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Abstract
Continuous improvement in optical sensing components, as well as recent advances in signal
acquisition theory provide a great opportunity to reduce the cost and enhance the capabilities
of depth sensing systems. In this paper we propose a new depth sensing architecture that
exploits a fixed coded aperture to significantly reduce the number of sensors compared to
conventional systems. We further develop a modeling and reconstruction framework, based
on model-based compressed sensing, which characterizes a large variety of depth sensing
systems. Our experiments demonstrate that it is possible to reduce the number of sensors by
more than 85%, with negligible reduction on the sensing quality.
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ABSTRACT

Continuous improvement in optical sensing components, as well as
recent advances in signal acquisition theory provide a great oppor-
tunity to reduce the cost and enhance the capabilities of depth sens-
ing systems. In this paper we propose a new depth sensing archi-
tecture that exploits a fixed coded aperture to significantly reduce
the number of sensors compared to conventional systems. We fur-
ther develop a modeling and reconstruction framework, based on
model-based compressed sensing, which characterizes a large va-
riety of depth sensing systems. Our experiments demonstrate that it
is possible to reduce the number of sensors by more than 85%, with
negligible reduction on the sensing quality.

Index Terms— 3-D imaging, LIDAR, time of flight, com-
pressed sensing, computational imaging.

1. INTRODUCTION

Recent advances in signal processing theory and acquisition hard-
ware have enabled significant improvements and cost reduction in
depth sensing applications. Furthermore, recently emerging applica-
tions, such as autonomous navigation, mapping, and home entertain-
ment, have put pressure on this area and increased the demand for
inexpensive and high quality depth sensing.

In this paper we fundamentally re-examine the depth sensing
problem given recent advances in model-based compressive sensing
(CS), the reduced cost of computation, and the availability of off-the
shelf hardware. Our main contributions are the following:

– a single-shot compressive hardware architecture for laser-based
time-of-flight (TOF) depth sensors,

– a very general system model that characterizes a large number of
depth sensing system architectures, and

– a model-based CS reconstruction algorithm that exploits the low
total variation (TV) of depth scenes to improve reconstruction.

Conventional high-resolution, high frame-rate LIDAR systems typi-
cally use an expensive array of precision TOF sensors and illuminate
the whole scene with a single laser pulse [1]. Alternatively, at the
expense of reduced frame-rate, the laser scans the scene. A smaller
sensor array, which might also scan the scene, acquires the reflec-
tion. The resulting system significantly lowers cost, but requires the
use of mechanical components, which can be prone to failure.

Instead, compressive approaches can exploit significant gains in
computational power, thanks to Moore’s law, to reduce the sensing
cost. Widespread computation enables elaborate signal models and
reconstruction algorithms, which, in turn, allow for reduced sensor
complexity. For example, a compressive depth sensing architecture
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was recently proposed [2–4], using a single sensor combined with
a spatial light modulator and multiple pulses illuminating the whole
scene. The spatial light modulator is used to implement a variable
coded aperture, the code of which is changing with every pulse—
which restricts this approach to static scenes.

Our hardware architecture is similar to [2–4], but we use a fixed
coded aperture—a very inexpensive component compared to a spa-
tial light modulator—and more than one sensor. Since the code does
not change, our architecture only requires a single pulse transmis-
sion per frame, which may or may not carry a code. Thus, we can
achieve frame-rates equivalent to much more expensive single-pulse
systems, but at a significantly lower cost. Specifically, using our ap-
proach we are able to reduce the number of time of flight sensors by
85% compared to the full resolution of the acquired image, depend-
ing on the complexity of the pulse and the scene.

Algorithmically, our approach is based on recent developments
on model-based CS [5–7] and signal models inspired by the ones
in [8]. We demonstrate that, the signal model in [8] combined un-
der specific conditions with the constrained earth mover’s distance
(EMD) model discussed in [6, 7] results to a constrained total varia-
tion (TV) model, suitable for depth images. However, this approach
can only model two-dimensional (2-D) scenes, which correspond to
1-D depth maps. Thus we exploit a graph cuts formulation of the re-
sulting problem [9], which enables the extension to 3-D scenes, and,
correspondingly, to 2-D depth maps.

Our model is very different from the reconstruction framework
in [4], termed CoDAC. The latter uses a two-step process, first find-
ing a discrete set of depths present in the scene and then reconstruct-
ing the reflectivity of the scene at each depth. The depth-finding step
exploits a finite-rate-of innovation (FRI) model, which essentially
requires that the scenes have planar reflectors, i.e., that the scene
is piece-wise planar. In addition, current FRI models require very
specific pulse shapes, which precludes the use of coded pulses [10].
Our model is also more general, characterizing a wider variety of
possible compressive LIDAR architectures. For example, while our
model can be used with the hardware architecture of [2–4], the con-
verse is not true; the use of the two-stage FRI model would require
small architecture modifications in our system.

The next section provides an overview of CS, compressive imag-
ing and model-based CS. Section 3 describes the proposed system
and develops the signal and system models. The reconstruction al-
gorithms are is described in Sec. 4. Section 5 provides simulation
results validating our approach.

2. BACKGROUND

2.1. Compressive Sensing an Imaging

Compressive Sensing (CS) [11, 12] has emerged as a powerful sens-
ing framework, demonstrating that signals can be acquired using



much fewer linear measurements than their dimension implies. To
reduce the acquisition rate, CS reconstruction algorithms exploit the
structure of acquired signals. To capture structure, the most com-
monly used signal model is sparsity: the signal comprises a linear
combination of very few atoms selected from a basis or a dictionary.
A few other models, such as signals lying on low-dimensional mani-
folds and signals with low total variation (TV) have also been shown
to be suitable for compressive acquisition [13, 14].

A CS-based acquisition system can be modeled as

r = A(s), (1)

where A(·) is a linear function, s belongs in some appropriate sig-
nal space, and r belongs in the measurement space. The latter space
has much lower dimension than the former. A number of possible
properties of A(·)—such as low coherence, the Restricted Isometry
Property, or others, depending on the model—guarantee that recon-
struction is possible using an appropriate algorithm [11, 12].

Compressive Sensing has been proven very successful in imag-
ing systems, in which, typically, the signal s to be acquired is a 2-
D image in RNx×Ny . Using compressive approaches, it has been
shown that images can be acquired with measurements as few as
10% of the number of pixels NxNy . These gains are not as relevant
in conventional visible-light imaging, where CCD and CMOS sensor
technology has made measurements extremely inexpensive. How-
ever, this approach has had significant impact in other modalities,
such as medical imaging, low-light imaging, hyperspectral imaging,
and depth sensing [3, 4, 8, 15–18].

2.2. Model-Based Compressive Sensing

The recently developed model-based CS framework provides a gen-
eral approach to developing a large number of signal models and
characterizing their suitability for CS acquisition [5]. Models un-
der this framework are created by imposing restrictions on the signal
support. A fundamental operation is the projection of a general sig-
nal to the set of signals that satisfy the model’s support restrictions.
As long as such a projection can be computed, common greedy CS
reconstruction algorithms, such as Compressive Sampling Matching
Pursuit (CoSaMP) [19] and Iterative Hard Thresholding (IHT) [20],
can be modified to reconstruct signals in the model. Furthermore, it
has recently been shown that a pair of approximate projections with
different approximation properties is sufficient to guarantee accurate
reconstruction, instead of an exact projection [6, 7].

Furthermore, in [6, 7], a novel signal model is developed, mo-
tivated by signals in 2-D seismic imaging. A signal s ∈ RN×T in
this model is a matrix with N rows and T columns. Each row of the
signal only has S non-zero entries, which should be spatially close
to the S non-zero entries of the row above or below. This is enforced
by restricting the EMD between the support of subsequent rows of
the signal. The projection under this signal model is performed by
solving a sequence of network flow problems.

As will become evident in Sec. 4.1, a restricted version of this
model, with S = 1 is a very good model for LIDAR scenes. How-
ever, it requires extension of this model to 3-D volumes, namely
signals s ∈ RNx×Ny×T which, unfortunately, is not obvious. Sec-
tion 4.1, develops such an extension for the restricted case of S = 1.

3. COMPRESSIVE LIDAR SENSING

3.1. System Architecture

Fundamentally, the LIDAR architecture we propose relies on classi-
cal time-of-flight (TOF) LIDAR principles: a pulse is transmitted to
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Fig. 1: Schematic of the LIDAR system architecture.

illuminate the scene and the delayed reflections from each object in
the scene are acquired by the system and used to determine the depth
of each object. Classical architectures, however, rely on carefully
separating and sensing the reflections from each direction in order to
determine the TOF and assign it to the appropriate place in the depth
map. Instead, we exploit CS principles and intentionally mix re-
flections from all directions, in order to reduce the sampling burden.
Thus, we rely on computational methods to separate the mixture and
assign the correct depth value to each point in the scene.

The system architecture is shown in Fig. 1. The scene is illu-
minated using a laser that transmits a pulse through a lens system.
In contrast to many conventional architectures, the laser has a wide
beamwidth, which illuminates the whole scene and is not scanned.
The pulse may be a simple pulse, such as a Gaussian-shaped one, or
a coded sequence of pulses.

The pulse travels through the medium, reflects on objects in the
scene, and returns to the sensing system. The reflected delayed pulse
is acquired though a lens system, a fixed coded aperture and a set
of sensors behind the coded aperture. The coded aperture is typi-
cally implemented using a mask that blocks light according to a 0/1
pattern in the code. A coded aperture where the pattern can take
continuous values in [0, 1] is also physically possible.

The combination of the lens and the coded aperture mixes
pulses received from each direction and projects them to the sensor
plane [21]. Each location on the sensor plane receives a different
mixture, determined by the aperture code. Thus, the signal recorded
by each sensor is a mixture of the reflected pulses, as received at the
sensor’s location. These mixtures are used to reconstruct the scene.

3.2. Signal Model

To model the system we start with a single reflecting scene point at
distance d from the sensing plane, and we assume no coded aper-
ture. For convenience we assume the laser is located at the same
position as the sensing plane, but this assumption can be trivially
relaxed. Thus, the distance the pulse travels from the laser to the
reflecting scene point and back to the sensor is 2d, corresponding to
a pulse delay, i.e., TOF, τ = 2d/c, where c is the speed of light in
the medium. Through this correspondence, time is equivalent to dis-
tance from the sensor plane, i.e., depth, and we will often use them
interchangeably in the remainder of this paper.

We consider a 3-D scene, comprising of two spatial directions,
transverse to the sensor plane, and one depth direction, which we
also refer to as time or delay, and is perpendicular to the sensor
plane. Thus, the scene is a function sx,y,t, to be acquired, where
s represents the reflectivity of the scene at point (x, y, t). If there is
no reflection from a point, the corresponding reflectivity is zero.

We assume Lambertian surfaces with no transparency, which
implies that, for any (x, y) pair, there is only one depth t that has
non-zero reflectivity. In other words, if there is a reflection from
(x, y, t), then there is no reflector in-between that location and the
sensing plane. Furthermore, the light does not reach any reflectors



behind that point for the same (x, y) pair, and, therefore, their reflec-
tivity is also zero. We refer to this constraint, first introduced in [8],
in the context of coherent sensing systems, as the depth constraint
on s. A valid scene signal s should satisfy this depth constraint.

Given a depth map dx,y , representing the depth of the scene at
coordinates (x, y), and a reflectivity (albedo) map ax,y for the same
coordinates, the scene is equal to

sx,y,t = ax,yδt−2dx,y/c, (2)

where δt is the Dirac impulse function. From any scene satisfying
the depth constraint, it is trivial to extract depth and albedo maps.

3.3. Acquisition Model

We use pt to denote the transmitted pulse, which gets reflected by the
scene. Assuming that a pinhole aperture is present, then the received
reflection at location (x, y) is equal to

r̂x,y,t = ax,ypt−2dx,y/c = pt ~t sx,y,t, (3)

where ~t denotes linear convolution along the time direction. The
addition of a coded aperture, with spatial code mx,y introduces a
mixing of the received signal, which can be shown to be the spatial
convolution of r̂x,y,t with the mask [21]. Thus, the received light
flux at the sensor plane is equal to

r̃x,y,t = mx,y ~x,y r̂x,y,t = mx,y ~x,y pt ~t sx,y,t. (4)

This signal is sensed by M sensors, indexed by m = 1, . . . ,M ,
each positioned at location (xm, ym). Each sensor samples the light
flux at the sensor plane and samples rm,t = r̃xm,ym,t in time.

We discretize the scene to s ∈ RNx,Ny,Nt , where Nx, Ny is the
number of spatial pixels to be acquired—specified as the desired res-
olution of the system—and Nt is the number of time samples. The
discretization is such that each reflector can be assumed approxi-
mately flat and parallel to the sensor plane over the area of a pixel,
such that the depth constraint is preserved in the discrete representa-
tion. Furthermore, the time is sampled at a rate higher than the pulse
Nyquist rate. Similarly, we discretize the pulse, the coded aperture
mask, and the received signals, such that the convolution with the
pulse and the mask shape can be expressed in discrete-time.

The discretized received signal at sensor m, r ∈ RM,N′
t can

then be computed as a sequence of linear transformations

r = S(M(P(s))) = A(s), (5)

where P, M and S denote, respectively, the linear transformations
due to the pulse, the mask of the coded aperture and the sampling of
the optical field by the sensors. Their composition, A, is the forward
linear transformation mapping the scene s to the received signal r.

3.4. Model Implementation

Efficient computation using the linear model in (5) is paramount in
modern iterative reconstruction methods. To this end, the opera-
tors P and M can be efficiently implemented in discrete time using
FFT-based convolution algorithms. Furthermore, S is trivial compu-
tationally since it simply selects the appropriate signals. The adjoint
A∗, necessary for most reconstruction algorithms, is also trivial to
implement by composing the adjoint of each operator in the reverse
order, i.e., using A∗(r) = P∗(M∗(S∗(r))).

The implementation can also exploit the separability of space
and time operators in (5), and rearrange them to reduce complexity:

S(M(P(s))) = P(S(M(s))). Thus, the pulse convolution P is
applied to an M ×Nt-dimensional object, rather than a Nx×Ny ×
Nt-one, while the complexity of S and M does not change.

Finally, an efficient implementation can use a depth map/albedo
representation, i.e., d and a, for storage, thus significantly reducing
memory requirements. The forward operator is straightforward to
compute efficiently from such a representation, although the adjoint
would require a temporary memory expansion to store the full s.

4. DEPTH RECONSTRUCTION

4.1. Depth Scenes, Total Variation and Network Flows

To reconstruct a subsampled signal and provide robustness to noise,
CS exploits the structure of the acquired signal. In particular, depth
maps have been shown to have low TV norm [22, 23]. Signals with
low TV norms are generally flat, with very few discontinuities and
very few areas with small gradients.

The (`1) TV norm of a discrete map d ∈ RNx×Ny , is defined as

‖d‖TV = ‖∇xd‖1 + ‖∇yd‖1, (6)

where∇xd is the discrete gradient along direction x and ‖ ·‖1 is the
element-wise `1 norm of a matrix, i.e.,

‖∇xd‖1 =

N∑
ny=1

N−1∑
nx=1

∣∣dnx,ny − dnx+1,ny

∣∣ , (7)

with the y direction similarly defined.
Given a scene satisfying the depth constraint described in

Sec. 3.2, an additional constraint on the TV norm of the depth
map is exactly equivalent to a constraint on the support of the non-
zeros in s. Specifically, two spatially adjacent non-zero coefficients
of s—i.e., with respect to the nx and ny coordinates—should also
have similar depth—i.e., nt coordinate—except for very few dis-
continuities. However, this one-to-one correspondence requires that
s satisfies the depth constraint. A general, dense s does not; a pro-
jection to both the depth and the TV constraints is, thus, required for
model-based CS algorithms, such as CoSaMP and IHT.

For a one-dimensional depth map problem, i.e. for s ∈ RNx,Nt

and d ∈ RNx , the projection in [6, 7] provides a solution. In this
work, 2-D signals are considered, represented as a matrix. Each
row of the matrix has only S non-zeros, and the support of those
non-zeros from row to row changes very little, according to a pre-
determined constraint on the total EMD between supports. It is
straightforward to show that with S = 1, the EMD constraint ap-
plied to s becomes a TV constraint on its support, i.e., on the depth
map. The projection onto the constraint can be computed using a
sequence of simple dynamic programs solving a network flow. Un-
fortunately this approach does not generalize to 2-D depth maps. For
those we need a different formulation, described in the next section.

4.2. 2-D Total Variation and Graph Cuts

To generalize the projection to 3-D objects, i.e., 2-D depth maps,
we use a graph cuts formulation. For an undirected, weighted graph
G = (V, E), we consider the general graph cuts problem. That is,
given a set of observations X , the task is to assign each vertex v ∈ V
a label lv ∈ L such that the joint labeling of all vertices, l, minimizes
an energy function between labels and observations E(l,X ).
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Fig. 2: Example of a (top) 3-D scene and (bottom) the correspond-
ing depth map. From left to right, (a) original scene and the recon-
struction results using (b) thresholded backprojection, (c) conven-
tional sparsity models (CoSaMP) and (d) bounded TV reconstruction
(CoSaMP-TV). Darker colors represent, respectively, lower ampli-
tudes in the 3-D scene and closer objects in the depth map. Absence
of color indicates no reflection.

In our depth sensing problem, we map each vertex to represent
a spatial location v = (nx, ny) of the scene, and each label to rep-
resents a discrete depth value lv = dnx,ny . Hence, the cardinality
of sets V and L is NxNy and Nt, respectively. We also map the
set of observations X to the scene s. Finally, we express the energy
function as a sum of unary and pairwise terms

E(l, s) =−
∑
v∈V

s2v,lv︸ ︷︷ ︸
Unary

+
∑
v∈V
u∈Nv

λ |lv − lu|

︸ ︷︷ ︸
Pairwise

(8)

=−
∑

(nx,ny)∈V

s2nx,ny,dnx,ny

+
∑

(nx,ny)∈V
(n′

x,n′
y)∈Nnx,ny

λ
∣∣∣dnx,ny − dn′

x,n′
y

∣∣∣, (9)

whereNnx,ny = {(nx+1, ny), (nx−1, ny), (nx, ny+1), (nx, ny−1)}
is the neighborhood ofNnx,ny (i.e. Nv contains all vertices that are
directly adjacent to v = (nx, ny) in the graph).

The unary term is a fidelity term which uses the label—i.e., the
depth value—to select the appropriate data point from the scene s
and impose an `2 data penalty. The pairwise term imposes a smooth-
ness constraint between the label of v and the label of vertices in the
neighborhood set Nv . Thus, the pairwise term from equation 8 is
the `1 norm of the gradient of depth values, i.e., the TV norm of d.
Analogous to Rudin-Osher-Fatemi total-variation, the parameter λ
weights the tradeoff between data fidelity and smoothness [9].

Solvers for minimizing (8) are, by now, widely available.
Algorithmic techniques include alpha-expansion and alpha-beta
swap [24, 25] as well as Boolean approaches [26, 27]. A survey on
such algorithms can be found in [28]. In our experiments, we use
the alpha-expansion technique from Boykov et. al. [24].

The truncation step of our model-based algorithm incorporates
a K-term truncation of s by first optimizing (8) to obtain a can-
didate depth map d, which corresponds to a candidate support set
(nx, ny,dnx,ny ). From this candidate support set the largest K
components of s are selected to be used by the appropriate step of
model-based CoSaMP or IHT. In contrast, conventional truncation
in these algorithms just selects the K largest components of the data
s, not constrained by the graph cuts solution. Compared to conven-
tional sparsity, our model-based thresholding produces a scene s that
(a) satisfies the depth constraint and (b) has low depth TV. In the in-
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sus percentage of the ground truth support that is recovered for the
simple sparsity model and the model-based approach.

terest of space, we refer to [5–7] for more details on model-based
algorithms and the role of truncation in their operation.

5. EXPERIMENTS

To validate our model we performed simulations on a variety of
scenes. In our experiments we illuminated, acquired and recon-
structed scenes using our proposed system architecture and model-
based CoSaMP reconstruction algorithm—referred to as CoSaMP-
TV in the remainder. For comparison, we also reconstructed the
scenes using thresholded backprojection and the CoSaMP algorithm
with a standard sparsity model. Our experiments use a randomly
generated binary mask and random sensor placement for the acqui-
sition. We performed our experiments for a variety of conditions,
scene sizes and number of sensors, and the findings were consistent.

An example result is shown in Fig. 2. The figure, from left to
right, illustrates (a) the scene and the three reconstruction results: (b)
thresholded backprojection, (c) standard CoSaMP, and (d) CoSaMP-
TV. The top row of the figure plots the whole 3-D scene, s, either
original or reconstructed, while the bottom row illustrates the corre-
sponding depth map d. Amplitude values in the former represent
albedo, and amplitude values in the latter represent depths. The
measurements were collected at 35 dB SNR, using 15% of measure-
ments, an 85% reduction, with an impulse pulse shape.

As evident in the figure, and expected, thresholded backprojec-
tion, with the threshold chosen in hindsight for best performance,
results to very poor reconstruction, even though it identifies three
depth planes at the correct depths. The standard sparsity model,
shown in column (c), significantly improves the result. However,
the reconstruction of the closest plane contains errors. Within this
region, we observe a high total variation in the reconstructed depth
image. The reconstructed scene using our model in CoSaMP-TV,
shown in column (d), leads to significantly improved reconstruction.
The model based approach recovers 85.1% of the original support,
while standard CoSaMP only recovers 58.8%.

Figure 3 further demonstrates quantitatively the performance
improvements using our model. In particular, the figure plots the
reconstruction performance of CoSaMP and CoSaMP-TV in terms
of the detection rate, i.e., the percentage of the support recovered.
This equals the size of the intersection of the recovered support with
the true support of the signal, normalized by the size of the true
support. The performance is plotted with respect to the number of
sensors, as a function of the scene size in spatial pixels. Use of the
TV model, as appropriate for such scenes, increases detection rate
by more than 30% for the same number of sensors.

Our experiments demonstrate the validity of our model, as well
as the feasibility of the proposed hardware architecture. Of course,
further study is necessary, with more complex scenes and varying
noise and acquisition conditions. We reserve this study, as well as an
in-depth theoretical analysis, for an extended version of this paper.
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