
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Real-time Head Pose and Facial Landmark Estimation from
Depth Images Using Triangular Surface Patch Features

Papazov, C.; Marks, T.K.; Jones, M.J.

TR2015-069 June 2015

Abstract
We present a real-time system for 3D head pose estimation and facial landmark localization
using a commodity depth sensor. We introduce a novel triangular surface patch (TSP) de-
scriptor, which encodes the shape of the 3D surface of the face within a triangular area. The
proposed descriptor is viewpoint invariant, and it is robust to noise and to variations in the
data resolution. Using a fast nearest neighbor lookup, TSP descriptors from an input depth
map are matched to the most similar ones that were computed from synthetic head models in
a training phase. The matched triangular surface patches in the training set are used to com-
pute estimates of the 3D head pose and facial landmark positions in the input depth map. By
sampling many TSP descriptors, many votes for pose and landmark positions are generated
which together yield robust final estimates. We evaluate our approach on the publicly avail-
able Biwi Kinect Head Pose Database to compare it against state-of-the-art methods. Our
results show a significant improvement in the accuracy of both pose and landmark location
estimates while maintaining real-time speed.

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2015
201 Broadway, Cambridge, Massachusetts 02139

Real-time Head Pose and Facial Landmark Estimation from Depth Images
Using Triangular Surface Patch Features

Chavdar Papazov
chavdar.papazov@gmail.com

Tim K. Marks
tmarks@merl.com

Michael Jones
mjones@merl.com

Mitsubishi Electric Research Laboratories (MERL)
201 Broadway, Cambridge, MA 02139

Abstract

We present a real-time system for 3D head pose estima-
tion and facial landmark localization using a commodity
depth sensor. We introduce a novel triangular surface patch
(TSP) descriptor, which encodes the shape of the 3D sur-
face of the face within a triangular area. The proposed
descriptor is viewpoint invariant, and it is robust to noise
and to variations in the data resolution. Using a fast near-
est neighbor lookup, TSP descriptors from an input depth
map are matched to the most similar ones that were com-
puted from synthetic head models in a training phase. The
matched triangular surface patches in the training set are
used to compute estimates of the 3D head pose and facial
landmark positions of the face in the input depth map. By
sampling many TSP descriptors, many votes for pose and
landmark positions are generated which together yield ro-
bust final estimates. We evaluate our approach on the pub-
licly available Biwi Kinect Head Pose Database to compare
it against state-of-the-art methods. Our results show a sig-
nificant improvement in the accuracy of both pose and land-
mark location estimates while maintaining real-time speed.

1. Introduction
Head pose estimation and facial landmark localization

are challenging computer vision problems with important
applications in various fields such as human-computer inter-
action [22], face recognition [25, 1], and character anima-
tion [5], just to name a few. Recent advances in real-time
3D geometry acquisition have led to a growing interest in
methods that operate on 3D data. Furthermore, in contrast
to 2D image-based approaches, the 3D methods do not have
to deal with changes in illumination and viewpoint. This
makes them, as shown in [22], more accurate and robust.

In this paper, we present an algorithm for 3D head pose
estimation and facial landmark localization using a com-

modity depth sensor such as Microsoft’s Kinect. The pro-
posed method consists of an offline training and an online
testing phase. Both phases are based on a new triangular
surface patch (TSP) descriptor. Our method is robust to
noise, is rotation and translation invariant, and runs on a
frame-by-frame basis without the need for initialization. It
can process 10 to 25 frames per second, depending on the
desired accuracy, on a single CPU core, without using par-
allel hardware such as GPUs.

We test the proposed algorithm using the data from the
Biwi Kinect Head Pose Database [9]. However, our method
is trained on synthetically generated 3D head models [21],
rather than on depth maps from a Kinect sensor. As a re-
sult, our method should be easily adaptable to other types
of 3D sensors, sensor locations, and resolutions, without
the need to re-train it on new sensor-specific or situation-
specific data. The test results show that the proposed
method achieves better accuracy than state-of-the-art ap-
proaches [2, 9], while maintaining real-time processing.

2. Related Work
Previous approaches to head pose estimation include

both 2D image-based and 3D depth-based approaches. We
will not discuss 2D image-based methods here except to
note that previous work has found them to be less accurate
than 3D depth-based algorithms [22].

One of the earliest methods for real-time head pose esti-
mation from depth data was the one proposed by Seeman et
al. [22]. They used a stereo camera pair to compute depth
and then detected the head using skin color. A 3-layer neu-
ral network estimated the pose angles given the scaled depth
map of the head region. Breitenstein et al. [7] presented a
more accurate and faster system for head pose estimation
that took advantage of less noisy depth map acquisition and
the speed of GPUs. First, candidate 3D nose positions were
detected in the high quality depth map. Then, the GPU was
used to quickly find the best match between the input depth
map and a number of stored depth maps from an average

1

head model located at each candidate nose position. Their
system estimated poses at almost 56 frames per second (not
counting the time to acquire the depth maps).

Following this work, Fanelli and colleagues published
several related papers [10, 11, 9] about head pose estimation
and facial landmark localization from depth maps. In [10],
high quality 3D head scans were used as input. Their ap-
proach was based on random regression forests and learned
mappings from a patch of the depth image to pose an-
gles or facial landmark locations. The regression forests
were trained on example depth patches rendered from syn-
thetic head models. The results in [10] were more accurate
than those in [7], and depth maps were processed at about
25 frames per second (not including acquisition time) on
a standard CPU. In particular, real-time performance was
achieved with no GPU. The follow-up paper [11] used a
Kinect sensor, which provides significantly noisier data than
the high quality scans used in the previous work. Similar
to [10], the approach is based on a regression forest with the
added feature of classifying whether or not each depth patch
belonged to the face. This allowed the system to work on
scenes in which torsos and hands were in view in addition
to the face. The training was performed on patches from
actual Kinect depth maps and not from synthetic data. The
resulting systems processed from 11 to 130 frames per sec-
ond on a current CPU, depending on the trade-off between
speed and accuracy. However, it was not as accurate as the
previous system due to the noisier input depth maps.

The Constrained Local Model framework [8] was ex-
tended by Baltrusaitis et al. [2] to use depth as well as in-
tensity information to fit a 3D shape model to RGB-D data.
This was combined with a rigid head pose tracker based on a
Generalized Adaptive View-based Appearance Model [17]
and led to more accurate pose angle estimates than Fanelli et
al. [9]. Another relevant paper, by Padeleris et al. [20], es-
timated the pose of an input Kinect sensor depth map by
finding the 3D rotation of a template that best matched the
input. Excellent results were reported, however, the method
requires an initial person template in a known pose. This
makes it impractical for many applications.

In addition to the above cited methods, a number of sys-
tems have been proposed in the computer graphics literature
[5, 27, 28, 6, 31] for tracking heads in RGB-D video streams
to create high resolution face models or to animate avatars.
However, such tracking systems need some sort of initial-
ization. Furthermore, papers in this line of research do not
include any evaluation of head pose estimation accuracy.

Other tracking-based approaches to 3D head pose esti-
mation include Bleiweiss and Werman [4] and Smolyan-
skiy et al. [24]. These approaches suffer from the problem
of drift. Also, neither paper reports pose error values.

Our approach is more similar to Fanelli et al. [11] than
to other previous work. Like in [11], a Kinect depth sensor

provides the input data which we process in real-time with-
out the need for a GPU. However, [11] uses simple rect-
angular difference features in depth map space, which are
viewpoint-dependent and require the training data to con-
tain viewpoints similar to those present in the test data.
In contrast, we propose more elaborate triangular surface
patch features which are computed from the 3D point cloud
reconstructed from a depth map. As a result, our features
are viewpoint-independent and robust to changes in pose,
scale (distance to camera), and resolution. Furthermore, we
train our system on synthetic head models. These are much
easier to obtain in large numbers than real-world depth
maps of a variety of heads (such as the training data used
in [11]). Our experimental results demonstrate better accu-
racy than previous work [11, 9, 2], while performing at a
comparable speed using a single core of a standard CPU.

3. Overview of our Technique
Our method consists of two phases. The first is an offline

training phase, which is executed on a set of synthetically
generated 3D head models. It only needs to be performed
once, since the model representation learned in this phase
does not depend in any way on the test data or test scenario.
The second phase is the online test phase which consists of
real-time pose estimation and facial landmark localization.
It is performed on real-world depth images and makes use
of the model representation learned in the training phase.

Both phases are based on our new TSP feature, which we
now introduce before giving more detail on the two phases.

3.1. Triangular Surface Patches (TSPs)

Definition of a TSP Let S ⊂ R3 be a point cloud repre-
senting a human face. In the training phase, the points S
are the vertices of a synthetic 3D head model, while in the
testing phase, each point in S is the 3D location of a pixel
from a depth image. Assume we are given an equilateral tri-
angle T = (q0,q1,q2) with vertices q0,q1,q2 ∈ R3 and
side length l. Furthermore, assume that the triangle’s ver-
tices lie on the surface of the face, meaning that the distance
between each qi and its closest point from S is smaller than
a given threshold d. (In our implementation, we use d = 3
mm.) In this case, we say that the triangle T is sampled
from S. Details on how to perform the sampling will be
given in Section 4.1. Figure 1(a) provides an example.

Our triangular surface patch P consists of those points
from S that are above or below the sampled equilateral tri-
angle T. In other words, P ⊂ S is the set of points from S
contained within an infinitely tall triangular prism with base
T. Figure 1(b) shows a TSP.

Having a prism of infinite extent could lead to TSPs con-
taining not only points close to the base triangle but also
points belonging to unrelated parts of the face, as shown
in Figure 1(c). To avoid this, we only consider points to

(a)

(b)

(c)

Figure 1. (a) An equilateral base triangle, T, sampled from the
vertices, S, of a 3D head model. The light blue part of the base
triangle is occluded by the face’s surface, while the dark blue part
occludes the face. (b) The corresponding triangular surface patch
(TSP), P (shown in red), consists of the points in S that lie above
or below the base triangle. (c) Using an infinite prism could lead to
undesired points (in this example, the right ear) being incorrectly
included in the TSP.

be in the TSP if they are both in the interior of the prism
and inside of the circumsphere centered at the centroid
of the base triangle and passing through its vertices. Be-
sides solving the problem illustrated in Figure 1(c), this
also improves computational performance, since we use a
fast radius search from the highly optimized FLANN li-
brary [18, 19] to retrieve the points inside the circumsphere
of the base triangle. We then need to perform a prism con-
tainment test only on the retrieved points.

For general surface geometries, the circumsphere of a
base triangle might cut off surface parts that rise too much
above or below the base triangle. In practice, however, this
does not happen, because human faces have limited height
variation and we use a triangle side length that is large
enough (see Section 4.3).

TSP descriptor Given a base triangle T and the corre-
sponding triangular surface patch P, we compute a sim-
ple and robust geometric descriptor v as follows. The base
triangle is partitioned into k2 equilateral sub-triangles, as
shown in Figure 2(a). If it were projected perpendicularly
onto the base triangle, each point in P would lie within one
of the sub-triangles. We say that the point belongs to the
sub-triangle, or equivalently that the sub-triangle contains
the point. Each point in P has some (positive or negative)
height over the base triangle, as illustrated in Figure 2(b).
The descriptor of each sub-triangle is the mean height of
the points it contains. The descriptor of the whole TSP
is a vector v ∈ Rk2 that is simply a concatenation of the
descriptors of all of its sub-triangles. The TSP descriptor
can be thought of as a piecewise-constant triangular surface
patch, defined in the coordinate system of the base triangle,
that approximates the TSP. This is illustrated in Figure 2(c).

Using the average height of all points within a sub-

 3 k = 4

(a) (c)

(b)

 height
over base

-10 mm

7 mm

Figure 2. (a) Subdivision of the base triangle into k = 4 sub-
triangles per side results in a total of k2 sub-triangles. (b) Each
TSP point (black dot) belongs to the sub-triangle in which it would
lie if it were projected perpendicularly onto the base triangle.
(c) Visualization of the descriptor, v, for the TSP shown in Fig-
ure 1(b), using k = 5 sub-triangles per side. Each sub-triangle is
displaced above or below the base triangle and colored according
to the mean height of the points it contains.

triangle makes the proposed descriptor robust to noise and
to variations in the data resolution. This is confirmed in the
experimental part of the paper, in which synthetic, noise-
free high-resolution models are used for training, but then
the detection is successfully performed on real-world, noisy,
lower-resolution data from a commodity RGB-D sensor.

A further challenge of real-world depth images is the
presence of holes due to scan device limitations and self-
occlusions of the imaged object. This can lead to empty
sub-triangles and thus to TSP descriptors with undefined
components. To handle this, we fill in the missing data by
propagating the height information of the full sub-triangles
across the empty ones, using a simple iterative procedure.
In each iteration, the empty sub-triangles are populated by
assigning them the average height of their full neighboring
sub-triangles. Sub-triangles that have no full neighbors are
left unchanged in the current iteration. This process is re-
peated until all sub-triangles are populated. Finally, a fixed
number, s, of smoothing iterations (simple averaging of the
values in the neighboring sub-triangles) are applied only
to the newly populated sub-triangles (i.e., without chang-
ing the original full ones). In our implementation, we use
s = 3. This leads to a smooth distribution of height infor-
mation across any holes in the original data.

The base triangle side length, l, and the number k of
sub-triangles per side are important parameters of the TSP
descriptor. To select an optimal combination of parameter
values, we collected and labeled a small data set of Kinect
depth image sequences and employed an automatic param-
eter selection procedure, presented in Section 4.3.

A number of 3D geometric descriptors have been pro-
posed in the literature. A short list includes Spin Images
(SI) [14], 3D shape context (SC) [12], SHOT [26], and
MeshHOG [30, 29]. All these descriptors are defined w.r.t
a local coordinate frame and rely heavily on surface nor-

mals, which can be inaccurate for noisy data. In contrast,
our triangular base is defined using 3 well-separated surface
points, making it stable and robust to noise. We use normals
only for rough initialization of sampling (Section 4.1). Fur-
thermore, in contrast to the other descriptors, ours enables
simple, efficient, and robust hole filling, as described above.

In practice, point cloud data exhibit variations in sam-
pling density that can be both global (e.g., due to changes
in object distance or sensor resolution) and local (e.g., due
to viewpoint changes). Unlike SI, SC, and SHOT, our de-
scriptor is not based on histograms. In ours, a bin stores a
mean height rather than a point count. Since mean height is
not sensitive to the number of points in a bin, our descriptor
is robust to both local and global density variations. In con-
trast, the other descriptors need complicated normalization
procedures to try to compensate for local density changes.

Unlike our descriptor, each SI does not uniquely define
a 6-DOF pose for the point described. Thus, a single SI de-
scriptor cannot vote for face pose nor landmark locations,
which our voting system needs. MeshHOG is more expen-
sive to compute, making it less suitable for real-time pro-
cessing. [30] reports a timing of “under 1 s” to compute
706 features on a 2.4 GHz CPU. On the same CPU, our
method uses only 122 ms for 706 features.

Furthermore, our descriptor is low-dimensional, which
reduces memory consumption and speeds up nearest-
neighbor search. With optimal parameter settings (Sec-
tion 4.3), its dimensionality is just 25. This compares fa-
vorably to the dimensionality of SHOT: 32, MeshHOG: 96,
SI (uncompressed, as used nowadays): 200, and SC: 1980.

3.2. Training

The training is performed on high-resolution meshes,
which we generated using the Basel Face Model
(BFM) [21]. It is a publicly available PCA-based 3D mor-
phable model that was created based on high-resolution 3D
scans of 200 people. By sampling PCA coefficient values
from a normal distribution, the BFM can be used to gen-
erate any number of random faces in the form of surface
meshes (see Figure 3(a)). Moreover, semantically corre-
sponding mesh vertices have the same index in all meshes.
For example, the vertex at the tip of the nose has the same
index number in all of the training models. Consequently,
the facial landmarks need to be manually annotated only
once on a single BFM face, in order to know the 3D land-
mark positions on all models.

From each mesh in the training set, we randomly sam-
ple n equilateral base triangles T1, . . . ,Tn. Details on the
sampling procedure will be given in Section 4.1. In our ex-
periments, we use n = 10, 000, which densely covers the
mesh in overlapping base triangles. Next, we determine the
TSP corresponding to each Ti and compute its descriptor
vi ∈ Rk2 . Furthermore, we associate with each base tri-

(b)(a)

ui1

ci

ui2

Figure 3. (a) A few of the synthetic 3D head models in our training
set. (b) A base triangle Ti (shown in blue) sampled from a training
head model, along with the vectors ci,ui1, and ui2, which origi-
nate at the centroid of Ti and point to the head model’s centroid
(blue dot) and two facial landmarks (yellow dots), respectively.

angle Ti the vectors that connect Ti’s centroid to certain
points of interest, which are the model centroid and the fa-
cial landmarks of that model (e.g., top of the nose, tip of the
nose, and eye centers). These vectors are used in the online
testing phase (see Section 3.3) to estimate the head pose and
to localize the facial landmarks.

Thus, for each training model, we generate and save n
samples T1, . . . , Tn, each one consisting of a base triangle
Ti along with its associated data. More precisely,

Ti = {Ti,vi, ci,ui1, . . . ,uiq}. (1)

Here, vi is the TSP descriptor, ci is the vector from Ti’s
centroid to the model centroid, and uij is the vector from
Ti’s centroid to the position of the jth facial landmark
(see Figure 3(b)).

We store all samples from all of the training face mod-
els in a single library. It is organized in a way that allows
rapid retrieval of samples that are most similar to a given
query sample. Similarity is measured by the Euclidean dis-
tance between the TSP descriptors of the samples. To obtain
nearest neighbors of TSP descriptors efficiently, we use the
FLANN library [18, 19] to store and retrieve them. The TSP
descriptors, vi, are saved as row vectors in a large matrix,
and the other components of Ti are stored in corresponding
order in an array. Given a query descriptor, FLANN oper-
ates on the matrix and provides the row indices of the TSP
descriptors that are (approximately) most similar to the pro-
vided query descriptor. Using these, we then retrieve the
corresponding base triangle and its associated facial land-
mark information from the array.

Because the centroid ci of the face model and the facial
landmark vectors ui1, . . . ,uiq are all defined relative to the
base triangle Ti, our model representation can be used to
estimate pose and facial landmark positions for heads in ar-
bitrary poses and, in particular, at arbitrary distances from
the depth sensor. Furthermore, it does not depend on the

sensor used in the testing phase. This is not the case for the
method of Fanelli et al. [9]. For their method to succeed
on a test depth map representing a head in a particular ori-
entation and at a particular distance from the sensor, their
training data must have been sampled from heads in similar
poses. Moreover, the training data must be generated for a
particular depth sensor. Thus, in contrast to our approach,
the one presented in [9] cannot handle arbitrary head posi-
tions and orientations and uses sensor specific training data.

3.3. Online Testing

The online testing phase is performed on a 3D point
cloud S that has been reconstructed from a depth map,
which in our experiments is provided by a Kinect sensor.
The head orientation and the locations of facial landmarks
are estimated as follows.

Voting Consider an equilateral base triangle T′ that has
been sampled from S. We compute the corresponding TSP
and its descriptor v′, as described in Section 3.1. Next, v′

is used as a key to retrieve the most similar descriptor, vi,
from our training library. Recall from (1) that vi is associ-
ated with the library sample Ti, which also contains a base
triangle Ti as well as ci, the face centroid relative to Ti.

We need to transform ci into the coordinate system of S.
This is done by the rigid transformation whose translation is
µ′, the centroid of T′, and whose rotation matrixR is found
as follows. Translate Ti and T′ to respectively obtain T̃i

and T̃′ whose centroids are at the origin, then find R that
satisfies RT̃i = T̃′. Thus, based on its match to the test
triangle T′, the library sample Ti votes for:
• head orientation R, and
• head centroid location µ′ +Rci.

Since we are dealing with real-world data, the input point
cloud is corrupted by noise and may contain non-face ob-
jects. Furthermore, the faces to be detected are not present
in our training library. To make our method robust to these
types of variations, we sample m query base triangles and
retrieve for each one of them the h training samples whose
descriptors are most similar to the query triangle’s descrip-
tor. This results in a total ofmh rotation matrix votes for the
head orientation, and mh positional votes for the centroid
location. Note that these votes live in two different spaces.
The rotational votes lie in the group of rotation matrices
SO(3), and the positional votes lie in R3. Before the facial
landmark locations are estimated, we eliminate inconsistent
votes using a simple but effective filtering strategy.

Vote Filtering Recall from (1), that in the training phase,
the facial landmark locations are stored (like the model
centroids) as vectors relative to the sampled base triangle.
Thus, voting for facial landmark locations can be performed

in the same way that voting for the model centroid was per-
formed. This leads to multiple voting spaces: SO(3) for
the head orientation, and a separate voting space R3 for the
head centroid and each of the landmark locations. Finally,
the cluster center in each voting space can be detected inde-
pendently. This is similar to the voting strategy employed
in [9]. However, we found that this sometimes leads to in-
correct results. Figure 4 illustrates the voting process in the
centroid (b) and orientation (c) voting spaces. The blue dots
in the centroid space represent the (incorrectly) detected
cluster if clustering were done independently in the centroid
space.

To account for this, we filter out inconsistent votes by
performing joint clustering in the rotation and centroid vot-
ing spaces. The red dots in Figure 4(b) and (c) represent the
clusters correctly detected using this procedure. The reason
why we don’t cluster facial landmark votes is the following.
Tests with independent clustering in each space showed that
the rotation estimates are more stable than those of the facial
landmarks, meaning that the landmark positions were more
often wrongly estimated than the head orientation. To get
the missing translational degrees of freedom of the head,
we use the centroid votes. Note that the error of a facial
landmark estimate increases with increasing distance be-
tween the base triangle and the landmark position. Since
the model centroid roughly minimizes the average distance
to all base triangles, it is the most appropriate among all
positional votes.

Our joint clustering works as follows. Recall that each
library sample Ti votes for both a head orientation, call it
Ri, and a head centroid location, call it ti. We say that
Ri ∈ SO(3) and ti ∈ R3 are the votes of Ti. To esti-
mate the cluster center in both spaces simultaneously, we
count the number of neighbors of Ti in each voting space.
For another library sample Tj to count as a neighbor of Ti,
both the rotational and centroid votes of Tj , which we call
Rj and tj , have to be within a predefined distance to the
votes of Ti. That is, both conditions d(Ri, Rj) < dr and
‖ti − tj‖ < dt have to hold, where d(·, ·) is an appropriate
distance function in SO(3). In our implementation, we use
dr = 15◦ and dt = 25mm.

The set of winning library samples, shown in red in Fig-
ure 4(b) and (c), consists of the library sample that has the
most neighbors as well as all neighbors of that sample. As-
sume there are N winning samples, T1, . . . , TN . Recall
that each Ti was allowed to vote because its TSP descrip-
tor matched that of a test triangle T′i, with centroid µ′i, that
was sampled from S. Our estimate of the head orientation
is the average, R, of the winning library samples’ rotation
votes. The facial landmark location estimates are computed
by averaging the landmark vectors of the winning library
samples after transforming them into the coordinate system
of S. The vectors u1k, . . . ,uNk corresponding to the kth

landmark (say, the tip of the nose) are transformed and av-
eraged to yield the estimate ũk of that landmark’s position:

ũk =
1

N

N∑
i=1

(
µ′i +Ruik

)
, (2)

This procedure always produces consistent facial land-
mark estimates, since all of them stem from base triangles
that vote for similar head orientations and centroid loca-
tions. Details on the distance in SO(3) that we use and how
we average rotation matrices are provided in Section 4.2.

4. Implementation Details
4.1. Equilateral Triangle Sampling

Fast equilateral triangle sampling from 3D point clouds
is needed in both phases of our method. The problem can
be formulated as follows. Given a point cloud S ⊂ R3 and
two positive numbers d and l, generate an equilateral trian-
gle T = (q0,q1,q2) ⊂ R3 with side length l such that the
distance between each qi and the closest point from S is
smaller than d. Obviously, for certain point clouds and val-
ues for d and l, no such triangle exists. However, our point
clouds are dense enough and both d and l have appropriate
values (d = 3mm leads to good results and an optimal l is
computed in Section 4.3).

First, we sample a seed point p uniformly from S. If S is
the set of vertices of a mesh, the seed point is sampled uni-
formly inside a randomly chosen mesh triangle, where the
probability of choosing a triangle is proportional to its area.
Next, we compute a normal direction n at p. In the case of
a mesh, we simply take the normal of the mesh triangle p
was sampled from. If S is a point cloud reconstructed from
a depth image, we compute n as the average of the normals
of the planes passing through p and pairs of its 4-connected
neighbors. The neighborhood structure of S is the one im-
posed by the rectangular grid of the depth image.

Now, that we have a seed point p and a normal n, we
generate an equilateral triangle T with side length l and
transform it such that it lies in the plane defined by p and
n and its centroid coincides with p. This defines T up to
a rotation about n by an angle which we select randomly
from the interval [0, 2π).

This yields a randomly generated triangle that meets all
requirements except being close enough to the point cloud.
To achieve this, we transform T to S using ICP [3]. An ICP
iteration computes for each triangle vertex qi the closest
point from S, call it q′i. Next, T is rigidly transformed such
that the sum of squared distances between each qi and q′i is
minimized. (see [3] for more details). Initially, T is not too
far away from S, so ICP typically needs not more than three
iterations to converge. After that, we test if each triangle
vertex is indeed within a distance of d units from S. If not,
the triangle is rejected and the whole procedure is repeated.

This sampling method generates triangles which uni-
formly cover the input point cloud. Note that if the depth
image is too noisy and the normal n cannot be reliably com-
puted, we can simply set n to be the negative of the depth
sensor viewing direction (usually (0, 0,−1)). In this case,
the initial triangle is not as well aligned to the point cloud
and ICP is likely to need additional iterations to converge.

4.2. Processing in the Group of Rotations SO(3)

An essential part of our joint clustering approach pre-
sented in Section 3.3 are the notions of distance in the group
of rotations and averaging of rotation matrices. Recall that
the product RT1 R2 of two rotation matrices R1 and R2 is
also a rotation matrix. Thus, RT1 R2 is equivalent to a single
rotation by an angle θ about an axis n ∈ R3. The function
dR(R1, R2) = |θ| is known as the Riemannian distance [16]
or the geodesic metric in SO(3) [13].

There is a connection between dR and the Frobenius dis-
tance ‖R1 −R2‖F given by the following equation [16]:

‖R1 −R2‖F = 2
√

2

∣∣∣∣sin θ2
∣∣∣∣ , (3)

where dR(R1, R2) = |θ|. Thus, to determine ifR1 is within
a given (Riemannian) distance θ of R2, as required in Sec-
tion 3.3, we check whether ‖R1 −R2‖F < 2

√
2
∣∣sin θ

2

∣∣ .
The problem of computing the average rotation matrixR

of R1, . . . , Rn ∈ SO(3) can be formulated as a minimiza-
tion problem, once a distance function d(·, ·) is chosen:

R = arg min
R∈SO(3)

n∑
i=1

d2(Ri, R). (4)

Unfortunately, (4) cannot be solved in closed form for the
Riemannian distance. In our case, however, the input matri-
ces are close to each other because they all lie in the neigh-
borhood of the same rotation matrix. In this case, solving
(4) using the Frobenius distance d(Ri, R) = ‖R1 − R2‖F
is a good approximation and can be done in closed form:

R = WV T , (5)

where WΣV T is the singular value decomposition of the
arithmetic mean 1

n

∑n
i=1Ri. See [16] for a proof.

4.3. Parameter Optimization

The most important parameters of our method are the
base triangle side length l, the number k of sub-triangles
per side (both introduced in Section 3.1) and the number
h of nearest neighbors retrieved from the library of train-
ing samples (see Section 3.3). In order to avoid a time-
consuming manual tuning, we used a simple automatic pro-
cedure which computes an optimal combination.

We chose a range of values for each of the three param-
eters such that the lower and upper bounds of each range

(b) (c)(a)

Figure 4. Our results on a frame from the Biwi Database [9]. (a) Estimated head orientation (black line) and landmark locations (black
dots at nose top, eyes, nose tip, and mouth corners). (b) Head centroid voting space. All votes are shown as dots. If we clustered only
in centroid voting space, the blue dots would be the winning votes, leading to an incorrect estimate. But since we cluster jointly in the
centroid and rotation voting spaces, the red dots are the winning votes which give a correct estimate. (c) Orientation voting space. Each
dot shows the axis-angle representation for one orientation vote. Joint clustering yields the winning votes shown in red. (For this frame,
the winning orientation votes are almost the same whether clustering jointly or in orientation space alone.)

are extremes which lead either to suboptimal results or to
too long computation time. In this way, a reasonable com-
bination is expected to be in the interior of the tested pa-
rameter space: l ∈ {40, 60, 80, 100, 120}, k ∈ {4, 5, 6} and
h ∈ {1, 3, 5, 7}. The optimization was performed using 50
head models for training and 100 base triangles for online
sampling. These parameters were not included in the opti-
mization since the way they affect the accuracy is obvious:
the bigger the numbers the better.

We recorded three depth image sequences of the same
person moving his head from left to right and from top to
bottom and waving with his hands while sitting in front of a
Kinect sensor. We labeled 6 facial landmarks in all frames,
namely, the bridge of the nose, the tip of the nose, the eye
pupils and the mouth corners.

For a particular parameter combination, the facial land-
mark localization was performed on all frames and the
root mean squared (RMS) error of the estimated locations
was saved. The combination with the smallest RMS error,
namely, (l, k, h) = (80mm, 5, 5) was selected as the opti-
mal one. However, other values led to very similar results,
so we expect this particular parameter combination to be
stable across different sensors and testing scenarios.

5. Experimental Results
All experiments use a single CPU core of a Windows 64-

bit laptop with 12GB RAM and 2.4GHz Intel Core i7 CPU.
As already mentioned in Section 3.2, the training was

performed on high-resolution BFM head meshes [21]. In
addition, [21] used the BFM to fit 3D models to images of
all 68 subjects in the CMU-PIE face image database [23].
Our training set includes these 68 3D head models based on
the CMU-PIE subjects plus other 3D head models randomly
generated using the BFM. The depth maps used for testing

are from the Biwi Kinect Head Pose Database [9]. It con-
sists of 24 sequences of RGB-D images from 20 different
subjects moving their heads over a range of roughly ±75◦

for yaw, ±60◦ for pitch and ±50◦ for roll.
To estimate the head pose and localize facial features

given an RGB-D image, we first use a 2D multi-view face
detector that roughly locates the head region in the RGB
image. 2D face detection is now a well developed tech-
nology available in many commercial products. We use a
Viola-Jones type detector very similar to the one described
in [15]. This is a general multi-view face detector that de-
tects all faces from left profile to right profile in a cluttered
image. It takes 75 ms to process a single VGA image. This
is in contrast to the detector learned in Fanelli et al.’s work
which was trained on, and thus very specific to, Biwi data.

After detecting the face, only those depth pixels that are
within the 2D bounding box returned by the face detector
are used to reconstruct the 3D point cloud. After that, the
head pose estimation and facial feature localization is per-
formed as described in Section 3.3. Figure 4(a) provides an
example.

Our results are shown in Table 1. Each RGB-D image
is processed independently, which implies that our method
does not need any kind of initialization. If the 2D detector
fails to detect a face, that frame is counted in the Missed
column of the results table, but no pose or facial landmark
position estimate is given and that frame is not included in
the error estimates. The same protocol was used in [9].

We compare with Fanelli et al. [9] for their most accurate
parameter setting (stride = 5). Two parameters that we can
increase to improve accuracy (but reduce speed) are num-
ber of head models used in training and number of trian-
gles sampled from each test depth image. We choose values
for training set size (250 models) and number of triangles

Method Nose tip (mm) Rotation (◦) Direction (◦) Yaw (◦) Pitch (◦) Roll (◦) Missed Time
Ours (4 = 200) 6.8± 14.2 4.5± 13.7 3.2± 7.9 2.5± 8.3 1.8± 4.3 2.9± 12.8 8.1% 75.1 ms
Ours (4 = 100) 8.6± 21.3 6.4± 19.2 4.4± 11.8 3.5± 12.6 2.5± 6.3 4.2± 17.2 8.1% 38.9 ms
[9] Trained on Biwi 12.2± 22.8 NA 5.9± 8.1 3.8± 6.5 3.5± 5.8 5.4± 6.0 6.6% 44.7 ms
[9] Synthetic Training 19.7± 46.5 NA 8.5± 12.9 6.0± 11.5 4.8± 7.1 5.8± 6.8 9.3% 44.0 ms

Table 1. Results on Biwi data set in “detection” mode

Method Nose tip (mm) Rotation (◦) Direction (◦) Yaw (◦) Pitch (◦) Roll (◦) Missed Time
Ours (4 = 200) 8.4± 22.2 5.5± 16.5 3.9± 10.3 3.0± 9.6 2.5± 7.4 3.8± 16.0 0.0% 75.9 ms
Ours (4 = 100) 10.6± 28.1 7.8± 22.7 5.4± 14.3 4.3± 14.7 3.2± 8.8 5.4± 20.8 0.0% 37.9 ms
Baltrusaitis et al. [2] NA NA NA 5.7 7.5 8.0 0.0% NA

Table 2. Results on Biwi data set in “tracking” mode

(4 = 100) so that our speed roughly matches that of [9].
We report the 3D error (in mm) of the nose tip landmark

position (mean ± std, across all Biwi frames). Our train-
ing 3D models (from BFM) are well aligned with respect to
orientation (frontal pose is consistent across all models), but
the ground truth orientation values given in the Biwi test set
are not aligned with the BFM models (ground truth frontal
pose for each subject is not consistent). To compensate for
this, for each Biwi subject we compute a single rotation ma-
trix, by which we premultiply our orientation estimate for
every frame of that subject’s sequence, to minimize the er-
ror of the final estimates. Rotation error is the average Rie-
mannian distance between the estimated and ground truth
orientations. We also compute Direction error as in [9]:
separately rotate the frontal vector [0, 0,−1]T by the esti-
mated and ground truth rotations, then measure the angle
between the resulting two vectors. Yaw, pitch, and roll er-
rors are the absolute difference between the Euler angles for
ground truth orientation and those for estimated orientation.
We also report missed detection rate and running time (not
including RGB-D image acquisition and 2D face detection).

Our method is significantly more accurate than Fanelli et
al. [9] for all pose angle and landmark position estimates.
By increasing the number of sampled triangles to4 = 200,
we further improve our accuracy while still maintaining a
speed of over 13 frames per second. It is also interesting to
note that Fanelli et al. got much better results when train-
ing on part of the Biwi database and testing on the rest (3rd
row of Table 1). When they trained using synthetic heads
for positive examples (but still Biwi data for negative ex-
amples), their accuracy declined significantly (4th row of
Table 1). Our method was only trained on synthetic head
models but still improves on the results of Fanelli et al. even
when they trained using the Biwi database.

For the results in Table 1, we discard 8.1% of the input
images due to our multi-view face detector failing to detect
a face. This is a slightly higher than Fanelli et al.’s missed
detection rate of 6.6% when they train on Biwi data, and
slightly lower than their missed detection rate (9.3%) when
they train on synthetic positive examples. Our missed de-

tection rate could be improved by simply using a better 2D
face detector. Another way to drop the missed detection
rate is to use a tracking approach. We did this in a very
simple manner. When the 2D face detection failed on the
current frame, we just used the 2D bounding box from the
most recent previous frame in which a face was detected. In
effect, this assumes that the face has moved little since the
last detection, which is roughly true for the Biwi database.
Using this “tracking” approach, our missed detection rate is
0. We show results for this case in Table 2 when sampling
100 or 200 base triangles per image. We compare against
Baltrusaitis et al. [2] who also show results on the Biwi data
sets using a much different tracking approach. As can be
seen, our results are significantly better than Baltrusaitis et
al. [2]. In fact, our results with 0 missed detections and
slightly faster speed are comparable to the best results of
Fanelli et al. [9] with 6.6% missed detection rate.

6. Conclusions

We presented a fast, accurate and practical new tech-
nique for estimating 3D head pose and facial landmark po-
sitions from an RGB-D image. Our technique is based on a
new TSP feature, which represents a surface patch of an ob-
ject, along with a fast approximate nearest neighbor lookup
to find similar surface patches from training heads. The
correspondence between a testing and a training TSP fea-
ture yields an estimate for the head pose and the facial land-
mark locations. Since the estimate from a single TSP may
be inaccurate, we sample many such patches, whose cluster
mean gives robust estimates of pose and landmark positions.

Because we rely on synthetic 3D head models for train-
ing instead of real depth images of human heads, our train-
ing data are easy and inexpensive to generate. Furthermore,
the resulting training library of feature descriptors is inde-
pendent of a particular sensor and therefore more general
than methods that rely on actual depth images for training.

A comparison with other methods demonstrate a signif-
icant improvement over the current state-of-the-art in accu-
racy while maintaining real-time speed.

References
[1] A. Asthana, T. Marks, M. Jones, K. Tieu, and R. M.V. Fully

automatic pose-invariant face recognition via 3d pose nor-
malization. In ICCV, pages 937–944, 2011. 1

[2] T. Baltrusaitis, P. Robinson, and L.-P. Morency. 3d con-
strained local model for rigid and non-rigid facial tracking.
In CVPR, 2012. 1, 2, 8

[3] P. Besl and N. D. McKay. A method for registration of 3-
d shapes. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 14(2), 1992. 6

[4] A. Bleiweiss and M. Werman. Robust head pose estimation
by fusing time-of-flight depth and color. In IEEE Interna-
tional Workshop on Multimedia Signal Processing, 2010. 2

[5] S. Bouaziz, Y. Wang, and M. Pauly. Online modeling for
realtime facial animation. In ACM Trans. on Graphics (SIG-
GRAPH), 2013. 1, 2

[6] D. Bradley, W. Heidrich, T. Popa, and A. Sheffer. High reso-
lution passive facial performance capture. In ACM Trans. on
Graphics (SIGGRAPH), 2010. 2

[7] M. Breitenstein, D. Kuettel, T. Weise, and L. V. Gool. Real-
time face pose estimation from single range images. In
CVPR, 2008. 1, 2

[8] D. Cristanacce and T. Cootes. Feature detection and tracking
with constrained local models. In BMVC, 2006. 2

[9] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. V. Gool.
Random forests for real time 3d face analysis. Int. J. of Com-
puter Vision, 101:437–458, 2013. 1, 2, 5, 7, 8

[10] G. Fanelli, J. Gall, and L. V. Gool. Real time head pose
estimation with random regression forests. In CVPR, 2011.
2

[11] G. Fanelli, T. Weise, J. Gall, and L. V. Gool. Real time head
pose estimation from consumer depth cameras. In Proc. of
the German Assoc. for Pattern Rec. (DAGM), 2011. 2

[12] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik. Rec-
ognizing Objects in Range Data Using Regional Point De-
scriptors. In ECCV, 2004. 3

[13] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation averaging.
International Journal of Computer Vision, 103(3):267–305,
2013. 6

[14] A. Johnson and M. Hebert. Using Spin Images for Efficient
Object Recognition in Cluttered 3D Scenes. IEEE TPAMI,
21(5):433–449, 1999. 3

[15] M. Jones and P. Viola. Fast multi-view face detection. Tech-
nical Report TR2003-96, Mitsubishi Electric Research Labs,
2003. 7

[16] M. Moakher. Means and averaging in the group of rotations.
SIAM Journal on Matrix Analysis and Applications, 24(1):1–
16, 2002. 6

[17] L.-P. Morency, J. Whitehill, and J. Movellan. Generalized
adaptive view-based appearance model: Integrated frame-
work for monocular head pose estimation. In Face and Ges-
ture, 2008. 2

[18] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Applica-
tion VISSAPP’09), pages 331–340. INSTICC Press, 2009. 3,
4

[19] M. Muja and D. G. Lowe. Scalable nearest neighbor algo-
rithms for high dimensional data. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 36, 2014. 3, 4

[20] P. Padeleris, X. Zabulis, and A. Argyros. Head pose estima-
tion on depth data based on particle swarm optimization. In
CVPR Workshop on Human Activity Understanding from 3D
data, 2012. 2

[21] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vet-
ter. A 3d face model for pose and illumination invariant face
recognition. In IEEE Intl. Conf. Advanced Video and Signal
based Surveillance (AVSS), 2009. 1, 4, 7

[22] E. Seeman, K. Nickel, and R. Stiefelhagen. Head pose es-
timation using stereo vision for human-robot interaction. In
Face and Gesture, 2004. 1

[23] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination,
and expression database. IEEE Trans. Pattern Anal. and Ma-
chine Intelligence, 25(12), 2003. 7

[24] N. Smolyanskiy, C. Huitema, L. Liang, and S. Anderson.
Real-time 3d face tracking based on active appearance model
constrained by depth data. In Image and Vision Computing,
2014. 2

[25] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifica-
tion. In CVPR, 2014. 1

[26] F. Tombari, S. Salti, and L. Di Stefano. Unique Signatures of
Histograms for Local Surface Description. In ECCV, 2010.
3

[27] L. Valgaerts, C. Wu, A. Bruhn, H.-P. Seidel, and C. Theobalt.
Lightweight binocular facial performance capture under un-
controlled lighting. In ACM Trans. on Graphics (SIG-
GRAPH), 2012. 2

[28] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Real-time
performance-based facial animation. In ACM Trans. on
Graphics (SIGGRAPH), 2011. 2

[29] A. Zaharescu, E. Boyer, and R. Horaud. Keypoints and Local
Descriptors of Scalar Functions on 2D Manifolds. Interna-
tional Journal of Computer Vision, 100(1), 2012. 3

[30] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Sur-
face Feature Detection and Description with Applications to
Mesh Matching. In CVPR, 2009. 3, 4

[31] L. Zhang, N. Snavely, B. Curless, and S. Seitz. Spacetime
faces: high resolution capture for modeling and animation.
In ACM Trans. on Graphics (SIGGRAPH), 2004. 2

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2015-069.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

