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Abstract
Despite recent developments in improved acquisition, seismic data often remains undersam-
pled along source and receiver coordinates, resulting in incomplete data for key applica-
tions such as migration and multiple prediction. We interpret the missing-trace interpolation
problem in the context of matrix completion and outline three practical principles for using
low-rank optimization techniques to recover seismic data. Specifically, we strive for recovery
scenarios wherein the original signal is low rank and the subsampling scheme increases the
singular values of the matrix. We employ an optimization program that restores this low
rank structure to recover the full volume. Omitting one or more of these principles can lead
to poor interpolation results, as we show experimentally. In light of this theory, we com-
pensate for the high-rank behavior of data in the source-receiver domain by employing the
midpoint-offset transformation for 2D data and a source-receiver permutation for 3D data
to reduce the overall singular values. Simultaneously, in order to work with computation-
ally feasible algorithms for large scale data, we use a factorization-based approach to matrix
completion, which significantly speeds up the computations compared to repeated singular
value decompositions without reducing the recovery quality. In the context of our theory and
experiments, we also show that windowing the data too aggressively can have adverse effects
on the recovery quality. To overcome this problem, we carry out our interpolations for each
frequency independently while working with the entire frequency slice. The result is a com-
putationally efficient, theoretically motivated framework for interpolating missing-trace data.
Our tests on realistic two- and three-dimensional seismic data sets show that our method
compares favorably, both in terms of computational speed and recovery quality, to existing
curvelet-based and tensor-based techniques.
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ABSTRACT

Despite recent developments in improved acquisition, seismic data often remains undersampled
along source and receiver coordinates, resulting in incomplete data for key applications such as
migration and multiple prediction. We interpret the missing-trace interpolation problem in the
context of matrix completion and outline three practical principles for using low-rank optimiza-
tion techniques to recover seismic data. Specifically, we strive for recovery scenarios wherein
the original signal is low rank and the subsampling scheme increases the singular values of the
matrix. We employ an optimization program that restores this low rank structure to recover
the full volume. Omitting one or more of these principles can lead to poor interpolation results,
as we show experimentally. In light of this theory, we compensate for the high-rank behaviour
of data in the source-receiver domain by employing the midpoint-offset transformation for 2D
data and a source-receiver permutation for 3D data to reduce the overall singular values. Si-
multaneously, in order to work with computationally feasible algorithms for large scale data,
we use a factorization-based approach to matrix completion, which significantly speeds up the
computations compared to repeated singular value decompositions without reducing the recov-
ery quality. In the context of our theory and experiments, we also show that windowing the
data too aggressively can have adverse effects on the recovery quality. To overcome this prob-
lem, we carry out our interpolations for each frequency independently while working with the
entire frequency slice. The result is a computationally efficient, theoretically motivated frame-
work for interpolating missing-trace data. Our tests on realistic two- and three-dimensional
seismic data sets show that our method compares favorably, both in terms of computational
speed and recovery quality, to existing curvelet-based and tensor-based techniques.

INTRODUCTION

Coarsely sampled seismic data creates substantial problems for seismic applications such as mi-
gration and inversion (Canning and Gardner, 1998; Sacchi and Liu, 2005). In order to mitigate
acquisition related artifacts, we rely on interpolation algorithms to reproduce the missing traces
accurately. The aim of these interpolation algorithms is to reduce acquisition costs and to provide
densely sampled seismic data to improve the resolution of seismic images and mitigate subsampling
related artifacts such as aliasing. A variety of methodologies, each based on various mathematical
techniques, have been proposed to interpolate seismic data. Some of the methods require transform-
ing the data into different domains, such as the Radon (Bardan, 1987; Kabir and Verschuur, 1995),
Fourier (Duijndam et al., 1999; Sacchi et al., 1998; Curry, 2009; Trad, 2009) and curvelet domains
(Herrmann and Hennenfent, 2008; Sacchi et al., 2009; Wang et al., 2010). The CS approach exploits
the resulting sparsity of the signal, i.e. small number of nonzeros (Donoho, 2006) in these domains.



In the CS framework, the goal for effective recovery is to first find a representation in which the sig-
nal of interest is sparse, or well-approximated by a sparse signal, and where the the mask encoding
missing traces makes the signal much less sparse. Hennenfent and Herrmann (2006a); Herrmann
and Hennenfent (2008) successfully applied the ideas of CS to the reconstruction of missing seismic
traces in the curvelet domain.

More recently, rank-minimization-based techniques have been applied to interpolating seismic
data (Trickett et al., 2010; Oropeza and Sacchi, 2011; Kreimer and Sacchi, 2012b,a; Yang et al.,
2013). Rank minimization extends the theoretical and computational ideas of CS to the matrix
case (see Recht et al. (2010) and the references within). The key idea is to exploit the low-rank
structure of seismic data when organized as a matrix, i.e. a small number of nonzero singular values
or quickly decaying singular values. Oropeza and Sacchi (2011) identified that seismic temporal
frequency slices organized into a block Hankel matrix, under ideal conditions, is a matrix of rank k,
where k is the number of different plane waves in the window of analysis. These authors showed that
additive noise and missing samples increase the rank of the block Hankel matrix, and the authors
presented an iterative algorithm that resembles seismic data reconstruction with the method of
projection onto convex sets, where they use a low-rank approximation of the Hankel matrix via
the randomized singular value decomposition (Liberty et al., 2007; Halko et al., 2011; Mahoney,
2011) to interpolate seismic temporal frequency slices. While this technique may be effective for
interpolating data with a limited number of distinct dips, first, the approach requires embedding the
data into an even larger space where each dimension of size n is mapped to a matrix of size n×n, so a
frequency slice with 4 dimensions becomes a Hankel tensor with 8 dimensions. Second, the process
involves partitioning the input data in to smaller subsets that can be processed independently.
As we know the theory of matrix completion is predicated upon the notion of an m × n matrix
being relatively low rank in order to ensure successful recovery. That is, the ratio of rank of the
matrix to the ambient dimension, min(m,n), should be small for rank-minimizing techniques to
be successful in recovering the matrix from appropriately subsampled data. With the practice of
windowing, we are inherently increasing the relative rank by decreasing the ambient dimension.
Although mathematically desirable due to the seismic signal being stationary in sufficiently small
windows, the act of windowing from a matrix rank point of view can lead to lower quality results,
as we will see later in experiments. Choosing window sizes apriori is also a difficult task, as it is
not altogether obvious how to ensure that the resulting sub-volume is approximately a plane-wave.
Previously proposed methods for automatic window size selection include Sinha et al. (2005); Wang
et al. (2011) in the context of time-frequency analysis.

Other than the Hankel transformation, Yang et al. (2013) used a texture-patch based trans-
formation of the data, initially proposed by Schaeffer and Osher (2013), to exploit the low-rank
structure of seismic data. They showed that seismic data can be expressed as a combination of a
few textures, due to continuity of seismic data. They divided the signal matrix into small r × r
submatrices, which they then vectorized in to the columns of a matrix with r2 rows using the same
ordering, and approximated the resulting matrix using low rank techniques. Although experimen-
tally promising, this organization has no theoretically motivated underpinning and its performance
is difficult to predict as a function of the submatrix size. The authors proposed two algorithms to
solve this matrix completion problem, namely accelerated proximal gradient method (APG) and
low-rank matrix fitting (LMaFit). APG does not scale well to large scale seismic data because it
involves repeated singular value decompositions, which are very expensive. LMaFit, on the other
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hand, parametrizes the matrix in terms of two low-rank factors and uses nonlinear successive-over-
relaxation to reconstruct the seismic data, but without penalizing the nuclear norm of the matrix.
As shown in Aravkin et al. (2014), without a nuclear norm penalty, choosing an incorrect rank
parameter k can lead to overfitting of the data and degrading the interpolated result. Moreover,
Mishra et al. (2013) demonstrates the poor performance of LMaFit, both in terms of speed and
solution quality, compared to more modern matrix completion techniques that penalize the nuclear
norm.

Another popular approach to seismic data interpolation is to exploit the multi-dimensional
nature of seismic data and parametrize it as a low-rank tensor. Many of the ideas from low rank
matrices carry over to the multidimensional case, although there is no unique extension of the SVD
to tensors. It is beyond the scope of this paper to examine all of the various tensor formats in this
paper, but we refer to a few tensor-based seismic interpolation methods here. Kreimer and Sacchi
(2012a) stipulates that the seismic data volume of interest is well captured by a k−rank Tucker
tensor and subsequently propose a projection on to non-convex sets algorithm for interpolating
missing traces. Silva and Herrmann (2013) develop an algorithm for interpolating Hierarchical
Tucker tensors, which are similar to Tucker tensors but have much smaller dimensionality. Trickett
et al. (2013) proposes to take a structured outer product of the data volume, using a tensor ordering
similar to Hankel matrices, and performs tensor completion in the CP-Parafac tensor format. The
method of Kreimer et al. (2013), wherein the authors consider a nuclear norm-penalizing approach
in each matricization of the tensor, that is to say, the reshaping of the tensor, along each dimension,
in to a matrix.

These previous CS-based approaches, using sparsity or rank-minimization, incur computational
difficulties when applied to large scale seismic data volumes. Methods that involve redundant
transforms, such as curvelets, or that add additional dimensions, such as taking outer products
of tensors, are not computationally tractable for large data volumes with four or more dimensions.
Moreover, a number of previous rank-minimization approaches are based on heuristic techniques and
are not necessarily adequately grounded in theoretical considerations. Algorithmic components such
as parameter selection can significantly affect the computed solution and “hand-tuning” parameters,
in addition to incurring unnecessary computational overhead, may lead to suboptimal results (Owen
and Perry, 2009; Kanagal and Sindhwani, 2010).

Contributions

Our contributions in this work are three-fold. First, we outline a practical framework for recovering
seismic data volumes using matrix and tensor completion techniques built upon the theoretical
ideas from CS. In particular, understanding this framework allows us to determine apriori when
the recovery of signals sampled at sub-Nyquist will succeed or fail and provides the principles upon
which we can design practical experiments to ensure successful recovery. The ideas themselves
have been established for some time in the literature, albeit implicitly by means of the somewhat
technical conditions of CS and matrix completion. We explicitly describe these ideas on a high
level in a qualitative manner in the hopes of broadening the accessibility of these techniques to
a wider audience. These principles are all equally necessary in order for CS-based approaches of
signal recovery to succeed and we provide examples of how recovery can fail if one or more of these
principles are omitted.
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Second, we address the computational challenges of using these matrix-based techniques for
seismic-data reconstruction, since traditional rank minimization algorithms rely on computing the
singular value decomposition (SVD), which is prohibitively expensive for large matrices. To over-
come this issue we propose to use either a fast optimization approach that combines the (SVD-
free) matrix factorization approach recently developed by Lee et al. (2010) with the Pareto curve
approach proposed by van den Berg and Friedlander (2008) and the factorization-based parallel
matrix completion framework dubbed Jellyfish (Recht and Ré, 2013). We demonstrate the superior
computational performances of both of these approaches compared to the tensor-based interpola-
tion of Kreimer et al. (2013) as well as traditional curvelet-based approaches on realistic 2D and 3D
seismic data sets.

Third, we examine the popular approach of windowing a large data volume in to smaller data
volumes to be processed in parallel and empirically demonstrate how such a process does not respect
the inherent redundancy present in the data, degrading reconstruction quality as a result.

Notation

In this paper, we use lower case boldface letters to represent vectors (i.e. one-dimensional quan-
tities), e.g., b, f ,x,y, . . . . We denote matrices and tensors using upper case boldface letters, e.g.,
X,Y,Z, . . . and operators that act on vectors, matrices, or tensors will be denoted using calligraphic
upper case letters, e.g., A. 2D seismic volumes have one source and one receiver dimensions, de-
noted xsrc, xrec, respectively, and time, denoted t. 3D seismic volumes have two source dimensions,
denoted xsrc, ysrc, two receiver dimensions, denoted xrec, yrec, and time t. We also denote midpoint
and offset coordinates as xmidpt, xoffset for the x-dimensions and similarly for the y-dimensions.

The Frobenius norm of a m × n matrix X, denoted as ‖X‖F , is simply the usual `2 norm
of X when considered as a vector, i.e., ‖X‖F =

√∑m
i=1

∑n
j=1X

2
ij . We write the SVD of X as

X = USV H , where U and V are orthogonal and S = diag(s1, s2, . . . , sr) is a block diagonal
matrix of singular values, s1 ≥ s2 ≥ · · · ≥ sr ≥ 0. The matrix X has rank k when sk > 0 and
sk+1 = sk+2 = · · · = sr = 0. The nuclear norm of X is defined as ‖X‖∗ =

∑r
i=1 si.

We will use the matricization operation freely in the text below, which reshapes a tensor in to
a matrix along specific dimensions. Specifically, if X is a temporal frequency slice with dimensions
xsrc, ysrc, xrec, yrec indexed by i = 1, . . . , 4, the matrix X(i) is formed by vectorizing the ith dimen-
sion along the rows and the remaining dimensions along the columns. Matricization can also be
performed not only along singleton dimensions, but also with groups of dimensions. For example,
X(i) with i = xsrc, ysrc places the x and y source dimensions along the columns and the remaining
dimensions along the columns.

STRUCTURED SIGNAL RECOVERY

In this setting, we are interested in completing a matrix X when we only view a subset of its
entries. For instance, in the 2D seismic data case, X is typically a frequency slice and missing shots
correspond to missing columns from this matrix. Matrix completion arises as a natural extension
of Compressive Sensing ideas to recovering two dimensional signals. Here we consider three core
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components of matrix completion.

1. Signal structure - low rank
Compressed Sensing is a theory that is deals with recovering vectors x that are sparse, or
have a few nonzeros. For a matrix X, a direct analogue for sparsity in a signal x is sparsity in
the singular values of X. We are interested in the case where the singular values of X decay
quickly, so that X is well approximated by a rank k matrix. The set of all rank-k matrices
has low dimensionality compared to the ambient space of m×n matrices, which will allow us
to recover a low rank signal from sufficiently incoherent measurements.
When our matrix X has slowly decaying singular values, i.e. is high rank, we consider trans-
formations that promote quickly decaying singular values, which will allow us to recover our
matrix in another domain.
Since we are sampling points from our underlying matrix X, we want to make sure that X is
not too "spiky" and is sufficiently "spread out". If our matrix of interest was, for instance, the
matrix of all zeros with one nonzero entry, we could not hope to recover this matrix without
sampling the single, nonzero entry. In the seismic case, given that our signals of interest are
composed of oscillatory waveforms, they are rarely, if ever, concentrated in a single region of,
say, (source,receiver) space.

2. Structure-destroying sampling operator
Since our matrix has an unknown but small rank k, we will look for the matrix X of smallest
rank that fits our sampled data, i.e., A(X) = B, for a subsampling operator A. As such, we
need to employ subsampling schemes that increase the rank or decay of the singular values
of the matrix. That is to say, we want to consider sampling schemes that are incoherent
with respect to the left and right singular vectors. Given a subsampling operator A, the
worst possible subsampling scheme for the purposes of recovery would be removing columns
(equivalently, rows) from the matrix, i.e. A(X) = XIk, where Ik is a subset of the columns
of identity matrix. Removing columns from the matrix can never allow for successful recon-
struction because this operation lowers the rank, and therefore the original matrix X is no
longer the matrix of smallest rank that matches the data (for instance, the data itself would
be a candidate solution).
Unfortunately, for, say, a 2D seismic data frequency slice X with sources placed along the
columns and receivers along the rows, data is often acquired with missing sources, which
translates to missing columns of X. Similarly, periodic subsampling can be written as A(X) =
ITkXIk′ , where Ik, Ik′ are subsets of the columns of the identity matrix. A similar consideration
shows that this operator lowers the rank and thus rank minimizing interpolation will not
succeed in this sampling regime.
The problematic aspect of the aforementioned sampling schemes is that they are separable
with respect to the matrix. That is, if X = USVH is the singular value decomposition
of X, the previously mentioned schemes yield a subsampling operator of the form A(X) =
CXDH = (CU)S(DV)H , for some matrices C,D. In the compressed sensing context, this
type of sampling is coherent with respect to the left and right singular vectors, which is an
unfavourable recovery scenario.
The incoherent sampling considered in the matrix completion literature is that of uniform
random sampling, wherein the individual entries of X are sampled from the matrix with equal
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probability (Candès and Recht, 2009; Recht, 2011). This particular sampling scheme, although
theoretically convenient to analyze, is impractical to implement in the seismic context as it
corresponds to removing (source, receiver) pairs from the data. Instead, we will consider
non-separable transformations, i.e., transforming data from the source-receiver domain to the
midpoint-offset domain, under which the missing sources operator is incoherent. The resulting
transformations will simultaneously increase the decay of the singular values of our original
signal, thereby lowering its rank, and slow the decay of the singular values of the subsampled
signal, thereby creating a favourable recovery scenario.

3. Structure-promoting optimization program
Since we assume that our target signal X is low-rank and that subsampling increases the
rank, the natural approach to interpolation is to find the matrix of lowest possible rank that
agrees with our observations. That is, we solve the following problem for A, our measurement
operator, and B, our subsampled data, up to a given tolerance σ,

minimize
X

‖X‖∗ (1)

subject to ‖A(X)−B‖F ≤ σ.

Similar to using the `1 norm in the sparse recovery case, minimizing the nuclear norm promotes
low-rank structure in the final solution. Here we refer to this problem as Basis Pursuit
Denoising (BPDNσ).

In summary, these three principles are all necessary for the recovery of subsampled signals using
matrix completion techniques. Omitting any one of these three principles will, in general, cause such
methods to fail, which we will see in the next section. Although this framework is outlined for matrix
completion, a straightforward extension of this approach also applies to the tensor completion case.

LOW-RANK PROMOTING DATA ORGANIZATION

Before we can apply matrix completion techniques to interpolate F, our unvectorized frequency
slice of fully-sampled data, we must deal with the following issues. First, in the original (src, rec)
domain, the missing sources operator, A, removes columns from F, which sets the singular values
to be set to zero at the end of the spectrum, thereby decreasing the rank.

Second, F itself also has high rank, owing to the presence of strong diagonal entries (zero
offset energy) and subsequent off-diagonal oscillations. Our previous theory indicates that naively
applying matrix completion techniques in this domain will yield poor results. Simply put, we are
missing two of the prerequisite signal recovery principles in the (src, rec) domain, which we can see
by plotting the decay of singular values in Figure 1. In light of our previous discussion, we will
examine different transformations under which the missing sources operator increases the singular
values of our data matrix and hence promotes recovery in an alternative domain.
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2D Seismic Data

In this case, we use the Midpoint-Offset transformation, which defines new coordinates for the
matrix as

xmidpt =
1

2
(xsrc + xrec)

xoffset =
1

2
(xsrc − xrec).

This coordinate transformation rotates the matrix F by 45 degrees and is a tight frame operator
with a nullspace, as depicted in Figure 2. If we denote this operator by M, then M∗M = I, so
transforming from (src, rec) to (midpt, offset) to (src, rec) returns the original signal, butMM∗ 6= I,
so the transformation from (midpt, offset) to (src, rec) and back again does not return the original
signal. By using this transformation, we move the strong diagonal energy to a single column in the
new domain, which mitigates the slow singular value decay in the original domain. Likewise, the
restriction operatorA now removes super-/sub-diagonals from F rather than columns, demonstrated
in Figure 2, which results in an overall increase in the singular values, as seen in Figure 1, placing
the interpolation problem in a favourable recovery scenario as per the previous section. Our new
optimization variable is X̃ =M(X), which is the data volume in the midpoint-offset domain, and
our optimization problem is therefore

minimize
X̃

‖X̃‖∗

s.t. ‖AM∗(X̃)−B‖F ≤ σ.

3D seismic data

Unlike in the matrix-case, there is no unique generalization of the SVD to tensors and as a result,
there is no unique notion of rank for tensors. Instead, can consider the rank of different matriciza-
tions of F. Instead of restricting ourselves to matricizations F(i) where i = xsrc, ysrc, xrec, yrec, we
consider the case where i = {xsrc, ysrc}, {xsrc, xrec}, {xsrc, yrec}, {ysrc, xrec}. Owing to the reciprocity
relationship between sources and receivers in F, we only need to consider two different matriciza-
tions of F, which are depicted in Figure 3 and Figure 4. As we see in Figure 5, the i = (xrec, yrec)
organization, that is, placing both receiver coordinates along the rows, results in a matrix that has
high rank and the missing sources operator removes columns from the matrix, decreasing the rank
as mentioned previously. On the other hand, the i = (ysrc, yrec) matricization yields fast decay of
the singular values for the original signal and a subsampling operator that causes the singular values
to increase. This scenario is much closer to the idealized matrix completion sampling, which would
correspond to the nonphysical process of randomly removing (xsrc, ysrc, xrec, yrec) points from F.
We note that this data organization has been considered in the context of solution operators of the
wave equation in Demanet (2006), which applies to our case as our data volume F is the restriction
of a Green’s function to the acquisition surface.
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Figure 1: Singular value decay in the source-receiver and midpoint-offset domain. Left : fully
sampled frequency slices. Right : 50% missing shots. Top: low frequency slice. Bottom: high
frequency slice. Missing source subsampling increases the singular values in the (midpoint-offset)
domain instead of decreasing them in the (src-rec) domain.
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Figure 2: A frequency slice from the the seismic dataset from Nelson field. Left : Fully sampled data.
Right : 50% subsampled data. Top: Source-receiver domain. Bottom: Midpoint-offset domain.

9



x
src

, y
src

x
re

c
,y

re
c

100 200 300 400 500 600

100

200

300

400

500

600

x
src

, y
src

x
re

c
,y

re
c

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

x
src

, y
src

x
re

c
,y

re
c

100 200 300 400 500 600

100

200

300

400

500

600

x
src

, y
src

x
re

c
,y

re
c

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 3: (xrec, yrec) matricization. Top: Full data volume. Bottom: 50% missing sources. Left :
Fully sampled data. Right : Zoom plot
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Figure 4: (ysrc, yrec) matricization. Top: Fully sampled data. Bottom: 50% missing sources. Left :
Full data volume. Right : Zoom plot. In this domain, the sampling artifacts are much closer to the
idealized ’pointwise’ random sampling of matrix completion.
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Figure 5: Singular value decay (normalized) of the Left : (xrec, yrec) matricization and Right :
(ysrc, yrec) matricization for full data and 50% missing sources.
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LARGE SCALE DATA RECONSTRUCTION

In this section, we explore the modifications necessary to extend matrix completion to 3D seis-
mic data and compare this approach to an existing tensor-based interpolation technique. Matrix-
completion techniques, after some modification, easily scale to interpolate large, multidimensional
seismic volumes.

Large scale matrix completion

For the matrix completion approach, the limiting component for large scale data is that of the
nuclear norm projection. As mentioned in Aravkin et al. (2014), the projection on to the set
‖X‖∗ ≤ τ requires the computation of the SVD of X. The main computational costs of computing
the SVD of a n × n matrix has computational complexity O(n3), which is prohibitively expensive
when X has tens of thousands or even millions of rows and columns. On the assumption that X is
approximately low-rank at a given iteration, other authors such as Stoll (2012) compute a partial
SVD using a Krylov approach, which is still cost-prohibitive for large matrices.

We can avoid the need for the expensive computation of SVDs via a well known factorization
of the nuclear norm. Specifically, we have the following characterization of the nuclear norm, due
to Srebro (2004),

‖X‖∗ = minimize
L,R

1

2
(‖L‖2F + ‖R‖2F )

subject to X = LRT .

This allows us to write X = LRT for some placeholder variables L and R of a prescribed rank
k. Therefore, instead of projecting on to ‖X‖∗ ≤ τ , we can instead project on to the factor ball
1
2(‖L‖

2
F + ‖R‖2F ) ≤ τ . This factor ball projection only involves computing ‖L‖2F , ‖R‖2F and scaling

the factors by a constant, which is substantially cheaper than computing the SVD of X.

Equipped with this factorization approach, we can still use the basic idea of SPG`1 to flip the
objective and the constraints. The resulting subproblems for solving BPDNσ can be solved much
more efficiently in this factorized form, while still maintaining the quality of the solution. The
resulting algorithm is dubbed SPG-LR by Aravkin et al. (2014). This reformulation allows us to
apply these matrix completion techniques to large scale seismic data interpolation.

This factorization turns the convex subproblems for solving BPDNσ posed in terms of X into
a nonconvex problem in terms of the variables L,R, so there is a possibility for local minima or
non-critical stationary points to arise when using this approach. As it turns out, as long as the
prescribed rank k is larger than the rank of the optimal X, any local minima encountered in the
factorized problem is actually a global minimum (Burer and Monteiro, 2005; Aravkin et al., 2014).
The possibility of non-critical stationary points is harder to discount, and remains an open problem.
There is preliminary analysis indicating that initializing L and R so that LRT is sufficiently close
to the true X will ensure that this optimization program will converge to the true solution (Sun and
Luo, 2014). In practice, we initialize L and R randomly with appropriately scaled Gaussian random
entries, which does not noticeably change the recovery results across various random realizations.
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An alternative approach to solving the factorized BPDNσ is to relax the data constraint of
Equation (1) in to the objective, resulting in the QPλ formulation,

min
L,R

1

2
‖A(LRH)−B‖2F + λ(‖L‖2F + ‖R‖2F ). (2)

The authors in Recht and Ré (2013) exploit the resulting independance of various subblocks
of the L and R factors to create a partitioning scheme that updates components of these factors
in parallel, resulting in a parallel matrix completion framework dubbed Jellyfish. By using this
Jellyfish approach, each QPλ problem for fixed λ and fixed internal rank k can be solved very
efficiently and cross-validation techniques can choose the optimal λ and rank parameters.

Large scale tensor completion

Following the approach of Kreimer et al. (2013), which applies the method developed in Gandy
et al. (2011) to seismic data, we can also exploit the tensor structure of a frequency slice F for
interpolating missing traces.

We now stipulate that each matricization F(i) for i = 1, . . . , 4 has low-rank. We can proceed in
an analogous way to the matrix completion case by solving the following problem

minimize
F

4∑
i=1

‖F(i)‖∗

subject to ‖A(F)−B‖2 ≤ σ,

i.e. look for the tensor F that has simultaneously the lowest rank in each matricization F(i) that
fits the subsampled data B. In the case of Kreimer et al. (2013), this interpolation is performed in
the (xmidpt, ymidpt, xoffset, yoffset) domain on each frequency slice, which we also employ in our later
experiments.

To solve this problem, the authors in Kreimer et al. (2013) use the Douglas-Rachford variable
splitting technique that creates 4 additional copies of the variable F, denoted Xi, with each copy
corresponding to each matricization F(i). This is an inherent feature of this approach to solve
convex optimization problems with coupled objectives/constraints and thus cannot be avoided or
optimized away. The authors then use an Augmented Lagrangian approach to solve the decoupled
problem

minimize
X1,X2,X3,X4,F

4∑
i=1

‖Xi‖∗ + λ‖A(F)−B‖22 (3)

subject to Xi = F(i) for i = 1, . . . , 4.

The resulting problem is convex, and thus has a unique solution. We refer to this method as
the alternating direction method of multipliers (ADMM) tensor method. This variable splitting
technique can be difficult to implement for realistic problems, as the tensor F is often unable
to be stored fully in working memory. Given the large number of elements of F, creating at
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minimum four extraneous copies of F can quickly overload the storage and memory of even a large
computing cluster. Moreover, there are theoretical and numerical results that state that this problem
formulation is in fact no better than imposing the nuclear norm penalty on a single matricization
of F, at least in the case of Gaussian measurements (Oymak et al., 2012; Signoretto et al., 2011).
We shall see a similar phenomenon in our subsequent experiments.

Penalizing the nuclear norm in this fashion, as in all methods that use an explicit nuclear norm
penalty, scales very poorly as the problem size grows. When our data F has four or more dimensions,
the cost of computing the SVD of one of its matricizations easily dominates the overall computational
costs of the method. Applying this operation four times per iteration in the above problem, as is
required due to the variable splitting, prevents this technique from performing efficiently for large
realistic problems.

EXPERIMENTS

We perform seismic data interpolation on five different data sets. In case of 2D, the first data set,
which is a shallow-water marine scenario, is from the Nelson field provided to us by PGS. The
Nelson data set contains 401× 401 sources and receivers with the temporal sampling interval of
0.004s. The second synthetic data set is from the Gulf of Mexico (GOM) and is provided to us
by the Chevron. It contains 3201 sources and 801 receivers with a spatial interval of 25m. The
third data set is simulated on a synthetic velocity model (see Berkhout and Verschuur (2006)) using
IWave (Symes et al., 2011). An anticline salt structure over-lies the target, i.e., a fault structure.
A seismic line is modelled using a fixed-spread configuration where sources and receivers are placed
at an interval of 15m. This results in a data set of 361× 361 sources and receivers.

Our 3D examples consist of two different data sets. The first data set is generated on a synthetic
single-layer model. This data set has 50 sources and 50 receivers and we use a frequency slice at
4 Hz. This simple data set allows us to compare the running time of the various algorithms under
consideration. The Compass data set is provided to us by the BG Group and is generated from
an unknown but geologically complex and realistic model. We selected a few 4D monochromatic
frequency slices from this data set at 4.68, 7.34, and 12.3Hz. Each monochromatic frequency slice
has 401× 401 receivers spaced by 25m and 68× 68 sources spaced by 150m. In all the experiments,
we initialize L and R using random numbers.

2D Seismic data

In this section, we compare matrix-completion based techniques to existing curvelet-based interpo-
lation for interpolating 2D seismic data. For details on the curvelet-based reconstruction techniques,
we refer to (Herrmann and Hennenfent, 2008; Mansour et al., 2013). For concreteness, we concern
ourselves with the missing-sources scenario, although the missing-receivers scenario is analogous. In
all the experiments, we set the data misfit parameter σ to be equal to η‖B‖F where η ∈ (0, 1) is
the fraction of the input data energy to fit.
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Nelson data set

Here, we remove 50%, 75% of the sources, respectively. For the sake of comparing curvelet-based and
rank-minimization based reconstruction methods on identical data, we first interpolate a single 2D
frequency slice at 10 Hz. When working with frequency slices using curvelets, Mansour et al. (2013)
showed that the best recovery is achieved in the midpoint-offset domain, owing to the increased
curvelet sparsity. Therefore, in order to draw a fair comparison with the matrix-based methods, we
perform curvelet-based and matrix-completion based reconstruction in the midpoint-offset domain.

We summarize these results of interpolating a single 2D frequency slice in Table 1. Compared to
the costs associated to applying the forward and adjoint curvelet transform, SPG-LR is much more
efficient and, as such, this approach significantly outperforms the `1-based curvelet interpolation.
Both methods perform similarly in terms of reconstruction quality for low frequency slices, since
these slices are well represented both as a sparse superposition of curvelets and as a low-rank matrix.
High frequency data slices, on the other hand, are empirically high rank, which can be shown
explicitly for a homogeneous medium as a result of Lemma 2.7 in Engquist and Ying (2007), and we
expect matrix completion to perform less well in this case, as high frequencies contains oscillations
away from the zero-offset. On the other hand, these oscillations can be well approximated by low-
rank values in localized domains. To perform the reconstruction of seismic data in the high frequency
regime, Kumar et al. (2013) proposed to represent the matrix in the Hierarchical semi-separable
(HSS) format, wherein data is first windowed in off-diagonal and diagonal blocks and the diagonal
blocks are recursively partitioned. The interpolation is then performed on each subset separately.
In the interest of brevity, we omit the inclusion of this approach here. Additionally, since the high
frequency slices are very oscillatory, they are much less sparse in the curvelet dictionary.

Owing to the significantly faster performance of matrix completion compared to the curvelet-
based method, we apply the former technique to an entire seismic data volume by interpolating
each frequency slice in the 5-85Hz band. Figures 6 show the interpolation results in case of 75%
missing traces. In order to get the best rank values to interpolation the full seismic line, we first
performed the interpolation for the frequency slices at 10 Hz and 60 Hz. The best rank value we
get for these two slices is 30 and 60 respectively. Keeping this in mind, we work with all of the
monochromatic frequency slices and adjust the rank linearly from 30 to 60 when moving from low
to high frequencies. The running time is 2 h 18 min using SPG-LR on a 2 quad-core 2.6GHz Intel
processor with 16 GB memory and implicit multithreading via LAPACK libraries. We can see
that we have low-reconstruction error with little coherent energy in the residual when 75% of the
sources are missing. Figure 7 shows the qualitative measurement of recovery for all frequencies in
the energy-band. We can further mitigate such coherent residual energy by exploiting additional
structures in the data such as symmetry, as in Kumar et al. (2014).

Remark

It is important to note that if we omit the first two principles of matrix completion by interpo-
lating the signal in the source-receiver domain, as discussed previously, we obtain very poor results,
as shown in Figure 8. Similar to CS-based interpolation, choosing an appropriate transform-domain
for matrix and tensor completion is vital to ensure successful recovery.
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Figure 6: Missing-trace interpolation. Top : Fully sampled data and 75% subsampled common
receiver gather. Bottom Recovery and residual results with a SNR of 9.4 dB.
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Figure 7: Qualitative performance of 2D seismic data interpolation for 5-85 Hz frequency band for
50% and 75% subsampled data.
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Table 1: Curvelet versus matrix completion (MC). Real data results for completing a frequency
slice of size 401×401 with 50% and 75% missing sources. Left : 10 Hz (low frequency), right : 60 Hz
(high frequency). SNR, computational time, and number of iterations are shown for varying levels
of η = 0.08, 0.1.

Curvelets MC
η 0.08 0.1 0.08 0.1

50%
SNR (dB) 18.2 17.3 18.6 17.7
time (s) 1249 1020 15 10
iterations 123 103 191 124

75%
SNR (dB) 13.5 13.2 13.0 13.3
time (s) 1637 1410 8.5 8
iterations 162 119 105 104

Curvelets MC
η 0.08 0.1 0.08 0.1

50%
SNR (dB) 10.5 10.4 12.5 12.4
time (s) 1930 1549 19 13
iteration 186 152 169 118

75%
SNR (dB) 6.0 5.9 6.9 7.0
time (s) 3149 1952 15 10
iteration 284 187 152 105

Gulf of Mexico data set

In this case, we remove 80% of the sources. Here, we perform the interpolation on a frequency spec-
trum of 5-30hz. Figure 10 shows the comparison of the reconstruction error using rank-minimization
based approach for a frequency slice at 7Hz and 20 Hz. For visualization purposes, we only show
a subset of interpolated data corresponding to the square block in Figure 9, but we interpolate the
monochromatic slice over all sources and receivers. Even in the highly sub-sampled case of 80%, we
are still able to recover to a high SNR of 14.2 dB, 10.5dB, respectively, but we start losing coherent
energy in the residual as a result of the high-subsampling ratio. These results indicate that even
in complex geological environments, low-frequencies are still low-rank in nature. This can also be
seen since, for a continuous function, the smoother the function is (i.e., the more derivatives it
has), the faster its singular values decay (see, for instance, Chang and Ha (1999)). For comparison
purposes, we plot the frequency-wavenumber spectrum of the 20Hz frequency slice in Figure 11
along with the corresponding spectra of matrix with 80% of the sources removed periodically and
uniform randomly. In this case, the volume is approximately three times aliased in the bandwidth of
the original signal for periodic subsampling, while the randomly subsampled case has created noisy
aliases. The average sampling interval for both schemes is the same. As shown in this figure, the
interpolated matrix has a significantly improved spectrum compared to the input. Figure 12 shows
the interpolation result over a common receiver gather using rank-minimization based techniques.
In this case, we set the rank parameter to be 40 and use the same rank for all the frequencies. The
running time on a single frequency slice in this case is 7 min using SPG-LR and 1320 min using
curvelets.

Synthetic fault model

In this setting, we remove 80% of the sources and display the results in Figure 13. For simplicity, we
only perform rank-minimization based interpolation on this data set. In this case we set the rank
parameter to be 30 and used the same for all frequencies. Even though the presence of faults make
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Figure 8: Recovery results using matrix-completion techniques. Left : Interpolation in the source-
receiver domain, low-frequency SNR 3.1 dB. Right : Difference between true and interpolated slices.
Since the sampling artifacts in the source-receiver domain do not increase the singular values,
matrix completion in this domain is unsuccesful. This example highlights the necessity of having
the appropriate principles of low-rank recovery in place before a seismic signal can be interpolated
effectively.

the geological environment complex, we are still able to successfully reconstruct the data volume
using rank-minimization based techniques, which is also evident in the low-coherency of the data
residual (Figure 13).

3D Seismic data

Single-layer reflector data

Before proceeding to a more realistically sized data set, we first test the performance of the SPG-LR
matrix completion and the tensor completion method of Kreimer et al. (2013) on a small, synthetic
data set generated from a simple, single-reflector model. We only use a frequency slice at 4 Hz. We
normalize the volume to unit norm and randomly remove 50% of the sources from the data.

For the alternating direction method of multipliers (ADMM) tensor method, we complete the
data volumes in the midpoint-offset domain, which is the same domain used in Kreimer et al.
(2013). In the context of our framework, we note that the midpoint-offset domain for recovering
3D frequency slices has the same recovery-enhancing properties as for recovering 2D frequency
slices, as mentioned previously. Specifically, missing source sampling tends to increase the rank
of the individual source and receiver matricizations in this domain, making completion via rank-
minimization possible in midpoint-offset compared to source-receiver. In the original source-receiver
domain, removing (xsrc, xrec) points from the tensor does not increase the singular values in the
xsrc and xrec matricizations and hence the reconstruction quality will suffer. On the other hand,
for the matrix completion case, the midpoint-offset conversion is a tight frame that acts on the left
and right singular vectors of the matricized tensor F(xsrc,xrec) and thus does not affect the rank for
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Figure 9: Gulf of Mexico data set. Top: Fully sampled monochromatic slice at 7 Hz. Bottom left :
Fully sampled data (zoomed in the square block). Bottom right : 80% subsampled sources. For
visualization purpose, the subsequent figures only show the interpolated result in the square block.
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Figure 10: Reconstruction errors for frequency slice at 7Hz (left) and 20Hz (right) in case of 80%
subsampled sources. Rank-minimization based recovery with a SNR of 14.2 dB and 11.0 dB respec-
tively.
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Figure 11: Frequency-wavenumber spectrum of the common receiver gather. Top left : Fully-sampled
data. Top right : Periodic subsampled data with 80%missing sources. Bottom left : Uniform-random
subsampled data with 80% missing sources. Bottom Right : Reconstruction of uniformly-random
subsampled data using rank-minimization based techniques. While periodic subsampling creates
aliasing, uniform-random subsampling turns the aliases in to incoherent noise across the spectrum.
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Figure 12: Gulf of Mexico data set, common receiver gather. Left : Uniformly-random subsampled
data with 80% missing sources. Middle : Reconstruction results using rank-minimization based
techniques (SNR = 7.8 dB). Right : Residual.
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Figure 13: Missing-trace interpolation (80% sub-sampling) in case of geological structures with a
fault. Left : 80% sub-sampled data. Middle: after interpolation (SNR = 23 dB). Right : difference.
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Method SNR Solve time Parameter selection time Total time
SPG-LR 25.5 0.9 N/A 0.9
ADMM - 50 20.8 87.4 320 407.4
ADMM - 25 16.8 4.4 16.4 20.8
ADMM - 10 10.9 0.1 0.33 0.43

Table 2: Single reflector data results. The recovery quality (in dB) and the computational time (in
minutes) is reported for each method. The quality suffers significantly as the window size decreases
due to the smaller redundancy of the input data, as discussed previously.

this particular matricization. Also in this case, we consider the effects of windowing the input data
on interpolation quality and speed. We let ADMM-w denote the ADMM method with a window
size of w with an additional overlap of approximately 20%. In our experiments, we consider w = 10
(small windows), w = 25 (large windows), and w = 50 (no windowing).

In the ADMM method, the two parameters of note are λ, which control the relative penalty
between data misfit and nuclear norm, and β, which controls the speed of convergence of the
individual matrices X(i) to the tensor F. The λ, β parameters proposed in Kreimer et al. (2013)
do not appear to work for our problems, as using the stated parameters penalizes the nuclear norm
terms too much compared to the data residual term, resulting in the solution tensor converging
to X = 0. Instead, we estimate the optimal λ, β parameters by cross validation, which involves
removing 20% of the 50% known sources, creating a so-called "test set", and using the remaining
data points as input data. We use various combinations of λ, β to solve Problem 3, using 50
iterations, and compare the SNR of the interpolant on the test set in order to determine the best
parameters, i.e. we estimate the optimal λ, β without reference to the unknown entries of the
tensor. Owing to the large computational costs of the "no window" case, we scan over the values
of λ increasing exponentially and fix β = 0.5. For the windowed cases, we scan over exponentially
increasing values of λ, β for a single window and use the estimated λ, β for interpolating the other
windows. For the SPG-LR, we set our internal rank parameter to be 20 and allow the algorithm to
run for 1000 iterations. As shown in Aravkin et al. (2014), as long as the chosen rank is sufficiently
large, further increasing the rank parameter will not significantly change the results. We summarize
our results in Table 2 and display the results in Figure 14.

Even disregarding the time spent selecting ideal parameters, SPG-LR matrix completion dras-
tically outperforms the ADMM method on this small example. The tensor-based, per-dimension
windowing approach also degrades the overall reconstruction quality, as the algorithm is unable to
take advantage of the redundancy of the full data volume once the windows are sufficiently small.
There is a very prominent tradeoff between recovery speed and reconstruction quality as the size
of the windows become smaller, owing to the expensive nature of the ADMM approach itself for
large data volumes and the inherent redundancy in the full data volume that makes interpolation
possible which is decreased when windowing.
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Figure 14: ADMM data fit + recovery quality (SNR) for single reflector data, common receiver
gather. Middle row: recovered slices, bottom row: residuals corresponding to each method in the
middle row. Tensor-based windowing appears to visibly degrade the results, even with overlap.
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BG Compass data

Owing to the smoothness of the data at lower frequencies, we uniformly downsample the individual
frequency slices in the receiver coordinates without introducing aliasing. This reduces the overall
computational complexity while simultaneously preserving the recovery quality. The 4.64Hz, 7.34Hz
and 12.3Hz slices were downsampled to 101×101, 101×101 and 201×201 receiver grids, respectively.
For these problems, the data was subsampled along the source coordinates by removing 25%, 50%,
and 75% of the shots.

In order to apply matrix completion without windowing on the entire data set, the data was
organized as a matrix using the low-rank promoting organization described previously. We used
Jellyfish and SPG-LR implementations to complete the resulting incomplete matrix and compared
these methods to the ADMM Tensor method and LMaFit, an alternating least-squares approach
to matrix completion detailed in Wen et al. (2012). LMaFit is a fast matrix completion solver that
avoids using nuclear norm penalization but must be given an appropriate rank parameter in order to
achieve reasonable results. We use the code available from the author’s website. SPG-LR, ADMM,
and LMaFit were run on a 2 quad-core 2.6GHz Intel processor with 16 GB memory and implicit
multithreading via LAPACK libraries while Jellyfish was run on a dual Xeon X650 CPU (6 x 2
cores) with 24 GB of RAM with explicit multithreading. The hardware configurations of both of
these environments are very similar, which results in SPG-LR and Jellyfish performing comparably.

For the Jellyfish experiments, the model parameter µ, which plays the same role as the λ
parameter above, and the optimization parameters (initial step size and step decay) were selected
by validation, which required 120 iterations of the optimization procedure for each (frequency,
subsampling ratio) pair. The maximum rank value was set to the rank value used in the SPG-LR
results. For the SPG-LR experiments, we interpolate a subsection of the data for various rank
values and arrived at 120, 150 and 200 as the best rank parameters for each frequency. We perform
the same validation techniques on the rank parameter k of LMaFit. In order to focus solely on
comparing computational times, we omit reporting the parameter selection times for the ADMM
method.

The results for 75% missing sources in Figure 15 demonstrate that, even in the low subsampling
regime, matrix completion methods can successfully recover the missing shot data at these low
frequencies. Table 3 gives an extensive summary of our results for different subsampling ratios and
frequencies. The comparative results between Jellyfish and SPG-LR agree the with the theoretical
results that establish the equivalence of BPDNσ and QPλ formulations. The runtime values include
the parameter estimation procedure, which was carried out individually in each case. As we have
seen previously, the ADMM approach does not perform well both in terms of computational time
and in terms of recovery.

In our experiments, we noticed that successful parameter combinations work well for other
problems too. Hence we can argue that in a real-world problem, once a parameter combination
is selected, it can be used for different instances or it can be used as an initial point for a local
parameter search.
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Frequency Missing sources SPG-LR Jellyfish ADMM LmaFit
SNR Time SNR Time SNR Time SNR Time

4.68 Hz
75% 15.9 84 16.34 36 0.86 1510 14.7 204
50% 20.75 96 19.81 82 3.95 1510 17.5 91
25% 21.47 114 19.64 124 9.17 1510 18.9 66

7.34 Hz
75% 11.2 84 11.99 52 0.39 1512 10.7 183
50% 15.2 126 15.05 146 1.71 1512 14.1 37
25% 16.3 138 15.31 195 4.66 1512 14.3 21

12.3 Hz
75% 7.3 324 9.34 223 0.06 2840 8.1 814
50% 12.6 438 12.12 706 0.21 2840 11.1 72
25% 14.02 450 12.90 1295 0.42 2840 11.3 58

Table 3: 3D seismic data results. The recovery quality (in dB) and the computational time (in
minutes) is reported for each method.

Matrix Completion with Windowing

When windowing the data, we use the same matricizations of the data as discussed previously, but
now split the volume in to nonoverlapping windows. We now use matrix completion on the resulting
windows of data individually. We used Jellyfish for matrix completion on individual windows. Again,
we use cross validation to select our parameters. We performed the experiments with two different
window sizes. For the small window case, the matricization was partitioned into 4 segments along
rows and columns, totalling 16 windows. For the large window case, the matricization was split into
16 segments along rows and columns, yielding 256 windows. This windowing is distinctly different
from the windowing explored for the single-layer model, since here we are windowing the matricized
form of the tensor, in the (xsrc, xrec) unfolding, as opposed to the per-dimension windowing in the
previous section. The resulting windows created in this way contain much more sampled data than
in the tensor-windowing case yet are still small enough in size to be processed efficiently.

The results in Figure 16 suggest that for this particular form of windowing, the matrix completion
results are particularly degraded by only using small windows of data at a time. As mentioned
previously, since we are relying on a high redundancy (with respect to the SVD) in the underlying
and sampled data to perform matrix completion, we are reducing the overall redundancy of the input
data by partitioning it. On the other hand, the real-world benefits of windowing in this context
become apparent when the data cannot be fit into the memory at the cost of reconstruction quality.
In this case, windowing allows us to partition the problem, offsetting the I/O cost that would result
from memory paging. Based on these results, whenever possible, we strive to include as much data
as possible in a given problem in order to recover the original matrix/tensor adequately.

DISCUSSION

As the above results demonstrate, the L,R matrix completion approach significantly outperforms
the ADMM tensor-based approach due to the need to avoid the computation of SVDs as well as the
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Figure 15: BG 5-D seismic data, 12.3 Hz, 75% missing sources. Middle row: interpolation results,
bottom row: residuals.
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Figure 16: BG 5D seismic data, 4.68 Hz, Comparison of interpolation results with and without
windowing using Jellyfish for 75% missing sources. Top row: interpolation results for differing
window sizes, bottom row: residuals.

minimal duplication of variables compared to the latter method. For the simple synthetic data, the
ADMM method is able to achieve a similar recovery SNR to matrix completion, albeit at a much
larger computational cost. For realistically sized data sets, the difference between the two methods
can mean the difference between hours and days to produce an adequate result. In terms of the
difference between SPG-LR and Jellyfish matrix completion, both return results that are similar
in quality, which agrees with the fact that they are both based off of L,R factorizations and the
ranks used in these experiments are identical. Compared to these two methods, LMaFit converges
much faster for regimes when there is more data available, while producing a lower quality result.
When there is very little data available, as is typical in realistic seismic acquisition scenarios, the
algorithm has issues converging. We note that, since it is a sparse linear algebra method, Jellyfish
tends to outperform SPG-LR when the number of missing traces is high. This sparse linear algebra
approach can conceivably be employed with the SPG-LR machinery. In these examples, we have not
made any attempts to explicitly parallelize the SPG-LR or ADMM methods, instead relying on the
efficient dense linear algebra routines used in Matlab, whereas Jellyfish is an inherently parallelized
method.

Without automatic mechanisms for parameter selection as in SPG-LR, the Jellyfish, ADMM, and
LMaFit algorithms rely on cross-validation techniques that involve solving many problem instances
at different parameters. The inherently parallel nature of Jellyfish allows it to solve each problem
instance very quickly and thus achieves very similar performance to SPG-LR. LMaFit has very fast
convergence when there is sufficient data, but slows down significantly in scenarios with very little
data. The ADMM method, on the other hand, scales much more poorly for large data volumes and
spends much more time on parameter selection than the other methods. However, in practice, we
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can assume that across frequency slices, say, optimally chosen parameters for one frequency slice
will likely work well for neighbouring frequency slices and thus the parameter selection time can be
amortized over the whole volume.

In our experiments, aside from the simple 3D layer model and the Nelson dataset, the geological
models used were not low rank. That is to say, the models had complex geology and were not simply
horizontally layered media. Instead, through the use of these low rank techniques, we are exploiting
the low rank structure of the data volumes achieved from the data acquisition process, not merely
any low rank structure present in the models themselves. As the temporal frequency increases, the
inherent rank of the resulting frequency slices increases, which makes low rank interpolation more
challenging. Despite this observation, we still achieve reasonable results for higher frequencies using
our methods.

As predicted by our theoretical considerations, the choice of windowing in this case has a negative
effect on the generated results in the situation where the earth model permits a low-rank representa-
tion that is reflected in the midpoint-offset domain. In case of earth models that are not inherently
low-rank, such as those with salt bodies, we can still recover the low-frequency slices as shown by
the examples without performing the windowing on the data sets. As a general rule of thumb, we
advise to incorporate as much of the input data is possible in to a given matrix-completion problem
but clearly there is a tradeoff between the size of the data windows, the amount of memory available
to process such volumes, and the inherent complexity of the model. Additionally, one should avoid
methods that needlessly create extraneous copies of the data when working with large scale volumes.

Here we have also demonstrated the importance of theoretical components for signal recovery
using matrix and tensor completion methods. By ignoring these principles of matrix completion, a
practitioner can unintentionally find herself in a disadvantageous scenario and produce sub-optimal
results without a guiding theory to remedy the situation. However, by choosing an appropriate
transform domain in which to complete the matrix or tensor, we can successfully employ this rank-
minimizing machinery to interpolate a signal with missing traces in a computationally efficient
manner.

From a practitioner’s point of view, the purpose of this interpolation machinery is to remove the
acquisition footprint from missing-trace data that is used in further downstream seismic processes
such as migration and full waveform inversion. These techniques can help mitigate the lack of data
coverage in certain areas that would otherwise have created artifacts or non-physical regions in a
seismic image.

CONCLUSION

Building upon existing knowledge of compressive sensing as a successful signal recovery paradigm,
this work has outlined the necessary components of using matrix and tensor completion methods
for interpolating large-scale seismic data volumes. As we have demonstrated numerically, with-
out the necessary components of a low-rank domain, a rank-increasing sampling scheme, and a
rank-minimizing optimization scheme, matrix completion-based techniques cannot successfully re-
cover subsampled seismic signals. Once all of these ingredients are in place, however, we can use
existing convex solvers to recover the fully sampled data volume. Since such solvers invariably in-
volve computing singular-value decomposition of large matrices, we have presented two alternative
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factorized-based formulations that scale much more efficiently than their strictly convex counterparts
when the data volumes are large. We have shown that our factorization-based matrix completion
approach is very competitive compared to existing curvelet-based methods for 2D seismic data and
alternating direction method of multipliers tensor-based methods for 3D seismic data.

From a practical point of view, this theoretical framework is exceedingly flexible. We have
shown the effectiveness of midpoint-offset organization for 2D data and (xsource, xreceiver) matrix
organization for 3D data for promoting low-rank structure in the data volumes but it is conceivable
that other seismic data organizations could also be useful in this regard, e.g., midpoint-offset-
azimuth. Our optimization framework also allows us to operate on both large-scale data without
having to select a large number of parameters and we do not need to recourse to using small windows
of data, which may degrade the recovery results. In the seismic context, reusing the interpolated
results from lower frequencies as a warm-start for interpolating data at higher frequencies can
further reduce the overall computational costs. The proposed approach to matrix completion and
the Jellyfish method are very promising for large scale data sets and can conceivably be applied to
interpolate wide azimuth data sets as well.
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