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Abstract
We propose a method to estimate the state of charge (SoC) and the equivalent circuit param-
eters for lithiumion batteries. Model-based approaches for SoC estimation, such as Kalman
filter, achieve better accuracy than Coulomb counting or open circuit voltage method, albeit
requiring accurate model parameters of the battery. We analyze bias errors in the Kalman
filter-based SoC estimation induced by errors of the battery model parameters, and develop
a simultaneous recursive least squares filter to produce unbiased estimationof the battery
parameters.
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Sequential Estimation of State of Charge and Equivalent Circuit
Parameters for Lithium-Ion Batteries

Toshihiro Wada1, Tomoki Takegami1 and Yebin Wang2

Abstract— We propose a method to estimate the state of
charge (SoC) and the equivalent circuit parameters for lithium-
ion batteries. Model-based approaches for SoC estimation, such
as Kalman filter, achieve better accuracy than Coulomb count-
ing or open circuit voltage method, albeit requiring accurate
model parameters of the battery. We analyze bias errors in
the Kalman filter-based SoC estimation induced by errors of
the battery model parameters, and develop a simultaneous
recursive least squares filter to produce unbiased estimation
of the battery parameters.

I. INTRODUCTION

Lithium-ion batteries (LiBs) have been widely used in
electric appliances and electric cars; the application of LiBs
becomes wider because of its high energy density, high
power density and long life [1]. While it is important to
control and manage the battery systems, the internal states
of LiBs are however difficult to obtain because of the lim-
ited measurability relative to the complexity of the internal
processes.

Physical quantities which are able to measure directly are
only the terminal voltage, the current and the temperature of
the battery. Quantities which should be estimated are state of
charge (SoC), internal resistances, full charge capacity (FCC)
and other parameters.

A basic approach to SoC estimation is the open circuit
voltage method, with which the SoC is estimated precisely
in exchange for a long time resting of the battery [2]. For on-
line SoC estimation, Coulomb counting and several model-
based approaches are proposed, in which battery param-
eters, including the internal resistances and the FCC, are
assumed [2], [3]. The estimation accuracy is limited in these
approaches, because the battery parameters have individual
variability, depend on the temperature and vary along with
the degradation.

Although simultaneous estimation methods of the SoC
and the battery parameters are also proposed in [4], [5], the
application of the methods are limited because of the local
unobservability (see [6]) about battery parameters depending
on the input current. For example, the FCC of the battery is
inherently unobservable with a constantly zero input current.

Authors [7]–[9] proposed another approaches, where the
battery parameters are estimated without estimating the SoC,
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after that the SoC is optionally estimated. These methods are
based on a adaptive filter using the time derivative of the
measured signals. Therefore, these methods are intrinsically
sensitive to the measurement noises.

We propose yet another approach, where the SoC is
estimated by a simple model-based method with predefined
battery parameters, then the differences between the true and
the predefined parameters are estimated by a simultaneous
recursive least squares (RLS) filter, where the bias errors
on the estimated SoC driven by the errors of the predefined
parameters are taken into consideration.

II. MODEL-BASED SOC ESTIMATION

A. Lithium-ion battery

An LiB consists mainly of a positive electrode, a negative
electrode, current collectors and a separator; all components
are soaked with electrolyte solution (Fig. 1). In typical
design, the positive electrode is made of a porous mate-
rial composed of metal oxide particles such as LiCoO2,
LiMn2O4 and so on. The negative electrode is also made of
a porous material composed of graphite (C6). The electrolyte
solution is an organic solvent with electrolyte such as LiPF6

[10].
A charge-discharge reaction in the positive electrode is

expressed by:

LiCoO2

Charge
GGGGGGGGBFGGGGGGGG

Discharge
Li1−xpCoO2 + Li+xp

+ e−xp
(1)

where xp denotes the number of reaction electrons. In the
negative electrode, the reaction is expressed by:

C6 + Li+xn
+ e−xn

Charge
GGGGGGGGBFGGGGGGGG

Discharge
LixnC6 (2)

where xn denotes the number of reaction electrons [11].
In a charge process, Li+s are emitted from the positive

electrode, then absorbed into the negative electrode from the
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Fig. 1. A typical structure of lithium-ion battery cells. Lithium-ions pass
through the separator, while electrons conduct via the electric circuit.
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Fig. 2. An equivalent circuit expression of a simplified lithium-ion battery
model. The voltage source E depends on the state of charge of the battery.

electrolyte solution. The electrons flow along the external
electric circuit via the current collectors, because the elec-
trodes are electrically isolated by the separator.

SoC s is defined by

s :=
xp − x−

p

x+
p − x−

p
=

xn − x−
n

x+
n − x−

n
(3)

where [x−
p , x

+
p ] and [x−

n , x
+
n ] denote the rated range of use

of positive electrode and negative electrode respectively.

B. Electric characteristics

Although the general model of LiBs is complex [?], we
consider a simplified battery model (see [8]) to describe our
method. The equivalent circuit model, which includes two
resistors Rd, R0 and a capacitor Cd, is shown in Fig. 2.
Let qb be the electric quantity charged in the battery, that
is, qb = Fccs where Fcc is the FCC of the battery. The
voltage source E expresses the open circuit voltage (OCV)
of the battery. and qd be the electric quantity charged in
the capacitor. Although the OCV is a nonlinear function of
SoC in actual batteries [12], we approximate the function
by a linear relationship E = E0 + E1s for simplicity. The
terminal voltage of the battery V is described as follows:

ẋ = Fc x+Gc I, V = E0 +Hx+R0I (4)

where

Fc :=

[
− 1

CdRd

0

]
, Gc :=

[
1
1

]
,

H :=
[

1
Cd

E1

Fcc

]
, x :=

[
qd qb

]⊤
.

C. SoC estimation

Let ts be the sampling period, a discretized system of (4)
is written as follows:

xk+1 = Fxk +GIk, Vk = E0 +Hxk +R0Ik (5)

where tk := tsk, xk := x(tk), Ik := I(tk), Vk := V (tk)
and

F :=

[
e
− ts

RdCd

1

]
, G :=

[
RdCd(1− e

− ts
CdRd )

ts

]
.

For estimating SoC of a battery, we have to estimate the
state xk from the measurements of the current Ik and the
voltage Vk. If the measurement noises are additive Gaussian
and all parameters Cd, Rd, R0 and Fcc are accurate, it is

known that the Kalman filter is the optimal estimator in the
sense of minimizing the error covariance of xk [13].

Let σ2
I , σ2

V be variances of noises on the current and the
voltage measurements, respectively. The prediction step of
the Kalman filter is written as follows:

x̂k+1|k = F x̂k|k +GIk, (6)

P̂k+1|k = F P̂k|kF
⊤ +Q (7)

and the update step is written as follows:

x̂k|k = x̂k|k−1 +Kk(Vk − zk), (8)

P̂k|k = (I −KkH)P̂k|k−1 (9)

where

zk := E0 +Hx̂k|k−1 +R0Ik, (10)

Sk := σ2
V +HP̂k|k−1H

⊤, (11)

Kk := P̂k|k−1H
⊤S−1

k (12)

and Q := Φ12Φ
−1
22 where[

Φ11 Φ12

Φ21 Φ22

]
:= exp

([
Fc σ2

IGcG
⊤
c

0 −F ⊤
c

]
ts

)
.

The SoC estimation result is calculated by ŝk|k = q̂b,k|k/Fcc,
where

[
q̂d,k|k q̂b,k|k

]
:= x̂⊤

k|k.

III. BATTERY PARAMETER ESTIMATION

A. Bias error analysis in SoC estimation

The state of the Kalman filter is estimated from a time
series of the measured current and the terminal voltage. The
estimation is obviously depends on the battery parameters
such as Rd, Cd, R0 and Fcc. Let θ denote the battery
parameters, the dependency is expressed by:

x̂l|k = Fl|k((Ik, Vk), . . . , (I0, V0) | θ), (13)

where Fl|k is a map from a set of the measured values to an
estimated value of the state.

If a typical value of the parameters used in the Kalman
filter are slightly different from the true value, the estimated
value of the state is biased. Actually, the resistors Rd, R0

depend strongly on the temperature [14], [15]. The FCC has
a initial variation, and decreases due to the degradation. Ad-
ditionally an offset error of the current measurements, which
is inevitable in widely used Hall effect sensor [16], causes
significant estimation error of the state. This is because the
current is integrated in qb, therefore the offset error is also
integrated in the state. Let Ioff denote the offset error of the
current measurements, and θ̃ denote an inaccurate battery
parameters, the biased estimation of the state is expressed
by:

x̃l|k := Fl|k((Ik + Ioff , Vk), . . . , (I0 + Ioff , V0) | θ̃). (14)



Let (R̃d, C̃d, R̃0, F̃cc) := θ̃, we parameterize the differ-
ence between θ and θ̃ as follows:

R̃dC̃d = RdCd(1 + p1), (15)
1

C̃d

=
1

Cd
(1 + p2), (16)

R̃0 = R0(1 + p3), (17)
F̃cc = Fcc(1 + p4), (18)
Ioff = Itypp5 (19)

where Ityp is a constant introduced to scale p5 as |p5| ≪ 1.
The biased estimation x̃k|k is approximated as:

x̃k|k ≈ x̂k|k +
5∑

j=1

∂Fk

∂pj
pj , (20)

by a Taylor series expansion (see [17] for matrix derivatives).
For simplicity, we define ∂xl|k/∂pj := ∂Fl|k/∂pj ,[

∂qd,l|k/∂pj ∂qb,l|k/∂pj
]
:= ∂xl|k/∂pj

⊤ and

∂sl|k

∂pj
:=

 1
Fcc

(
∂qb,l|k
∂pj

− q̂b,l|k

)
for j = 4,

1
Fcc

∂qb,l|k
∂pj

otherwise
. (21)

Then we get the following relationships:

qcc,k =
F̃cc

1 + p4

s̃k|k −
5∑

j=1

∂sk|k

∂pj
pj


+ tkItypp5 − q0, (22)

q̃d,k|k −
5∑

j=1

∂qd,k|k

∂pj
pj

=

(
F̃11 −

∂F11

∂p1
p1

)q̃d,k−1|k −
5∑

j=1

∂qd,k−1|k

∂pj
pj


+

(
G̃1 −

∂G1

∂p1
p1

)
(Ik−1 − Itypp5), (23)

Vk = E0 + E1

s̃k|k −
5∑

j=1

∂sk|k

∂pj
pj


+

1

C̃d(1 + p2)

q̃d,k|k −
5∑

j=1

∂qd,k|k

∂pj
pj


+

R̃0

1 + p3
(Ik − Itypp5), (24)

where F11 and G1 are (1, 1)-element of F and the first ele-
ment of G, respectively. The backward estimation x̂k−1|k is
calculated by 1-step Kalman smoother algorithm as follows:

x̂k−1|k = P̂k−1|k−1F
⊤P̂ −1

k|k−1(x̂k|k − x̂k|k−1). (25)

B. Unbiased parameter estimation

Now it is able to estimate p1, . . . , p5 by a simultaneous
RLS filter. Let p :=

[
p1 · · · p5 q0

]
,

yk :=

 qcc,k − q̃b,k|k
q̃d,k|k − F̃11q̃d,k−1|k − G̃1Ik−1

Vk − E0 − E1

F̃cc
q̃b,k|k − 1

C̃d
q̃d,k|k − R̃0Ik

 ,(26)

Uk :=
[
u1,k u2,k u3,k

]
, (27)

where

u1,k :=



−∂qb,k|k
∂p1

−∂qb,k|k
∂p2

−∂qb,k|k
∂p3

−∂qb,k|k
∂p4

−∂qb,k|k
∂p5

+ Ityptk
−1


, (28)

u2,k :=



∂qd,k|k
∂p1

− F̃11
∂qd,k−1|k

∂p1
− κk

∂qd,k|k
∂p2

− F̃11
∂qd,k−1|k

∂p2
∂qd,k|k
∂p3

− F̃11
∂qd,k−1|k

∂p3
∂qd,k|k
∂p4

− F̃11
∂qd,k−1|k

∂p4
∂qd,k|k
∂p5

− F̃11
∂qd,k−1|k

∂p5
− G̃1Ityp

0


, (29)

u3,k :=



− E1

Fcc

∂qb,k|k
∂p1

− 1
C̃d

∂qd,k|k
∂p1

− E1

Fcc

∂qb,k|k
∂p2

− 1
C̃d

(
∂qd,k|k
∂p2

+ q̃d,k|k

)
− E1

Fcc

∂qb,k|k
∂p3

− 1
C̃d

∂qd,k|k
∂p3

− R̃0Ik

− E1

Fcc

(
∂qb,k|k
∂p4

− q̃b,k|k

)
− 1

C̃d

∂qd,k|k
∂p4

− E1

Fcc

∂qb,k|k
∂p5

− 1
C̃d

∂qd,k|k
∂p5

− R̃0Ityp

0


, (30)

κk :=
∂F11

∂p1
q̃d,k−1|k + G̃1Ik−1, (31)

the equation (22)–(24) are rewritten as follows:

yk = U⊤
k p (32)

by omitting higher order terms about p. An RLS estimator
which minimizes following cost function:

J(p̂k) :=
1

2

k∑
l=0

λk−l(ŷl|k − yk)
⊤Σ−1(ŷl|k − yk), (33)

where ŷl|k := U⊤
l p̂k, is calculated recursively by the

following scheme:

Yk = λ−1(I −LkU
⊤
k )Yk−1, (34)

p̂k = p̂k−1 +Lk(yk − U⊤
k p̂k−1), (35)

where λ is a forgetting factor in (0, 1], Σ is a symmetric
positive definite weighting matrix and

Lk := Yk−1Uk(λΣ
−1 + U⊤

k Yk−1Uk)
−1. (36)

In our approach, the SoC is estimated based on the system
(5), which is clearly observable as long as E1 > 0. Although



TABLE I
BATTERY PARAMETERS USED IN THE SIMULATION

Parameter True Biased
Rd 5mΩ 5.1mΩ
Cd 2 kF 2.06 kF
R0 5mΩ 5.25mΩ
Fcc 2Ah 1.95mΩ
Ioff 0mA 50mA
E0 2.6V -
E1 1.6V -
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Fig. 3. Input current for the simulation. The time axis is zoomed in during
the first 1 hour and the first 10 hour.

the OCV of the actual battery is a nonlinear function of the
SoC, the extended Kalman filter (EKF) or unscented Kalman
filter (UKF) (see [18]) is applicable as long as the OCV is an
injective function of the SoC. Therefore the SoC estimation
is more stable relative to simultaneous estimation approaches
[4], [5].

Another advantage of our approach is that adaptive forget-
ting factor methods (for example [19]) are easily applicable
to our parameter estimation filter. The battery parameters
are intrinsically impossible to estimate if the measurements
do not have enough information about the parameters, for
example, Fcc could not be estimated with I(t) ≡ 0. The pa-
rameters could be better estimated by ignoring measurements
when I(t) ≈ 0 by adjusting the forgetting factor.

IV. NUMERICAL EXAMPLE

In this section, we illustrate the validity of our method
by a numerical simulation. In our simulation, we employed
a simplified battery model shown in Fig. 2 with battery
parameters in Table. I

First, we calculated the terminal voltage of the battery
using the input current shown in Fig. 3 and the true values
of the parameters. The sampling period ts = 100ms. We
also show the true SoC of the battery in Fig. 4 for visibility.

Next, we estimated the SoC of the battery and calculated
the derivative thereof from the input current and the simu-
lated terminal voltage using a Kalman filter with the biased
values of the parameters, where we offset the current by
50mA, and added Gaussian noises of variances σ2

I = 10−4

and σ2
V = 10−5 to the current and voltage, respectively.

After that, we estimated the battery parameters from the
input current, the simulated terminal voltage, estimated state
of the Kalman filter and Coulomb counting of the input
current by the RLS filter proposed in the Section III.
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Fig. 4. State of charge of the battery in the simulation.
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Fig. 5. Estimated Rd. The dashed line indicates the true value, the long
dashed short dashed line indicates the biased value.
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Fig. 6. Estimated Cd. The dashed line indicates the true value, the long
dashed short dashed line indicates the biased value.
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Fig. 7. Estimated R0. The dashed line indicates the true value, the long
dashed short dashed line indicates the biased value.

We employed λ = e−ts/τ where τ = 30min., Ityp =
100A, Σ = diag{10−7, 10−3, 1}. The results of the param-
eter estimation are shown in Fig 5–9. All parameters are
estimated correctly while tk ≥ 10 hour.

V. CONCLUSION

We have proposed a method for SoC and battery param-
eters estimation for LiBs, in which the SoC is estimated by
a Kalman filter based on an equivalent circuit model, and
parameters in the model are estimated from the estimated
SoC by an RLS filter.
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The parameters in the model are predefined in the SoC
estimation, therefore the SoC estimation has bias errors
induced by the inaccuracy of the predefined parameters. We
have analyzed the bias errors of the SoC estimation, then
developed an RLS filter to produce unbiased estimation of
the battery parameters.
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