reception, jointly transmit this
message to the intended receiver. To facilitate analysis, a general expression is derived for the
complementary cumulative distribution function of a sum of K independent random variables,
where each random variable is a product of an exponential and a Bernoulli random variable.
This result is applied to find a simple closed-form expression that characterizes the system
outage performance as a function of network parameters and node geometry. The analytical
model is validated using numerical simulations. As an application, the derived expression is
also used for investigating the impact of backhaul assignment on the system performance.

2015 IEEE Communications Letters

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2015
201 Broadway, Cambridge, Massachusetts 02139





Performance Analysis of Cooperative Wireless
Networks with Unreliable Backhaul Links

Talha Ahmed Khan, Student Member, IEEE, Philip Orlik, Senior Member, IEEE,
Kyeong Jin Kim, Senior Member, IEEE, and Robert W. Heath Jr, Fellow, IEEE

Abstract—A cooperative wireless network, where a cluster of
K single-antenna transmitters jointly serve a single-antenna re-
ceiver, is considered. Each transmitter is connected to the control
unit (CU) via independent but unreliable backhaul links. The CU
sends a common message to each transmitter over backhaul links,
which upon successful reception, jointly transmit this message to
the intended receiver. To facilitate analysis, a general expression is
derived for the complementary cumulative distribution function
of a sum of K independent random variables, where each random
variable is a product of an exponential and a bernoulli random
variable. This result is applied to find a simple closed-form
expression that characterizes the system outage performance
as a function of network parameters and node geometry. The
analytical model is validated using numerical simulations. As an
application, the derived expression is also used for investigating
the impact of backhaul assignment on the system performance.

Index Terms—Cooperative wireless networks, backhaul,
bernoulli-weighted exponential.

I. INTRODUCTION

W IRELESS network infrastructure is being densely de-
ployed to provide higher area spectral efficiency, in

both cellular and wireless local area networks [1]. Providing
wired backhaul to this infrastructure, however, remains a
challenge. This can be attributed to the excessive capital
required for wired backhaul deployment as well as to the
cost of leasing existing backhaul. Wireless backhaul comes
across as an alternative. Unfortunately, it is unlikely to be
nearly as reliable as wired backhaul [2]. The problem is
further compounded by topology and access-related issues,
suggesting that many links will be non-line-of-sight (non-
LOS), making them even more vulnerable to fading [3]. This
marks a departure from conventional wireless networks which
have traditionally been assumed to have highly reliable (fiber,
ethernet or LOS) backhaul links.

Classical literature on base-station (BS) cooperation typ-
ically subsumes ideal error-free data-pipes for backhauling
the BSs to the cloud or network backbone [4]–[6]. With the
emergence of nontraditional backhaul links, these classical
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models need to be revisited. To this end, several papers
have studied the impact of finite capacity backhaul on sys-
tem performance and proposed optimal compression schemes
(see [5] and references therein). In another line of work
[7], game theory has been applied for studying the impact
of heterogeneous backhaul on the downlink performance of
a cooperative femtocell network. Similarly, networks with
unreliable backhaul links have also been investigated [8]. In
[8], the downlink of a coordinated multi-point system with
unreliable backhaul links was considered. It was shown that
unreliable backhaul could severely limit the performance gains
promised by cooperation. Most previous work, however, relies
on exhaustive simulations for performance analysis.

In this paper, we present an analytical framework for
the performance analysis of a certain cooperative wireless
network with unreliable backhaul links. To facilitate analysis,
we derive the exact complementary cumulative distribution
function (CCDF) of a sum of bernoulli-weighted exponential
random variables. Applying this result, we find a simple
closed-form expression to characterize the outage performance
at the receiver under Rayleigh fading. Using this analytical
expression, we investigate the impact of backhaul assignment
on outage performance. Our framework is general as it can be
leveraged for analyzing other cooperative setups where similar
distributions may arise (e.g., in random access networks).

II. SYSTEM MODEL

We consider a portion of an orthogonal frequency division
multiple access (OFDMA) based wireless network where a
cluster of K single-antenna transmitters (or nodes) attempt
to send a common message to a stationary single-antenna
user (receiver) over the same time-frequency resource block.
Each node is connected to the cloud or control unit (CU) via
dedicated but unreliable backhaul links [8]. In our transmission
scheme, a node only transmits if it can successfully fetch
the source message from the CU before the start of the next
resource block. Let us define βi, the backhaul reliability for
node i, i.e., with probability βi, node i successfully decodes
the source message sent over the backhaul link (before the
start of the next resource block), whereas the message is erased
with probability 1−βi due to unreliable backhaul. We assume
the erasures to be independent across messages and model
it using a bernoulli distribution Bern(βi). Here, the term
backhaul is rather an abstraction and can also be used to model
different operating conditions contributing to link failure. For
instance, one could incorporate network congestion, hardware
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imperfections, etc. by defining β to be a function of these
parameters.

Let us define {xi}Ki=1 to be the distances of the respec-
tive nodes from the user. We assume that the transmitter-
receiver links undergo independent and identically distributed
(IID) narrowband Rayleigh fading such that the corresponding
channel power gains {Hi}Ki=1 are exponential with unit means.
Note that our approach can be generalized to the case where
one or more channels have distinct means. In our cooperation
model, the cooperating transmitters jointly transmit the same
data to a single user using OFDM. Due to practical challenges,
we do not assume any tight synchronization among the coop-
erating nodes. Unlike the transmitters, for which we do not
assume any instantaneous channel knowledge, the receiver is
required to know the composite downlink channel from the
transmitters to perform coherent detection. With such a non-
coherent joint transmission scheme (see [6, Appendix A] for
details), the signal-to-noise ratio (SNR) at the receiver can be
characterized as

γ
△
=

K∑
i=1

IiPixi
−ηHi

σ2
=

K∑
i=1

IiρiHixi
−η (1)

where ρi
△
=Pi/σ

2 and Pi denotes the transmit power at node
i. The indicator function is used to model the unreliability
of backhaul links such that Pr{Ii = 1} = βi and Pr{Ii =
0} = 1 − βi. The receiver noise is assumed to be zero-mean
complex Gaussian with variance σ2. At the user, we define
the probability of success ps

(
K, {ρi}Ki=1, θ

)
= Pr{γ > θ} as

a function of the cluster size K, the transmit SNRs {ρi}Ki=1

and the outage threshold θ as

ps(K, {ρi}Ki=1, θ) = Pr

{
K∑
i=1

IiρiHixi
−η > θ

}
. (2)

With Ĥi
△
= ρiHixi

−η, note that the term
K∑
i=1

IiĤi in (2)

consists of a sum of independent bernoulli-weighted expo-
nential random variables, i.e., Ĥi ∼ exp

(
ρ−1
i xηi

)
. In the next

section, we derive a generalized closed-form expression for
the distribution of a sum of independent bernoulli-weighted
exponential random variables. It is then used for characterizing
the outage performance at the receiver.

III. SUM OF BERNOULLI-WEIGHTED EXPONENTIALS

Consider a sum of K independent bernoulli-weighted ex-

ponential random variables
(
{ϵi}Ki=1

)
such that SK =

K∑
i=1

ϵi

with ϵi
△
= ziGi. Here, zi ∼ Bern(pi), pi

△
=1 − qi and in-

dependent across i. Note that we do not require {zi}Ki=1 to
have distinct means. Independently of {zi}Ki=1, we define in-
dependent random variables {Gi}ki=1 such that Gi ∼ exp(λi),
Λ

△
= [λ1, · · · , λK ], and Λ has τ unique entries1. Note that

1 ≤ τ ≤ K, where τ = 1 when λi are equal and τ = K

1Strictly speaking, Λ is a multiset as it may have duplicate elements. For
cleaner exposition, however, we call Λ (and other multisets) a set.

when λi are distinct. We further define {δi}τi=1 to be the set
of all unique elements of Λ, where δi has multiplicity ri in Λ.
For ease of exposition, we hereby define Λ̂

△
=
[
λ1

q1
, · · · , λK

qK

]
and Q

△
=

K∏
i=1

qi.

Theorem 1: For SK , a sum of K independent bernoulli-
weighted exponential random variables (as defined above), the
CCDF F c

SK
(θ) = Pr{SK > θ} =

Q
τ∑

u=1

ru∑
v=1

(
K−1∑
m=0

(
αm(Λ̂)− αm(Λ)

)
Υm(ru, v)

)
Q(v, δuθ)

δu
v

(3)

(for θ ≥ 0), where

Υm(ru, v) = (−1)ru−v
∑

∑τ
i=1 ni=ru−v

(
m

nu

)
δu

m−nu

×
τ∏

j ̸=u

(
rj + nj − 1

nj

)
(δj − δu)

−(rj+nj). (4)

The summation in (4) is taken over all possible combinations
of non-negative integer indices n1, · · · , nτ that add up to

ru − v. Moreover, Q(a, b) = 1
Γ(a)

∞∫
b

ta−1e−tdt denotes the

regularized upper incomplete Gamma function. Furthermore,

αi(Λ)
△
=(−1)

iCK−i
Λ , (5)

CK−i
Λ

△
=

+∑[(
K

K − i

)
Λ

]
, (6)

and
+∑

[·] returns the sum of the elements of the set that it
operates on. With a slight abuse of notation,

(
K

K−i

)
Λ

is defined
to be the set of all products of the elements of Λ taken K−i at
a time2. The summation in (6) is taken over the elements of the
set
(

K
K−i

)
Λ

and C0
Λ is defined to be 1. Similarly, the definitions

of αi(Λ̂)
△
=(−1)

iCK−i

Λ̂
and CK−i

Λ̂

△
=

+∑
[
(

K
K−i

)
Λ̂
], respectively,

follow from (5), (6) with the set Λ now replaced by Λ̂.
Proof: Please see Appendix A.

We now give an example to further clarify the notation. For
K = 3 and Λ = [λ1, λ2, λ3], we have

(
3
1

)
Λ

= [λ1, λ2, λ3],(
3
2

)
Λ
= [λ1λ2, λ2λ3, λ3λ1] and

(
3
3

)
Λ
= [λ1λ2λ3].

Special Cases: Some limiting cases of Theorem 1 are given
below (for θ ≥ 0).

• {pi}Ki=1
△
= p → 1. It is worth noting that as p → 1, we

can retrieve the well-known expression for the sum of
K independent exponential random variables as given in
[9].

• θ → 0. Recall that SK is a mixed random variable with
Pr{SK = 0} = Q and Pr{SK > 0} = 1−Q. As θ → 0,
the expression in (3) simplifies to F c

SK
(0) = 1−Q.

• K = 1. The expression in (3) simplifies to F c
S1
(θ) =

(1− q1)e
−λ1θ.

2The set
( K
K−i

)
Λ

has cardinality
( K
K−i

)
.
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• τ = K. When the exponential random variables have
distinct means, i.e., λi ̸= λj ∀ i ̸= j, the expression in
(3) simplifies to (for θ ≥ 0)

F c
SK

(θ) = Q
K∑
j=1

(K−1∑
i=0

(
αi(Λ̂)− αi(Λ)

)
(λj)

i

λj

( K∏
l ̸=j

λl − λj

)
)
e−λjθ.

(7)

• τ = 1. When the exponential random variables have
identical means, i.e., {λi}Ki=1

△
=λ, the expression in (3)

reduces to (for θ ≥ 0)

F c
SK

(θ) = Q
K−1∑
i=0

ψi

i∑
j=0

(−1)
j

(
i

j

)
Q(K − j, λθ) (8)

where ψi = λi−Kαi(Λ̂)− (−1)
i(K

i

)
, αi(·) is as given in

(5) and Q(·, ·) denotes the regularized upper incomplete
Gamma function.

IV. SIMULATIONS AND APPLICATIONS

A. Validation
In this subsection, we use simulations to validate the closed-

form expression given in Theorem 1. Fig. 1 plots the CCDF of
SK for various values of K. It can be seen that the simulation
results are in complete agreement with the analytical results.
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Fig. 1. Analytical (anlt) and simulation (sim) results for the CCDF of SK

for various values of K with Λ = [10, 10, 0.1, 0.01], and {p1 = 0.8, p2 =
0.7, p3 = 0.6, p4 = 0.5}.

B. Applications
In this subsection, we apply the derived result to model

the network described in Section II. Let us define B =
{ρ−1

1 xη1 , · · · , ρ
−1
K xηK}, B̂ = {ρ−1

1 xη
1

1−β1
, · · · , ρ

−1
K xη

K

1−βK
} and B̄ =

K∏
i=1

(1− βi). Using (7), the success probability can be com-

pactly expressed as ps
(
K, {ρi}Ki=1, θ

)
=

B̄
K∑
j=1


K−1∑
i=0

(
αi(B̂)− αi(B)

) (
ρ−1
j xηj

)i
ρ−1
j xηj

(
K∏
l ̸=j

ρ−1
l xηl − ρ−1

j xηj

)
 e−ρ−1

j xη
j θ. (9)

While (9) is useful for analyzing clusters that have asym-
metric geometries, we also consider the case when the cluster
geometry is symmetric, i.e., {xi}Ki=1

△
= d. Using (8), the

success probability for the symmetric case can be expressed
as ps(K, ρ, θ) =

B̄
K−1∑
i=0

ψi

i∑
j=0

(−1)
j

(
i

j

)
Q(K − j, ρ−1dηθ) (10)

where ψi = (ρ−1dη)
i−K

αi(B̂)−(−1)
i(K

i

)
, and the nodes are

assumed to transmit with the same power, i.e., {ρi}Ki=1 = ρ
(from here on). In Fig. 2, we plot the CCDF of γ (same
as ps (K, ρ, θ)) for the symmetric case for various values of
the cluster size K. There is a complete match between the
analytical and simulation results. Moreover, this figure shows
that the performance is limited by the product of backhaul
unreliabilities (B̄) in the low outage regime since ps converges
to 1− B̄ as θ vanishes. For example, for K = 3, ps converges
to 0.958 which is the same as 1 − B̄. Furthermore, it can be
seen that the success probability increases with K due to an
additional diversity gain.
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Fig. 2. The success probability for various values of K with a symmetric node
geometry. Analytical (anlt) results match with the simulation (sim) results.
Simulation parameters are ρ = 10, η = 3.6, {xi}Ki=1 = 3, and βi ∈
{0.7, 0.65, 0.6, 0.55}.

We now consider a backhaul assignment problem at the CU
for the asymmetric case and apply the result in (9) for analysis.
Assume that the CU has information about node geometry
{xi}Ki=1 and backhaul reliability {βi}Ki=1. It, however, has no
knowledge about the instantaneous fading realization {hi}Ki=1.
How should the backhaul resources {βi}Ki=1 be assigned to
different nodes in order to maximize the success probability
at the user? For example, backhaul links may correspond to
non-overlapping frequency bands, while {βi}Ki=1 may depend
on the average interference seen by each band.

Fig. 3 plots the success probability for all possible (K!)
backhaul assignments given K = 3 and βi ∈ {0.2, 0.4, 0.6}.
As expected, this figure shows that the optimal strategy is to
assign the backhaul links in descending order of reliability
starting with the closest node, i.e., β1 = 0.6, β2 = 0.4, and
β3 = 0.2. We also study the case where the CU is faced
by a given set of choices. This can, for example, model
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Fig. 3. The success probability for all possible backhaul assignments
with K = 3, ρ = 10, η = 3.6, x1 = 1, x2 = 2.5, x3 = 4, and
βi ∈ {0.2, 0.4, 0.6}.

a scenario where the closest node cannot be assigned the
best available resource (as desired) for economic reasons or
compatibility/accessibility issues [2]. Under such a constraint,
the optimal assignment depends on the operating regime of the
network. In the high outage regime, the decision is dictated
by the closest node, i.e., choose the option which assigns the
better backhaul to the closest node. In the low outage regime,
however, it is better to have a reliable backhaul in the vicinity
of the receiver, albeit at the expense of further sacrificing the
backhaul reliability at the closest node. For example, curve 4
outperforms curve 6 when the outage threshold is around -6
dB or higher while the latter gives a better performance when
the outage threshold is smaller than -6 dB.

V. CONCLUSION

We have derived a closed-form expression to characterize
the performance of a cooperative wireless network with unre-
liable backhaul links. Our framework is general as it can be
used to model different network dynamics which contribute to
backhaul link failure. The developed framework can also be
used to determine the optimal backhaul assignment strategy
for the considered system.

APPENDIX A: A PROOF OF THEOREM 1
We begin the proof of Theorem 1 by stating the following

lemma.
Lemma 1: For a set Ω = (ω1, · · · , ωK) consisting of

elements which are not all zero, and a variable x, it follows
that

K∏
i=1

(ωi − x) =
K∑
i=0

(−1)
iC(K−i)

Ω xi (A.1)

where C0
Ω

△
=1.

Proof: The above expression can be verified by expanding
both sides in variable x. The proof is omitted for brevity.
We now find the characteristic function Φϵi(jt) of ϵi = ziGi.

Φϵi(jt) =

∞∫
−∞

ejtγfϵi(ϵ)dϵ = qi + pi
λi

λi − jt
(A.2)

where (A.2) follows by modeling the mixed distribution as
fϵi(ϵ) = qiI(ϵ=0) + piλie

−λiϵI(ϵ>0), where I(·) = 1 when the
condition in the subscript is true and is zero otherwise. We
next find the characteristic function of SK .

ΦSK (jt)
(a)
=

K∏
i=1

λi − qijt

λi − jt
=
( K∏

k=1

qk

) K∏
i=1

λiq
−1
i − jt

λi − jt

(b)
=

Q
K∑

m=0
αm(Λ̂)ym

K∑
i=0

αi(Λ)yi

(c)
= Q

(
1 +

K−1∑
m=0

(αm(Λ̂)− αm(Λ))ym

K∏
i=1

(λi − y)

)

(d)
= Q

(
1 +

τ∑
u=1

ru∑
v=1

Υm(ru, v)

(δu − y)
v

)
(A.3)

where (a) follows from the property that the characteristic
function of a sum of mutually independent random variables
equals the product of individual characteristic functions. (b)
results by substituting y = jt and applying Lemma 1 to
the numerator and the denominator in (a). Adding and sub-

tracting Q
K∑
i=0

αi(Λ)y
i from the numerator in (b), and using

αK(Λ̂) = αK(Λ), we obtain an expression with a proper
fraction in (c). Finally, the partial fraction expansion method
is used to obtain the result in (d), where

Υm(ru, v) =
(−1)a

a!

∂a

∂ya

[
ym

τ∏
i ̸=u

(δi − y)
−ri

]∣∣∣∣
y=δu

(A.4)

with a = ru − v. Evaluating (A.4) results in (4). Applying in-
verse transform formula on (A.3) gives the probability density
function, which upon integration, yields the CCDF of SK as
given in (3).
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