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Abstract

In this paper, a fast solver for the optimization problem arising in the nonlinear model pre-
dictive control of spacecraft attitude is developed and simulation results of its application
to constrained spacecraft attitude control are presented. The solver exploits the numerical
solution of the necessary conditions for optimality in a discrete-time optimal control prob-
lem defined over a prediction horizon, where the discrete-time dynamics are based on the
Lie group variational integrator model. The inequality constraints (thrust constraint, inclu-
sion/exclusion zone constraints, etc.) are handled using a penalty function approach. Our
developments exploit the geometric mechanics and control formalism.
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Constrained Spacecraft Attitude Control on SQ3) Using Fast
Nonlinear Model Predictive Control

Rohit Guptd, Uro3 V. Kalabié, Stefano Di Cairand, Anthony M. Bloch and llya V. Kolmanovsky

Abstract— Recently, a reference governor and a nonlinear
model predictive control approach for constrained spaceaft
attitude control on SO(3) were proposed in [9]. In this paper,
we develop a fast solver for the nonlinear model predictive
controller in [9]. The approach is based on a numerical
solution of the necessary conditions for optimality resuling
from a discrete optimal control problem over each predictiin
horizon, where the inequality constraints are incorporatel as
soft constraints through a penalty function. The formulation
of the nonlinear model predictive control problem and the
necessary conditions for optimality exploit the geometricme-
chanics formalism and Lie group variational integrator based
spacecraft attitude dynamics model. Simulation results ang
with the computational time assessment are presented. Remizs
on integrating the approach with continuation methods are
made.

. INTRODUCTION
Constrained spacecraft attitude control is receiving theoa

attention to address stringent performance requirements

particular, in small spacecraft with tight control and incl
sion/exclusion zone constraints. Model predictive cdntfo

spacecraft attitude based on linearized dynamics has b

studied in previous literature (e.g., see [7], [19], [20[n
deal more effectively with system nonlinearities and perfo

a very long time, which makes it impractical for real-time
implementation. In this paper, we develop a fast solverdase
on solving the necessary conditions for optimality resgiti
from a discrete optimal control problem over each predictio
horizon, where the inequality constraints are incorparate
as soft constraints through a penalty function. The regedin
horizon optimal control problem and necessary conditions
for optimality are formulated exploiting geometric meclean
formalism. The idea of using a penalty function is similar
to the one used in [18], where barrier functions are used
for constrained motion planning for multiple vehicles on
SE(3). The necessary conditions for optimality are solved
using thelndirect Single Shooting Methoavhere Newton’s
method is used to determine the initial values of the Lageang
multipliers, using sensitivity derivatives obtained fraime
necessary conditions for optimality (see [12]).

The paper is organized as follows. In Section I, we derive

'the necessary conditions for optimality. In Section Ill, we

give a description of the fast solver. In Section IV, we
present numerical results along with the computationa¢tim

€&essment. Finally, in Section V, we give some concluding

remarks and possible future work. Before proceeding furthe
we describe the notation used in the paper.

global maneuvers, nonlinear predictive control approache
have been proposed in [6], [9]. Unlike [6], [9] utilizes A. Notation

discrete-time spacecraft dynamics based on a Lie group
variational integrator model. This model provides higher a .

curacy in prediction and unlike continuous-time integrsto

preserves the conserved quantities of motion (momentu
and energy) to machine precision in absence of extern

moments (see [11]). As SQ) is closed under multiplication,

the Lie group variational integrator updates the attitugie b
multiplying two matrices in SCB) and hence ensures that the
attitude always evolves on $8). For a detailed presentation (

on variational integrators, see [14] and for the discregéri
body equations, see [15].

The notation used in the paper is mostly standard, except
in a few places. For a given control sequerfeg;}7",
rrﬁsulting in a state sequen({ekﬂ};V:O starting fromaxy,

ayer a prediction horizon ofV-steps, the control sequence
is denoted by{u;..;x } 75" and the state sequence is denoted
by {xk-ﬁ-jlk};v:()' Using the above notatiom;,;, = x. For

a matrix B € R3*3, the antisymmetric part is denoted by
B)4 and the Frobenius norm is denoted bi| . For a
differentiable scalar valued functiofi the partial derivative

of f with respect to one of its arguments &S is denoted

The nonlinear model predictive control approach describé?)y Dx f.

in [9] uses a standard constrained optimizer NATLAB

(f M ncon. m, which is our baseline solver. Since the,(')

baseline solver calculates the derivatives numericallg an'" =
does not explicitly exploit the knowledge of the underlyingP@iling betweerso
Lie group structure, one single optimization run can take
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We also use the following mapsg:)* : R3 — s0(3),
X 1 50(3) — R3 and(.)° : R? — s0(3)*. The standard

Anner product onR? is denoted by(.,.) and the natural

(3) andso(3)* is denoted by((., .)).

1. NONLINEAR MODEL PREDICTIVE CONTROL ON
SO3)

Consider the following nonlinear model predictive control

problem

min ~ Jg = Ka(Rit Nk Hl>c<+N\k)+

N —
{urtjin}t;=o



= Define the augmented cost functional as follows

Z Ca( R T s U jin)» (1) o
=0 -
subject to Tiaug = Ka(BRn,Iy)+ ;CZ_O Ca(Ry, 11 uy ) +
BT, Fiojinda — JaFE e @) R
(Mg logm(Ry41) — logm(Ry Fy))) +
Rivivjie = RigjieFrajin (3 k=0
Weprajie = Flgpllesie + b, (4) Nl

(A%, (M1 — FY T — hug)®)) +

(]

Hi(Rk+j|k7Hl>c<+j\k’ul>c<+j\k) < O, i:O,...,m, (5) k=0
N—1 m
where Ry ik, Firjie € SO3), Mipjk, uprje € R3 pidi (Hi (R, 11wy ), (11)
andh € R, is the time step. The terminal co$f, is a k=0 i=0

real-valued positive semi-definite function with respeat t

1 * 2 ) . .
its argumentsi,, |, and I1* with the property that where ), € s0(3)*, A\i € s0(3), ¢;(.) is a penalty function

k+N|k? )
K4(Isx3,05x3) = 0. The incremental cos€, is a real- andu; € Ry
valued positive semi-definite function with respect to S\ Remark |

argumentsRy,, ;; and Hljﬂ.'k and a real-valued positive

definite function with respect to its argumenf, ., with The special orthogonal group is a Lie group given by
4 SOB3,R) = {A € M(3,R) | AT = A1 det(A) = 1},

the property thatCy(Isx3,035x3,03x3) = 0. It is also \ i "
assumed that the data are sufficiently regular, so that whifflich has the Lie algebra given by(3,R) = {A €

T _ . 3
the inequality constraints are incorporated as soft camgg M(3:R) | A7 = —A}. The map()* : 15 — 50(3)
through a penalty function, themplicit Function Theorem 1S @ Lie algebra isomorphism betweeR® and so(3)

can be used to uniquely determine the optimal contfdl, , (eb-g-, see [10]2]'_ Whichh T(h'l(l)'WR?; = s0(3). Unger the
as a function off ;. 11 and \i where\i above isomorphism, the Killing form(.,.) on so(3) gets

X
: ktjlk m0 kAR “k+ilk’  jdentified with the standard inner product &¢ (e.g., see
i € {1,2} are the Lagrange r_nultlphe.rs, which are mtrodug:e 10]). Specifically, if x(a*,b*) := Ft)r(ad(ax) o(adg(]bx))
shortly (e.g., see [2]). The inequality constraqr_ﬂs areelV \ihere ad is the adjoint representation ofo(3), then
by H; : SO(3) x s0(3) x s0(3) — R. In addition to all K@, b)) = tr(@b*) = —2(a,b) In fact
: H H ) - - s O/R3xR3 - ’

the above properties, the terminal cdsy, the incremental : e .

st d the i i traintd. al tisfv th as S{3) is compact and semi-simple, the negative
cost Cy and the inequality constraint; also satisty the ¢ o “iling form x(.,.) on so(3) gives a bi-
appropriate smoothness assumptions. In what follows, WE ariant Riemannian metric on 38). Using the map
also assume that the constraint qualification conditiortdslnol()<> . R® — s0(3)" and by letting ';he natural pairing
at the optimal solution for each prediction horizon. <'<a<> EX>> s xeo(s) = (@, Bgsps, it is easily seen that
Note that/, € R**? is the nonstandard moment of inertia <a<>’ X>>5"( )*”"( ) _i,{(a;; b’X) = Lie((a)Th¥)
matrix and is related to the standard moment of inertig, .\ alsg"(g;]gjvg(i;m(?))g so(é)* eg See [8]). In this

. 33 1 - , a x 9., .
matrix J € R a'.s.‘]d o 2tr(.‘])l3.X3 J. _To obtain way, the natural pairing between a covector and a vector
the necessary conditions for op'gmall_ty, we will follow the ets identified to the Killing form omo(3), which further
same variational approach as given in [12]. However, he ets identified with the standard inner product®h Using

Fh|s approach IS gpplled to a more 9?””&' problem wit is, we can obtain the necessary conditions for optimality
inequality constraints (5) and an additional dependence IR R3

the cost (1) onR andII. Since the fast solver is based '
on solving the necessary conditions for optimality resgiti
from a discrete optimal control problem over each predictio
horizon, where the inequality constraints are incorparate

The variations for the sequencéB;}2_,, {Fi}r-, and
{11 }{_, are given as follows

soft constraints through a penalty function, we consider th Ri. = Rypexp(en), (12)
following discrete optimal control problem ’
g P P Fie = Frexp(e), (13)
N-1 Hk75 = Ty + €dllg, (14)
min Jo = Ka(Bw, 113) + Y Ca(Bi, 17 uy), (6)
{urdizo k=0 wheren;,, & € R? andexp is the exponential map. Note
subject to thatny =0, & = 0 and Tl = 0. .
The infinitesimal variations of?;, F} andIl; are given
RIS = FpJg— JuFL, (7) by
R = RyFy, 8 d
k+1 Ir} k ( ) (SRk _ % ng,
Mpy1 = Fy g+ huyg, ) def_o

H;(Ry, 11} uy)

IN

0, i=0,...,m. (10) = Rpny, (15)



0F, = —

(16)
Sy, =

(17)

Before proceeding further, we will require a few facts. The
variation of the discrete attitude update equation is used a
a constrained variation instead of taking a variation of the
matrix logarithm and yields the following fact.

Fact 1. ([12]) nr and & in (12) and (13) satisfyni1 =
Flme + &

The variation of the implicit equation yields the following
fact

Fact 2. ([12]) & = hEL (tr(FyJg)I3xs — FjJq) ™" 6T1,.

M, ER3%3

Also, Va € R3, VB € R3*3, we have the following fact
Fact 3. ([8]) 4 tr(BTa*) = (((B)a)™*,a).
The above fact is used to obtain the following fact

Fact 4. ((8]) (Dr, f, Runy)) = (RE (DR, £))a)™ k),

where f is a differentiable scalar valued function, with one
of its arguments as?;. Using all of the above facts, the
variation of the augmented cost functional can be written a
follows

2
L

> wl((BE (DR, (¢i 0 Hi)))a) ™" me) +

(0 HY)a) 80 +
D, (60 H))a) ™, duy)l,
Ry (Dry Ka))a)™ ™ + Ay_1,0n) +

E
Il
-
|
=]

/\/\/\
= = =
===

g-<

2
L

[(—FxAi + M1 + ((Rf (D, Ca))a) ™" +

neBhivg

i ((Ri (DR, (¢i 0 Hi)))a) ™" )] +

Il
=]

—~ .

((DHJXV Kul)A)iX + )\?vfu 5HN> +
N-1
[{(= My A = (Fie = My (FTL) N + A7y +

k=1

(Dpx Ca)a)™™ + Z pi((Dypx (s © Hi))a) ™™,
N-1 =

5Hk —l— Z h)\2 u: Cd)A)_X +
k=1

ZM((Du; (¢i o Hy))a)™ ™, dug)l, (18)

i=0

where the analogue of integration by parts in the discrete
settlng is used along with the fact that the variatigpsdIly,
vamsh atk = 0 and the variatiodu,, vanishes ak = 0, N.
Since 6 Jq,qug should vanish for ally, 611, and duy, the

0Td,aug necessary conditions for optimality are as follows
_ T
= (R} (DRN Ka))a) ™ n) + (Dypx, Ka)a) ™, Pl = Fida = JaFy, (19)
Riy1 = RipFy, (20)
STIy) +Z (RT(Dg, Ca))a)™ ", mi) + M1 = Kk A+ huyg, (21)
y . Net1 Fiia i + (R DRy, Ca))a) ™™ +
(D Cd) )77 0k + (D x Ca)a) ™™, Gu)] + m
N-1 N > ni((RE 1 (DR, (650 Hi))a) ], (22)
N et = Filme = &) + Y (AL 1T — =0
k=0 k= )‘}V—l = _((RJJ\}(DRN Kd))A)_Xv (23)
(Fi& ) Ty — Fy 011, — houg) Mot = (Fep = MG (B ) )™
N—1 m (ML M+ 22+ (D« Ca)a) " +
> > mll((RE (D, (65 0 Hi)))a) ™ mi) + . Tets
k=0 i=0
x i O H 5 24
(Dyyx (61 0 Fi))a)~, T18) 21D, (95 H)ha) ™) @
((Dyx (¢ 0 Hi))a)™ ™, du)] Mo = ~ (D Ka)a) ™, (25)
= ((RN(Dry Ka))a)™ " nn) + (D Ka)a) ™™, hAt = ((Dyx Ca)a) ™" +
N-1 m
OTLy) + 3 [{(RY (D, Ca))a)™ i) + > 1il((Dx (95 0 Hi))a) ™ (26)
k=0 =0
D« C —X 611 D, x C, BN
j\f(l my Ca)a)™, Olhe) =+ {(( o aJa)™", dur)] + B. Cost and Inequality Constraints
(No> Mer1 — B — &) + Z (A7, 01lky1 + We consider a quadratic-type cost, similar to the one
k=0 =0 used in [9] and [17]. Specifically, the terminal cost, the

(FIT1) ) g, — BT, — hduk>

incremental cost and the inequality constraints are given a



follows

where Newton’s method is used to determine the initial val-

1. 12 A T S ues of the Lagrange multipliers, using sensitivity denxeg
Kq = Sl (By = Isxs)llF + 5P " HyllF, (27) - obtained from the necessary conditions for optimality (see
hy 1/2 o R 12 [12]). We will follow the same procedure as given in [12].
Ca = S (B = Isxs)l[F + 5 Q2 Hy I + However, here we exploit Newton’s method instead of a
Ry 1/2 w2 backtracking line search method.
§||Q3 ug || %, (28)  The sensitivity derivatives for the attitude and angular mo
1 w2 mentum equations are given as follows
Hy = Sllu;llz —a, (29) .
2 Mh+1 Fy My, Mk
_ T pT o = T TIT )% +
H; = Bi_vi Rkwia 1=1,...,m, (30) 5Hk+1 O3x3 Fk +(Fk Hk) M| | 611,

where P, P, Q1, Q2 are positive semi-definite symmetric
matrices, Q3 is a positive definite symmetric matrix,

03x3
[hls,xg] Su. (39)

a € Ry, B; € R, v; is the spacecraft body-fixed vector andThe sensitivity derivatives for the Lagrange multiplietuag
w; is the inertial direction vector. Note that for anyc R3

and for any positive semi-definite/definite symmetric matri

tions are given as follows

- 2 k41
1 1/2 2 1. T —
B, Y||BY?a*||% = %a"Ba, where B = tr(B)I3x3 — B Ml L s 6Tlksq (40)
(e.g., see [9]). SAF 4 SAL |7
PV

For the specific form of the terminal cost and the in- 6x12 h q b ,
cremental cost defined above, the necessary conditions flgpere Sk €R - Together (39) and (40) can be written
optimality are as follows

as follows

Mk+1 Mk
hIL; FyJy— JuFL, (31) oMy | S11,
6A1 - Tk 6/\1 ) (41)
Rpy1 = RiFy, (32) k1 k
Mer = FITO, + hug, (33) ; fjkﬂ 0N
— X
/\11c+1 FkTH[/\llc - h((RzﬂQl)A) * - whereT} € R - From (41)
U - T . NN N1 7o
Z'ui((R/H—l(DHi ((bl © Hi)wivi ))A) ]7 5HN _ H T 6H0 (42)
i=1 oL S Ry
(34) A2, k=0 SAZ
AN-1 (RNP1)a)” %, (35) In the Indirect Single Shooting Methodhe initial values
Noor = (Fepr — ME L (FE Teg) )™ of the Lagrange multipliers are taken as unknowns and the
[—Mg+1)\11g+1 + AL+ h((Qzﬂ,fH)A)—X], necessary cor_ldmons f(_)r qpt|mallty obtained in the pramo,
(36) section result in a root finding problem. We employ Newton'’s
) o method to solve this root finding problem expecting quadrati
Avor = —((PII)a)™ %, (37)  rate of convergence (locally). Note that the baseline solve
hA? h((Qsu;)a)™ ™ + (f_sol ve. m _takes a Iong time, when__used withdirect
po (D, (60 © Hoyu[) a) ™, (38) Single Shooting Methods it does not utilize the knowledge

of the underlying Lie group structure to calculate senigjtiv

where we have chosen the differentiable penalty functiomlerivatives and calculates the derivatives numericallye T
¢i o H; = hmax{0, H;}?.

updates have the following form

C. Remark Il SE®
The trajectories fo( Ry, I1x, AL, A7) (starting from a given 6/\81)
(Ro, TIo, Ay, A3)), using the necessary conditions for optimalwhere the superscripts represent the iteration numpe,
ity are computed in the same way, as presented in [12]. Alsy, 1] is the step size an&(?) is given as follows
for the specific form of the terminal cost and the incremental 109) ) .
cost defined above, the necessary conditions for optimality E® = )‘Nl—l — ((Ry Rl)A) .
Ay + (PIIy™) 4)

are for the case of Regulator Problemwhich can be easily
Note thatE() represents the error in satisfaction of the termi-

extended to the case ofTaacking Problem
nal boundary conditions at theth iteration. The sensitivity

N o ~derivative for E( is given as follows
The necessary conditions for optimality obtained in the 166) N
. . . A ) SA i +(( X(l)R (l)P) )—><
previous section give a two-point boundary value problem SE@D  — N-1 NN ooy " f1)a
and are solved using thedirect Single Shooting Method 6/\%1)1 + ((Pgéﬂjf,(l))A)‘X

)\(()i+1) N 5

5 EO) (43)

(44)

IIl. DESCRIPTION OF THEFAST SOLVER

] . (45)



For a givensA\”, 6E® is obtained using (42). In this given as follows
way, we obtain theJacobian Matrixin Newton’s method, Ro = exp(¢¥)
which is used in théndirect Single Shooting Metho®nce o P e
the optimal initial values of the Lagrange multipliers are Iy = [000],
obtained, the optimal trajectories can be calculated utiag where¢ = [0.25 0.5 0.5]T.

necessary conditions for optimality obtained in the presio Figure 1 shows the trajectory of the angular momentum

section. obtained using the fast solver. Figure 2 shows the trajgctor
of the control input obtained using the fast solver. Figure 3
A. Remark Il shows the time history of the-norm of the control input
Continuation methods (e.g., see [1]) can be exploitedbtained using the fast solver. Figure 4 shows the attitude
to obtain additional time savings. There are two scenarigganeuver obtained using the fast solver. Figure 5 shows
where continuation methods can be used. The first scenatite trajectory of the angular momentum obtained using the
occurs for the model predictive control problem over a fixedaseline solver. Figure 6 shows the trajectory of the cbntro
prediction horizon, when the weighting factor multiplyinginput obtained using the baseline solver. Figure 7 shows the
the penalty function is being increased. Generally, stgrti time history of the2-norm of the control input obtained using
with a very high value of the weighting factor is not recomthe baseline solver. Figure 8 shows the attitude maneuver
mended as this might result in numerical ill-conditioningobtained using the baseline solver. It can be seen from
Continuation with respect to the weighting factor can bé&igures 1-8 that the solution obtained by the fast solver is
used to obtain a desired solution quickly and avoids theery close to the solution obtained by the baseline solver.
problem of numerical ill-conditioning. The second sceoari B. Simulation with Thrust and Exclusion Zone Constraints

occurs when going from one prediction horizon to the next, . . . .
wherein the initial state of the model predictive control In this simulation, we consider a thrust constraint and one

problem undergoes a change. If the states change byeéclusion zone constraint, which are given by (29) and (30),

small amount, then this change can be thought of as §th a = 0.0001 N-m, 5 :T—0.9962, v =[100] and
small perturbation. Continuation with respect to the stater: = — [0.9276 0.3736 0] . The simulation time is300
along with the solution computed in the previous predictiomec, the prediction horizon i2 sec, the weighting factors
horizon can be used to predict a desired solution quicklyo = 10'°, 1 = 10% and a hybrid step size method is used.
The idea of continuation presented here is similar to the orlhe initial condition for the attitude and angular momentum
presented in [3], [4], [5], [16], [21]. While we do not fornial are given as follows

take advantage of continuation methods in this paper, our Ry = exp(C¥)
subsequent numerical examples warm-start the fast solver e
with the previous solution. I, = [000],

where¢ = [0 0 0.5]T.
Figure 9 shows the trajectory of the angular momentum
We consider a spacecraft with moment of inertia matriPtained using the fast solver. Figure 10 shows the trajgcto
J = diag(1,0.8,0.8) kg-m? and the time step = 0.4 sec. of the contrc_)l |npult obtained using the fast solver. F|_gLLte 1
We take P, = Py = Q1 = Qo = 0.011355 and Q3 = Iz, shovys the time history of thé—norm of the control input
in (27) and (28). o_btalned using the fast solver. Flgur_e 12 shows th_e time
story of the exclusion zone constraint obtained using the
ast solver. Figure 13 shows the attitude maneuver obtained
using the fast solver.

IV. NUMERICAL RESULTS

In subsequent figures, the attitude maneuver is plotted
the 2-sphere,S2, where the vectofz y z]7 corresponding
to the first column ofR, is plotted in dashed-red, the

second column oRy is plotted in dashed-green and the third Table | h | time for the | | dth
column of Ry is plotted in dashed-blue. Similarly, the vector able | compares the total time for the fast solver and the

[z y 2|7 corresponding to the first column &y is plotted baseline solver, on &6 GHz Intel Xeon desktop computer

in red, the second column Ry is plotted in green and with 16 GB of RAM. In Table I, under the heading Case, |
the thi’rd column ofRy is plotted in blue. For all otheR;, refers to the simulation with thrust constraint and Il refer

k # 0, N, only the corresponding co-ordinates are shown itP Fhe simulqtion with thrust and exc_lusion zone cqnstsaint
the corresponding colors described above. This comparison demoqstrates the time savings with thg fast
solver versus the baseline solver. For Case |, the maximum

time taken by the fast solver to obtain the optimal solutimm f
one prediction horizon is approximately44 sec. For Case

In this simulation, we only consider the thrust constraintll, the maximum time taken by the fast solver to obtain the
which is given by (29), witha = 0.0001 N-m. The optimal solution for one prediction horizon is approxinate
simulation time is150 sec, the prediction horizon i€ sec, 4.19 sec. Figures showing the results for Case Il for the
the weighting factopo = 10'° and the step size = 1. The baseline solver have not been provided because of space lim-
initial condition for the attitude and angular momentum aréation. Also, note that the code has been implemented using

A. Simulation with Thrust Constraint
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Fig. 1. Angular Momentum (Fast Solver). Fig. 2. Control Input (Fast Solver).

a MATLAB mf i | e and the computational time assessmer  0012r
has been done using the c-t oc function in MATLAB.
0.01
TABLE | N
TOTAL TIME FOR BOTH THE SOLVERS
0.008 |-
Case Fast Solver Baseline Solver ?
I 38.22sec (approx.) | 271.01sec (approx.) € 0006
[ 134.66sec (approx.) | 767.97sec (approx.) s
0.004 -
V. CONCLUSIONS ANDFUTURE WORK 0002+
In this paper, we developed a fast solver for constraine

spacecraft attitude control on $& using the nonlinear 0 : o
model predictive control approach. Simulation resultsglo

with the computational time assessment were presenteu.
Comparison with other solvers will be pursued in the future
work. However, these solvers, with possible exception pf [6
do not directly apply to the S@) setting. Extending the
nonlinear model predictive control approach to mechanici
systems evolving on other types of Lie groups, e.g(33E:
SQ(3) x R? (e.g., see [8]), etc. and the integration with -
continuation methods will be pursued in future work. Q-"

150
Time (sec)

Fig. 3. 2-Norm of the Control Input (Fast Solver).
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