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Abstract
In this paper, a fast solver for the optimization problem arising in the nonlinear model pre-
dictive control of spacecraft attitude is developed and simulation results of its application
to constrained spacecraft attitude control are presented. The solver exploits the numerical
solution of the necessary conditions for optimality in a discrete-time optimal control prob-
lem defined over a prediction horizon, where the discrete-time dynamics are based on the
Lie group variational integrator model. The inequality constraints (thrust constraint, inclu-
sion/exclusion zone constraints, etc.) are handled using a penalty function approach. Our
developments exploit the geometric mechanics and control formalism.
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Constrained Spacecraft Attitude Control on SO(3) Using Fast
Nonlinear Model Predictive Control

Rohit Gupta1, Uroš V. Kalabić1, Stefano Di Cairano2⋆, Anthony M. Bloch3 and Ilya V. Kolmanovsky1

Abstract— Recently, a reference governor and a nonlinear
model predictive control approach for constrained spacecraft
attitude control on SO(3) were proposed in [9]. In this paper,
we develop a fast solver for the nonlinear model predictive
controller in [9]. The approach is based on a numerical
solution of the necessary conditions for optimality resulting
from a discrete optimal control problem over each prediction
horizon, where the inequality constraints are incorporated as
soft constraints through a penalty function. The formulation
of the nonlinear model predictive control problem and the
necessary conditions for optimality exploit the geometricme-
chanics formalism and Lie group variational integrator based
spacecraft attitude dynamics model. Simulation results along
with the computational time assessment are presented. Remarks
on integrating the approach with continuation methods are
made.

I. I NTRODUCTION

Constrained spacecraft attitude control is receiving broader
attention to address stringent performance requirements,in
particular, in small spacecraft with tight control and inclu-
sion/exclusion zone constraints. Model predictive control of
spacecraft attitude based on linearized dynamics has been
studied in previous literature (e.g., see [7], [19], [20]).To
deal more effectively with system nonlinearities and perform
global maneuvers, nonlinear predictive control approaches
have been proposed in [6], [9]. Unlike [6], [9] utilizes
discrete-time spacecraft dynamics based on a Lie group
variational integrator model. This model provides higher ac-
curacy in prediction and unlike continuous-time integrators,
preserves the conserved quantities of motion (momentum
and energy) to machine precision in absence of external
moments (see [11]). As SO(3) is closed under multiplication,
the Lie group variational integrator updates the attitude by
multiplying two matrices in SO(3) and hence ensures that the
attitude always evolves on SO(3). For a detailed presentation
on variational integrators, see [14] and for the discrete rigid
body equations, see [15].

The nonlinear model predictive control approach described
in [9] uses a standard constrained optimizer inMATLAB
(fmincon.m), which is our baseline solver. Since the
baseline solver calculates the derivatives numerically and
does not explicitly exploit the knowledge of the underlying
Lie group structure, one single optimization run can take
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a very long time, which makes it impractical for real-time
implementation. In this paper, we develop a fast solver based
on solving the necessary conditions for optimality resulting
from a discrete optimal control problem over each prediction
horizon, where the inequality constraints are incorporated
as soft constraints through a penalty function. The receding
horizon optimal control problem and necessary conditions
for optimality are formulated exploiting geometric mechanics
formalism. The idea of using a penalty function is similar
to the one used in [18], where barrier functions are used
for constrained motion planning for multiple vehicles on
SE(3). The necessary conditions for optimality are solved
using theIndirect Single Shooting Method, where Newton’s
method is used to determine the initial values of the Lagrange
multipliers, using sensitivity derivatives obtained fromthe
necessary conditions for optimality (see [12]).

The paper is organized as follows. In Section II, we derive
the necessary conditions for optimality. In Section III, we
give a description of the fast solver. In Section IV, we
present numerical results along with the computational time
assessment. Finally, in Section V, we give some concluding
remarks and possible future work. Before proceeding further,
we describe the notation used in the paper.

A. Notation

The notation used in the paper is mostly standard, except
in a few places. For a given control sequence{uk+j}

N−1
j=0 ,

resulting in a state sequence{xk+j}
N
j=0 starting fromxk,

over a prediction horizon ofN -steps, the control sequence
is denoted by{uk+j|k}

N−1
j=0 and the state sequence is denoted

by {xk+j|k}
N
j=0. Using the above notation,xk|k = xk. For

a matrix B ∈ R
3×3, the antisymmetric part is denoted by

(B)A and the Frobenius norm is denoted by‖B‖F . For a
differentiable scalar valued functionf , the partial derivative
of f with respect to one of its arguments asX , is denoted
by DX f .

We also use the following maps:(.)× : R
3 → so(3),

(.)−× : so(3) → R
3 and (.)⋄ : R3 → so(3)∗. The standard

inner product onR3 is denoted by〈., .〉 and the natural
pairing betweenso(3) andso(3)∗ is denoted by〈〈., .〉〉.

II. N ONLINEAR MODEL PREDICTIVE CONTROL ON

SO(3)

Consider the following nonlinear model predictive control
problem

min
{uk+j|k}

N−1

j=0

Jd = Kd(Rk+N |k,Π
×
k+N |k)+



N−1∑

j=0

Cd(Rk+j|k,Π
×
k+j|k , u

×
k+j|k), (1)

subject to

hΠ×
k+j|k = Fk+j|kJd − JdF

T
k+j|k , (2)

Rk+1+j|k = Rk+j|kFk+j|k , (3)

Πk+1+j|k = FT
k+j|kΠk+j|k + huk+j|k, (4)

Hi(Rk+j|k ,Π
×
k+j|k, u

×
k+j|k) ≤ 0, i = 0, . . . ,m, (5)

where Rk+j|k, Fk+j|k ∈ SO(3), Πk+j|k, uk+j|k ∈ R
3

and h ∈ R+ is the time step. The terminal costKd is a
real-valued positive semi-definite function with respect to
its argumentsRk+N |k andΠ×

k+N |k, with the property that
Kd(I3×3, 03×3) = 0. The incremental costCd is a real-
valued positive semi-definite function with respect to its
argumentsRk+j|k and Π×

k+j|k and a real-valued positive
definite function with respect to its argumentu×

k+j|k, with
the property thatCd(I3×3, 03×3, 03×3) = 0. It is also
assumed that the data are sufficiently regular, so that when
the inequality constraints are incorporated as soft constraints
through a penalty function, theImplicit Function Theorem
can be used to uniquely determine the optimal controlu×∗

k+j|k

as a function ofRk+j|k, Π×
k+j|k andλi

k+j|k, whereλi
k+j|k,

i ∈ {1, 2} are the Lagrange multipliers, which are introduced
shortly (e.g., see [2]). The inequality constraints are given
by Hi : SO(3) × so(3) × so(3) → R. In addition to all
the above properties, the terminal costKd, the incremental
cost Cd and the inequality constraintsHi also satisfy the
appropriate smoothness assumptions. In what follows, we
also assume that the constraint qualification condition holds
at the optimal solution for each prediction horizon.

Note thatJd ∈ R
3×3 is the nonstandard moment of inertia

matrix and is related to the standard moment of inertia
matrix J ∈ R

3×3 as Jd = 1
2 tr(J)I3×3 − J . To obtain

the necessary conditions for optimality, we will follow the
same variational approach as given in [12]. However, here
this approach is applied to a more general problem with
inequality constraints (5) and an additional dependence in
the cost (1) onR and Π. Since the fast solver is based
on solving the necessary conditions for optimality resulting
from a discrete optimal control problem over each prediction
horizon, where the inequality constraints are incorporated as
soft constraints through a penalty function, we consider the
following discrete optimal control problem

min
{uk}

N−1

k=0

Jd = Kd(RN ,Π×
N ) +

N−1∑

k=0

Cd(Rk,Π
×
k , u

×
k ), (6)

subject to

hΠ×
k = FkJd − JdF

T
k , (7)

Rk+1 = RkFk, (8)

Πk+1 = FT
k Πk + huk, (9)

Hi(Rk,Π
×
k , u

×
k ) ≤ 0, i = 0, . . . ,m. (10)

Define the augmented cost functional as follows

Jd,aug = Kd(RN ,Π×
N ) +

N−1∑

k=0

Cd(Rk,Π
×
k , u

×
k ) +

N−1∑

k=0

〈〈λ1
k, logm(Rk+1)− logm(RkFk)〉〉+

N−1∑

k=0

〈〈λ2
k, (Πk+1 − FT

k Πk − huk)
⋄〉〉+

N−1∑

k=0

m∑

i=0

µiφi(Hi(Rk,Π
×
k , u

×
k )), (11)

whereλ1
k ∈ so(3)∗, λ2

k ∈ so(3), φi(.) is a penalty function
andµi ∈ R+.

A. Remark I

The special orthogonal group is a Lie group given by
SO(3,R) = {A ∈ M(3,R) | AT = A−1, det(A) = 1},
which has the Lie algebra given byso(3,R) = {A ∈
M(3,R) | AT = −A}. The map (.)× : R

3 → so(3)
is a Lie algebra isomorphism betweenR3 and so(3)
(e.g., see [10]), which showsR3 ∼= so(3). Under the
above isomorphism, the Killing formκ(., .) on so(3) gets
identified with the standard inner product onR3 (e.g., see
[10]). Specifically, if κ(a×, b×) := tr(ad(a×) ◦ ad(b×)),
where ad is the adjoint representation ofso(3), then
κ(a×, b×) = tr(a×b×) = −2〈a, b〉R3×R3 . In fact,
as SO(3) is compact and semi-simple, the negative
of the Killing form κ(., .) on so(3) gives a bi-
invariant Riemannian metric on SO(3). Using the map
(.)⋄ : R

3 → so(3)∗ and by letting the natural pairing
〈〈a⋄, b×〉〉

so(3)∗×so(3) := 〈a, b〉R3×R3 , it is easily seen that
〈〈a⋄, b×〉〉

so(3)∗×so(3) = − 1
2κ(a

×, b×) = 1
2 tr((a

×)T b×),
which also shows thatso(3) ∼= so(3)∗ (e.g., see [8]). In this
way, the natural pairing between a covector and a vector
gets identified to the Killing form onso(3), which further
gets identified with the standard inner product onR

3. Using
this, we can obtain the necessary conditions for optimality
in R

3.

The variations for the sequences{Rk}
N
k=0, {Fk}

N−1
k=0 and

{Πk}
N
k=0 are given as follows

Rk,ǫ = Rk exp(ǫη
×
k ), (12)

Fk,ǫ = Fk exp(ǫξ
×
k ), (13)

Πk,ǫ = Πk + ǫδΠk, (14)

whereηk, ξk ∈ R
3 and exp is the exponential map. Note

that η0 = 0, ξ0 = 0 andδΠ0 = 0.
The infinitesimal variations ofRk, Fk andΠk are given

by

δRk =
d

dǫ

∣
∣
∣
∣
ǫ=0

Rk,ǫ,

= Rkη
×
k , (15)



δFk =
d

dǫ

∣
∣
∣
∣
ǫ=0

Fk,ǫ,

= Fkξ
×
k , (16)

δΠk =
d

dǫ

∣
∣
∣
∣
ǫ=0

Πk,ǫ,

= δΠk. (17)

Before proceeding further, we will require a few facts. The
variation of the discrete attitude update equation is used as
a constrained variation instead of taking a variation of the
matrix logarithm and yields the following fact.

Fact 1. ([12]) ηk and ξk in (12) and (13) satisfy, ηk+1 =
FT
k ηk + ξk.

The variation of the implicit equation yields the following
fact

Fact 2. ([12]) ξk = hFT
k (tr(FkJd)I3×3 − FkJd)

−1

︸ ︷︷ ︸

Mk∈R3×3

δΠk.

Also, ∀a ∈ R
3, ∀B ∈ R

3×3, we have the following fact

Fact 3. ([8]) 1
2 tr(B

T a×) = 〈((B)A)
−×, a〉.

The above fact is used to obtain the following fact

Fact 4. ([8]) 〈〈DRk
f,Rkη

×
k 〉〉 = 〈((RT

k (DRk
f))A)

−×, ηk〉,

wheref is a differentiable scalar valued function, with one
of its arguments asRk. Using all of the above facts, the
variation of the augmented cost functional can be written as
follows

δJd,aug

= 〈((RT
N (DRN

Kd))A)
−×, ηN 〉+ 〈((DΠ×

N
Kd)A)

−×,

δΠN 〉+

N−1∑

k=0

[〈((RT
k (DRk

Cd))A)
−×, ηk〉+

〈((DΠ×
k
Cd)A)

−×, δΠk〉+ 〈((Du×
k
Cd)A)

−×, δuk〉] +

N−1∑

k=0

〈λ1
k, ηk+1 − FT

k ηk − ξk〉+

N−1∑

k=0

〈λ2
k, δΠk+1 −

(Fkξ
×
k )TΠk − FT

k δΠk − hδuk〉+
N−1∑

k=0

m∑

i=0

µi[〈((R
T
k (DRk

(φi ◦Hi)))A)
−×, ηk〉+

〈((DΠ×
k
(φi ◦Hi))A)

−×, δΠk〉+

〈((Du×
k
(φi ◦Hi))A)

−×, δuk〉],

= 〈((RT
N (DRN

Kd))A)
−×, ηN 〉+ 〈((DΠ×

N
Kd)A)

−×,

δΠN 〉+

N−1∑

k=0

[〈((RT
k (DRk

Cd))A)
−×, ηk〉+

〈((DΠ×
k
Cd)A)

−×, δΠk〉+ 〈((Du×
k
Cd)A)

−×, δuk〉] +

N−1∑

k=0

〈λ1
k, ηk+1 − FT

k ηk − ξk〉+

N−1∑

k=0

〈λ2
k, δΠk+1 +

((FT
k Πk)

×)T ξk − FT
k δΠk − hδuk〉+

N−1∑

k=0

m∑

i=0

µi[〈((R
T
k (DRk

(φi ◦Hi)))A)
−×, ηk〉+

〈((DΠ×
k

(φi ◦Hi))A)
−×, δΠk〉+

〈((Du×
k
(φi ◦Hi))A)

−×, δuk〉],

= 〈((RT
N (DRN

Kd))A)
−× + λ1

N−1, ηN 〉+
N−1∑

k=1

[〈−Fkλ
1
k + λ1

k−1 + ((RT
k (DRk

Cd))A)
−× +

m∑

i=0

µi((R
T
k (DRk

(φi ◦Hi)))A)
−×, ηk〉] +

〈((DΠ×
N
Kd)A)

−× + λ2
N−1, δΠN 〉+

N−1∑

k=1

[〈−MT
k λ1

k − (Fk −MT
k (FT

k Πk)
×)λ2

k + λ2
k−1 +

((DΠ×
k

Cd)A)
−× +

m∑

i=0

µi((DΠ×
k

(φi ◦Hi))A)
−×,

δΠk〉] +
N−1∑

k=1

[〈−hλ2
k + ((Du×

k

Cd)A)
−× +

m∑

i=0

µi((Du×
k
(φi ◦Hi))A)

−×, δuk〉], (18)

where the analogue of integration by parts in the discrete
setting is used along with the fact that the variationsηk, δΠk

vanish atk = 0 and the variationδuk vanishes atk = 0, N .
Since δJd,aug should vanish for allηk, δΠk and δuk, the
necessary conditions for optimality are as follows

hΠ×
k = FkJd − JdF

T
k , (19)

Rk+1 = RkFk, (20)

Πk+1 = FT
k Πk + huk, (21)

λ1
k+1 = FT

k+1[λ
1
k + ((RT

k+1(DRk+1
Cd))A)

−× +
m∑

i=0

µi((R
T
k+1(DRk+1

(φi ◦Hi)))A)
−×], (22)

λ1
N−1 = −((RT

N (DRN
Kd))A)

−×, (23)

λ2
k+1 = (Fk+1 −MT

k+1(F
T
k+1Πk+1)

×)−1

[−MT
k+1λ

1
k+1 + λ2

k + ((DΠ×
k+1

Cd)A)
−× +

m∑

i=0

µi((DΠ×
k+1

(φi ◦Hi))A)
−×], (24)

λ2
N−1 = −((DΠ×

N
Kd)A)

−×, (25)

hλ2
k = ((Du×

k
Cd)A)

−× +

m∑

i=0

µi((Du×
k
(φi ◦Hi))A)

−×. (26)

B. Cost and Inequality Constraints

We consider a quadratic-type cost, similar to the one
used in [9] and [17]. Specifically, the terminal cost, the
incremental cost and the inequality constraints are given as



follows

Kd =
1

2
‖P

1/2
1 (RN − I3×3)‖

2
F +

1

2
‖P

1/2
2 Π×

N‖2F , (27)

Cd =
h

2
‖Q

1/2
1 (Rk − I3×3)‖

2
F +

h

2
‖Q

1/2
2 Π×

k ‖
2
F +

h

2
‖Q

1/2
3 u×

k ‖
2
F , (28)

H0 =
1

2
‖u×

k ‖
2
F − α, (29)

Hi = βi − vTi R
T
k wi, i = 1, . . . ,m, (30)

whereP1, P2, Q1, Q2 are positive semi-definite symmetric
matrices, Q3 is a positive definite symmetric matrix,
α ∈ R+, βi ∈ R, vi is the spacecraft body-fixed vector and
wi is the inertial direction vector. Note that for anya ∈ R

3

and for any positive semi-definite/definite symmetric matrix
B, 1

2‖B
1/2a×‖2F = 1

2a
T B̃a, where B̃ = tr(B)I3×3 − B

(e.g., see [9]).

For the specific form of the terminal cost and the in-
cremental cost defined above, the necessary conditions for
optimality are as follows

hΠ×
k = FkJd − JdF

T
k , (31)

Rk+1 = RkFk, (32)

Πk+1 = FT
k Πk + huk, (33)

λ1
k+1 = FT

k+1[λ
1
k − h((RT

k+1Q1)A)
−× −

m∑

i=1

µi((R
T
k+1(DHi

(φi ◦Hi)wiv
T
i ))A)

−×],

(34)

λ1
N−1 = ((RT

NP1)A)
−×, (35)

λ2
k+1 = (Fk+1 −MT

k+1(F
T
k+1Πk+1)

×)−1

[−MT
k+1λ

1
k+1 + λ2

k + h((Q2Π
×
k+1)A)

−×],

(36)

λ2
N−1 = −((P2Π

×
N )A)

−×, (37)

hλ2
k = h((Q3u

×
k )A)

−× +

µ0((DH0
(φ0 ◦H0)u

×
k )A)

−×, (38)

where we have chosen the differentiable penalty function,
φi ◦Hi = hmax{0, Hi}

2.

C. Remark II

The trajectories for(Rk,Πk, λ
1
k, λ

2
k) (starting from a given

(R0,Π0, λ
1
0, λ

2
0)), using the necessary conditions for optimal-

ity are computed in the same way, as presented in [12]. Also,
for the specific form of the terminal cost and the incremental
cost defined above, the necessary conditions for optimality
are for the case of aRegulator Problem, which can be easily
extended to the case of aTracking Problem.

III. D ESCRIPTION OF THEFAST SOLVER

The necessary conditions for optimality obtained in the
previous section give a two-point boundary value problem
and are solved using theIndirect Single Shooting Method,

where Newton’s method is used to determine the initial val-
ues of the Lagrange multipliers, using sensitivity derivatives
obtained from the necessary conditions for optimality (see
[12]). We will follow the same procedure as given in [12].
However, here we exploit Newton’s method instead of a
backtracking line search method.
The sensitivity derivatives for the attitude and angular mo-
mentum equations are given as follows
[
ηk+1

δΠk+1

]

=

[
FT
k Mk

03×3 FT
k + (FT

k Πk)
×Mk

] [
ηk
δΠk

]

+

[
03×3

hI3×3

]

δuk. (39)

The sensitivity derivatives for the Lagrange multiplier equa-
tions are given as follows

[
δλ1

k+1

δλ2
k+1

]

= Sk







ηk+1

δΠk+1

δλ1
k

δλ2
k






, (40)

whereSk ∈ R
6×12. Together (39) and (40) can be written

as follows






ηk+1

δΠk+1

δλ1
k+1

δλ2
k+1







= Tk







ηk
δΠk

δλ1
k

δλ2
k






, (41)

whereTk ∈ R
12×12. From (41)






ηN
δΠN

δλ1
N

δλ2
N







=

(
N−1∏

k=0

Tk

)







η0
δΠ0

δλ1
0

δλ2
0






. (42)

In the Indirect Single Shooting Method, the initial values
of the Lagrange multipliers are taken as unknowns and the
necessary conditions for optimality obtained in the previous
section result in a root finding problem. We employ Newton’s
method to solve this root finding problem expecting quadratic
rate of convergence (locally). Note that the baseline solver
(fsolve.m) takes a long time, when used withIndirect
Single Shooting Methodas it does not utilize the knowledge
of the underlying Lie group structure to calculate sensitivity
derivatives and calculates the derivatives numerically. The
updates have the following form

λ
(i+1)
0 = λ

(i)
0 − γ

[

δE(i)

δλ
(i)
0

]−1

E(i), (43)

where the superscripts represent the iteration number,γ ∈
(0, 1] is the step size andE(i) is given as follows

E(i) =

[

λ
1(i)
N−1 − ((R

T (i)
N P1)A)

−×

λ
2(i)
N−1 + ((P2Π

×(i)
N )A)

−×

]

. (44)

Note thatE(i) represents the error in satisfaction of the termi-
nal boundary conditions at thei-th iteration. The sensitivity
derivative forE(i) is given as follows

δE(i) =

[

δλ
1(i)
N−1 + ((η

×(i)
N R

T (i)
N P1)A)

−×

δλ
2(i)
N−1 + ((P2δΠ

×(i)
N )A)

−×

]

. (45)



For a given δλ
(i)
0 , δE(i) is obtained using (42). In this

way, we obtain theJacobian Matrix in Newton’s method,
which is used in theIndirect Single Shooting Method. Once
the optimal initial values of the Lagrange multipliers are
obtained, the optimal trajectories can be calculated usingthe
necessary conditions for optimality obtained in the previous
section.

A. Remark III

Continuation methods (e.g., see [1]) can be exploited
to obtain additional time savings. There are two scenarios
where continuation methods can be used. The first scenario
occurs for the model predictive control problem over a fixed
prediction horizon, when the weighting factor multiplying
the penalty function is being increased. Generally, starting
with a very high value of the weighting factor is not recom-
mended as this might result in numerical ill-conditioning.
Continuation with respect to the weighting factor can be
used to obtain a desired solution quickly and avoids the
problem of numerical ill-conditioning. The second scenario
occurs when going from one prediction horizon to the next,
wherein the initial state of the model predictive control
problem undergoes a change. If the states change by a
small amount, then this change can be thought of as a
small perturbation. Continuation with respect to the states
along with the solution computed in the previous prediction
horizon can be used to predict a desired solution quickly.
The idea of continuation presented here is similar to the one
presented in [3], [4], [5], [16], [21]. While we do not formally
take advantage of continuation methods in this paper, our
subsequent numerical examples warm-start the fast solver
with the previous solution.

IV. N UMERICAL RESULTS

We consider a spacecraft with moment of inertia matrix
J = diag(1, 0.8, 0.8) kg-m2 and the time steph = 0.4 sec.
We takeP1 = P2 = Q1 = Q2 = 0.01I3×3 andQ3 = I3×3,
in (27) and (28).

In subsequent figures, the attitude maneuver is plotted on
the 2-sphere,S2, where the vector[x y z]T corresponding
to the first column ofR0 is plotted in dashed-red, the
second column ofR0 is plotted in dashed-green and the third
column ofR0 is plotted in dashed-blue. Similarly, the vector
[x y z]T corresponding to the first column ofRN is plotted
in red, the second column ofRN is plotted in green and
the third column ofRN is plotted in blue. For all otherRk,
k 6= 0, N , only the corresponding co-ordinates are shown in
the corresponding colors described above.

A. Simulation with Thrust Constraint

In this simulation, we only consider the thrust constraint,
which is given by (29), withα = 0.0001 N -m. The
simulation time is150 sec, the prediction horizon is2 sec,
the weighting factorµ0 = 1010 and the step sizeγ = 1. The
initial condition for the attitude and angular momentum are

given as follows

R0 = exp(ζ×),

Π0 =
[
0 0 0

]T
,

whereζ =
[
0.25 0.5 0.5

]T
.

Figure 1 shows the trajectory of the angular momentum
obtained using the fast solver. Figure 2 shows the trajectory
of the control input obtained using the fast solver. Figure 3
shows the time history of the2-norm of the control input
obtained using the fast solver. Figure 4 shows the attitude
maneuver obtained using the fast solver. Figure 5 shows
the trajectory of the angular momentum obtained using the
baseline solver. Figure 6 shows the trajectory of the control
input obtained using the baseline solver. Figure 7 shows the
time history of the2-norm of the control input obtained using
the baseline solver. Figure 8 shows the attitude maneuver
obtained using the baseline solver. It can be seen from
Figures 1-8 that the solution obtained by the fast solver is
very close to the solution obtained by the baseline solver.

B. Simulation with Thrust and Exclusion Zone Constraints

In this simulation, we consider a thrust constraint and one
exclusion zone constraint, which are given by (29) and (30),
with α = 0.0001 N -m, β1 = −0.9962, v1 =

[
1 0 0

]T
and

w1 = −
[
0.9276 0.3736 0

]T
. The simulation time is300

sec, the prediction horizon is2 sec, the weighting factors
µ0 = 1010, µ1 = 103 and a hybrid step size method is used.
The initial condition for the attitude and angular momentum
are given as follows

R0 = exp(ζ×),

Π0 =
[
0 0 0

]T
,

whereζ =
[
0 0 0.5

]T
.

Figure 9 shows the trajectory of the angular momentum
obtained using the fast solver. Figure 10 shows the trajectory
of the control input obtained using the fast solver. Figure 11
shows the time history of the2-norm of the control input
obtained using the fast solver. Figure 12 shows the time
history of the exclusion zone constraint obtained using the
fast solver. Figure 13 shows the attitude maneuver obtained
using the fast solver.

Table I compares the total time for the fast solver and the
baseline solver, on a3.6 GHz Intel Xeon desktop computer
with 16 GB of RAM. In Table I, under the heading Case, I
refers to the simulation with thrust constraint and II refers
to the simulation with thrust and exclusion zone constraints.
This comparison demonstrates the time savings with the fast
solver versus the baseline solver. For Case I, the maximum
time taken by the fast solver to obtain the optimal solution for
one prediction horizon is approximately0.44 sec. For Case
II, the maximum time taken by the fast solver to obtain the
optimal solution for one prediction horizon is approximately
4.19 sec. Figures showing the results for Case II for the
baseline solver have not been provided because of space lim-
itation. Also, note that the code has been implemented using
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Fig. 1. Angular Momentum (Fast Solver).

a MATLAB m-file and the computational time assessment
has been done using thetic-toc function inMATLAB.

TABLE I

TOTAL T IME FOR BOTH THESOLVERS

Case Fast Solver Baseline Solver
I 38.22sec (approx.) 271.01sec (approx.)
II 134.66sec (approx.) 767.97sec (approx.)

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we developed a fast solver for constrained
spacecraft attitude control on SO(3) using the nonlinear
model predictive control approach. Simulation results along
with the computational time assessment were presented.
Comparison with other solvers will be pursued in the future
work. However, these solvers, with possible exception of [6],
do not directly apply to the SO(3) setting. Extending the
nonlinear model predictive control approach to mechanical
systems evolving on other types of Lie groups, e.g., SE(3) ∼=
SO(3) ⋉ R

3 (e.g., see [8]), etc. and the integration with
continuation methods will be pursued in future work.
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