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Fast UD Factorization-Based RLS Online Parameter Identification 

for Model-Based Condition Monitoring of Lithium-ion Batteries 

  
Abstract—This paper proposes a novel parameter 

identification method for model-based condition monitoring of 

lithium-ion batteries.  A fast UD factorization-based recursive 

least square (FUDRLS) algorithm is developed for identifying 

time-varying electrical parameters of a battery model. The 

proposed algorithm can be used for online state of charge, state 

of health and state of power estimation for lithium-ion 

batteries. The proposed method is more numerically stable 

than conventional recursive least square (RLS)-based 

parameter estimation methods and faster than the existing UD 

RLS-based method. Moreover, a variable forgetting factor 

(VF) is included in the FUDRLS to optimize its performance. 

Due to its low complexity and numerical stability, the proposed 

method is suitable for the real-time embedded Battery 

Management System (BMS). Simulation and experimental 

results for a polymer lithium-ion battery are provided to 

validate the proposed method.  

Index Terms—Fast UD recursive least square (FUDRLS), 

lithium-ion battery, parameter identification, variable 

forgetting factor (VF) 

I. INTRODUCTION 

Lithium-ion batteries have gained more pervasive use in 

numerous applications from electronics to power tools due 

to their high energy and power densities and long cycle life 

[1]. However, the concerns of using lithium-ion batteries are 

reliability and performance degradation due to low thermal 

stability and aging process. Therefore, a battery 

management system (BMS) is required to monitor and 

control the conditions of batteries [2]. A key function of the 

BMS is to monitor the state of charge (SOC), state of health 

(SOH), instantaneous available power (i.e., SOP), 

parameters including impedance and capacity, etc., during 

operation [3]. It is well-understood that the online 

parameters and states can only be reconstructed, typically, 

from model-based estimation methods due to absence of 

sensors for direct measurements of these quantities. The 

goal of parameter estimation/identification is to capture 

time-varying parameters of a real-time battery model, which 

is used for condition monitoring of lithium-ion batteries, 

such as SOC, SOH [3], and SOP [4] estimation. 

A variety of real-time battery parameter estimation 

methods have been developed, which, in general, can be 

classified into two categories: Kalman filter-based methods 

and linear least square regression based-methods. In the first 

category, linear Kalman filter [4], joint extended Kalman 

filter (JEKF) [5], dual extended Kalman filter (DEKF) [6], 

and dual sigma point Kalman filter (SPKF) [7] have been 

used to estimate parameters and states of a state-space 

battery model simultaneously. In general, the Kalman filter-

based methods provide an accurate solution. However, the 

estimation error can be large when the process noise and the 

measurement noise are uncorrelated with zero mean white 

Gaussian and their covariance values are not properly 

defined. Moreover, they incur high computational 

complexity, thus may be difficult to implement in real-time 

embedded systems.  

Linear least square regression based-methods are by far 

most widely used to estimate parameters of a battery model 

due to their low computational cost and relatively high 

accuracy. In order to perform online estimation of time-

varying parameters, recursive least square (RLS) [8], [9] 

and moving window least square (MWLS) [10], [11] have 

been introduced with an exponential forgetting factor (EF). 

Recently, a Bierman’s UD factorization-based RLS 

estimation method with an EF [12] has been proposed to 

solve the digital computer implementation problem of RLS. 

However, it has drawbacks such as wind-up when a data 

vector is not persistently exiting [13] as well as nonoptimal 

tracking ability and noise influence due to the constant 

forgetting factor [13]. 

This paper proposes a parameter estimation method 

called fast UD recursive least square (FUDRLS), which is 

an alternative matrix form of the Bierman’s UD update 

equations [14] by using a matrix triangularization method 

[15]. This approach will be more attractive to be used in 

embedded systems due to a pipeline implementation and 

Taesic Kim, Student Member, Yebin Wang, Member, IEEE, Zafer Sahinoglu, Senior Member, IEEE, Toshihiro 

Wada, Satoshi Hara, Wei Qiao, Senior Member, IEEE 

 

T. Kim is with the Department of Computer Science and Engineering 
and W. Qiao is with the Department of Electrical Engineering, University 

of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA (e-mail: 

taesickim@huskers.unl.edu; wqiao@engr.unl.edu). This work was done 
while T. Kim was an intern with Mitsubishi Electric Research Laboratories, 

201 Broadway, Cambridge, MA 02139, USA. 

Y. Wang and Z. Sahinoglu are with Mitsubishi Electric Research 
Laboratories, 201 Broadway, Cambridge, MA 02139, USA. 

{yebinwang,zafer}@merl.com 

T. Wada and S. Hara are with the Advanced Technology R&D Center 
Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-honmachi, Amagasaki 

City, 661-8661, Japan. Wada.Toshihiro@bx.MitsubishiElectric.co.jp, 

Hara.Satoshi@cb.MitsubishiElectric.co.jp 
 



extension to vector measurements [16]. The proposed 

method is more numerically stable than conventional RLS-

based parameter estimation and faster than the existing UD 

RLS-based method. Furthermore, a VF method is included 

to address limitations of the EF method. The proposed 

parameter identification algorithm is suitable for real-time 

embedded BMS due to low complexity and easy 

implementation.  The proposed method is validated by 

simulation and experimental results for a polymer lithium-

ion battery. 

II. THE BATTERY MODEL 

An accurate battery model is important to obtain a 

precise estimation of those parameters. In addition, a 

balance between the accuracy and complexity of the battery 

model should be considered for real-time condition 

monitoring in embedded systems. In general, electrical 

circuit battery models are suitable for embedded system 

applications due to the low complexity and the ability of 

predicting battery cell current-voltage (I-V) dynamics [17]. 

The hysteresis effect [18], which shows an equilibrium 

difference between battery charging and discharging, is a 

fundamental phenomenon of batteries. It was also 

demonstrated that the first-order resistor-capacitor (RC) 

model with a hysteresis, as shown in Fig. 1, provides a good 

balance between model accuracy and complexity [19].  

 In Fig 1, the VOC (i.e., the open-circuit voltage OCV), 

includes two parts. The first part, denoted by Voc(SOC), 

represents the equilibrium OCV, which is used to bridge the 

SOC to the cell open-circuit voltage. The second part Vh is 

the hysteresis voltage to capture the nonlinearity of OCV. 

The RC circuit models the I-V characteristics and the 

transient response of the battery cell. Particularly, the series 

resistance, Rs, is used to characterize the charge/discharge 

energy losses of the cell; the charge transfer resistance, Rc, 

and double layer capacitance, Cd, are used to characterize 

the short-term diffusion voltage, Vd, of the cell; Vcell 

represents the terminal voltage of the cell. Defining H(iB) = 

exp(-ρ|iB(k)|Ts), a discrete-time state-space version of the 

real-time battery model is expressed as follows:
   

 

ú
û

ù
ê
ë

é
×

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

-

×

-
-

-

+

ú
ú
ú

û

ù

ê
ê
ê

ë

é

×

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

×

-
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

+

+

+

max

max

)(

)()1(0

0))exp(1(

0/

)(

)(

)(

00

0)exp(0

001

)1(

)1(

)1(

h

B

B

dc

s
c

s

h

d

dc

s

h

d

V

ki

isignH

CR

T
R

CT

kV

kV

kSOC

H

CR

T

kV

kV

kSOC

h

       
(1) 

)()()()()( kVkiRkVSOCVkV hBsdoccell +×--=          
(2) 

3

5

2

43210 )exp()( SOCaSOCaSOCaaSOCaaSOCVoc +-++-= (3) 

where η is the Coulomb efficiency (assuming η = 1); Ts is 

the sampling period; iB(k) is the instantaneous current of the 

battery at the time index k; Vhmax is the maximum hysteresis 

voltage which may be a function of SOC; ρ is the hysteresis 

parameter, which represents the convergence rate.  

Due to the nonlinearity of hysteresis voltage Vh, it is not 

easy to estimate all parameters. Therefore, a simplified real-

time battery model has been used by assuming that VOC is 

parameterized by b1·SOC+b0, which can be expressed as 

follows [11]: 
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where F =  exp(-Ts/τ),  τ = Rc·Cd, is the time constant of  the 

battery; Cmax denotes the maximum capacity of the battery. 

III. ELECTRICAL PARAMETER IDENTIFICATION OF 

LITHIUM-ION BATTERY 

Because battery parameters change due to variations of 

the SOC, temperature, and charge/discharge current rate, 

etc., online parameter estimation algorithm is required. The 

FUDRLS method is employed to identify the internal 

parameters of the electrical circuit model which include the 

electrical impedances Rs, Rc, and Cd. The z-transfer function 

of (4) and (5) is given [20]: 

   
2

2

1

1

2

5

1

431

22

0

1
)(

)(

)(
--

--
-

´
++

++
=+-=

-

zxzx

zxzxx
DBAzIC

zi

bzV

B

cell

   
(6) 

where 

        s

c

s

RDbC

FR

C

T

B
F

A -=-=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

-

-

=ú
û

ù
ê
ë

é
= ],1[,

)1(

,
0

01
1max           

(7)
   

ï
ï

î

ï
ï

í

ì

÷÷
ø

ö
çç
è

æ
-+-=

++-+
-

=-==--=

s

s

c

sc

s

s

R
C

Tb
FFRx

FRFR
C

Tb
xRxFxFx

max

1

5

max

1

4321

)1(

)1()1(,,,1

   
(8)

 
The corresponding difference equation is given: 
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Fig. 1. The first-order RC model with a hysteresis. 



Because (1+x1+x2) is zero and x1 is (–x2–1), (9) can be 

reformulated into the regression form of the input/output 

relationship. 
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where the regressor is ϕ
T
(k)={[Vcell(k-1)-Vcell(k-2)], iB(k), 

iB(k-1), iB(k-2)} and the vector of the parameters to be 

estimated is θ=[x2, x3, x4, x5]
T
. The FUDRLS algorithm is 

designed to estimate the vector θ from which the internal 

parameters of the electrical circuit model can be uniquely 

determined. The parameter identification algorithms need to 

check the estimated parameters. The abnormal values of the 

estimated internal parameters due to low quality of the input 

signal will be discarded (i.e., abnormal condition) and then, 

the previously estimated parameters will be used until the 

estimated parameters are in the scope of predefined values 

(i.e., normal condition).  

The RLS-based methods can be improved by using the 

forgetting factor [9]. When the value of forgetting factor is 

small, its tracking ability to time-varying parameters will be 

improved at the expense of sensitivity to noises; while the 

forgetting factor is large, its tracking ability will be poor but 

robust to the noise. The RLS technique with an exponential 

forgetting (EF) has been used [9] and [12]. The main 

drawback of the EF method is the wind-up, which is result 

from a non-persistently exciting data vector [13], 

nonoptimal tracking ability, and noise corruption due to the 

constant forgetting factor [13]. Instead, the VF methods aim 

to improve the estimation by optimally changing the 

forgetting factor. The main mechanism is: a smaller 

forgetting factor will be employed for the large prediction 

error; a larger forgetting factor will be used when the 

prediction error is small. In this paper, a simple VF is 

proposed in (11) according to the time-averaged estimation 

of the square of posterior error, e(k), which is given by (12). 
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where λ is a forgetting factor; δ  is weighting factor to be a 

quantity between λmin and λmax; v is time-average expressions 

of e(k)
2
; the parameter s0

2
 is the mean value of the variance 

of the prediction error obtained from the method 

implemented in the FUDRLS with constant forgetting factor 

(e.g., λ = 0.98) assuming that expected noise variance is 

much smaller than s0
2
 [21]; N0 represents the memory 

length (e.g., N0=50 corresponding to mean forgetting factor 

of 0.98); λmax (e.g., 0.999) and λmin (e.g., 0.95) denote 

maximum forgetting factor and minimum forgetting factor, 

respectively. A similar approach has been proposed in [21]. 

The main difference from [21] is that the mean value of 

posterior errors of the moving window buffer has been 

replaced to (12) resulting in simple as well as v(0) is set to 

be s0
2
. Calculated λ(k+1) will be used in next time step 

(k+1). 

The UDRLS is a UD factorization algorithm to solve 

digital computer implementation problem of RLS, which 

preserves the positive covariance P by updating the U, upper 

triangular and D diagonal matrices, thus the numerical 

stability has been improved [14]. Conventional Bierman’s 

UD method was implemented to estimate parameters of a 

lithium-ion battery [12]. An alternative matrix form of 

Bierman’s UD update equations has been developed by 

using matrix triangularization method [15], called 

Gentleman’s UDRLS. Using Gentleman’s UDRLS, a 

directive forgetting factor has been included in [16]. We 

propose Gentleman’s UDRLS with the variable forgetting 

factor to solve the regression (10). In order to implement 

FUDRLS, the regression matrix ϕ
T
(k) is combined with y= 

[Vcell(k)-Vcell(k-1)] to produce an augmented  matrix: 

Φ
T
(k)={[Vcell(k-1)-Vcell(k-2)], iB(k), iB(k-1), iB(k-2), y}. 

The FUDRLS algorithm is implemented in the following 

steps: 

Step 1: The algorithm starts. Set the initial values for θ , P0=  

            δI= U0D0U0
T
, λ(0), and K = [0,0,0,0,0]

T 

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-

=

00000

01000

00100

00010

00001

,

10000

1000

0100

0010

0001

0

4

3

2

1

0 d

q

q

q

q

DU  

Step 2: Read a new data Vcell(k) and iB(k). 

Step 3: Compute f=U0
T
Φ(k) .  

Step 4: Initialize r(0)=λ.  

Step 5.1: Compute the parameters Gentleman’s  

                transformation of following loops: 

            for h=1,2,…5 

                  r(h) = r(h-1) + D0(h,h)f(h
)2

                      

                  D(h,h) = D0(h,h)r(h-1) /(λr(h))           

                  α(h) = -f(h) 

                  β(h) = D0(h,h)f(h)/r(h) 

                  K(h)= β(h) 

            end loop h 

Step 5.2: Compute the Gentleman’s transformation of  

                following loops:         

            for j=2,…5 

                 for i=1:j-1 

                       U(i,j)=U0(i,j)+ α(j K(i)         

                       K(i) = K(i)+ β(j)U(i,j)           

                 end loop i 

            end loop j     

Step 6: Update  θ=[ U(1,5), U(2,5), U(3,5), U(4,5)]
T
 ,  

                          U0= U, D0= D. 

Step 7: Convert θ to internal parameters and update λ.                                                                                                                              

Step 9: Check whether estimated parameters are within the 

predefined range of values.        

Step 10: Update the internal parameters.            



where δ is an initial covariance value (e.g., 10
5
). The 

sequences of r and K iteratively compute the prediction 

error covariance and the gain vector, respectively. 

IV. VALIDATION 

Simulation and experimental studies are carried out to 

validate the proposed parameter identification algorithm for 

a polymer lithium-ion battery subject to various pulse 

current operations. Comparisons with existing methods such 

as traditional RLS and UDRLS are also provided to show 

the advantages of the proposed algorithm in terms of 

tracking ability, accuracy and computational cost. The 

nominal capacity, nominal voltage and cutoff voltage of a 

single battery are 5 Ah, 3.7 V and 2.5 V, respectively. The 

proposed method is implemented in MATLAB on a 

computer. In the simulation study, the battery model 

includes a first-order RC electrical circuit model with the 

pre-defined true electrical circuit values and the OCV-SOC 

function (3). The algorithms are implemented based on the 

simplified model (4)-(5). The parameters of the OCV-SOC 

function (3) are listed in Table I [17]. For the experimental 

study, the true values of electrical parameters are unknown. 

Therefore, we compare the true voltage and the true SOC 

values with the estimated values from the parameter 

estimation algorithms. The experimental data of the cell 

voltage, current, and SOC are collected from a battery tester 

under the ambient temperature. Then, the measured cell 

voltage and current from the battery tester are used by the 

proposed method for real-time electrical impedance, and 

SOC estimation for a polymer lithium-ion battery.  

TABLE I: BATTERY MODEL PARAMETERS [17] 

a0 -0.852 a1 63.867 

a2 3.692 a3 0.559 

a4 0.51 a5 0.508 

A. Simulation Study 

We first use simulated data from the developed battery 

model to verify FUDRLS with the proposed variable 

forgetting factor (λmin = 0.9 and λmax = 0.99). A conventional 

RLS [9] and an UDRLS [12] algorithm are implemented 

with an EF (λ = 0.98) to compare the proposed FUDRLS. 

We set initial electrical parameters as Rs = 0.1 ohm, Rc = 

0.021 ohm, and Cd = 1900 F. In order to check tracking 

ability, the parameter Rs has been changed after time 950 

seconds from 0.08 ohm to 0.075 ohm. Fig. 2(a)-(c) compare 

the true and estimated electrical parameters of the battery 

cell model driven by a pulse current cycle shown in Fig. 

2(d). Right after a step change of Rs at time 950 seconds, all 

algorithms fail to track. However, it has been shown that the 

FUDRLS with the VF converges to the true values faster 

after parameter changes than others by reducing forgetting 

factor. On the other hands, other algorithms using EF 

converge slowly due to relatively high EF values. Also, 

Table II illustrates comparison of the performance in terms 

of accuracy as root mean square error (RMSE) and 

computational cost as simulation time on a computer using 

Intel® Core™2 Duo CPU T6600@2.2GHz, 64-bit OS. The 

results show that the proposed FUDRLS parameter 

identification algorithm works the best in terms of accuracy 
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Fig. 2. Comparison of true and estimated electrical parameters of the battery 

cell model estimated by using the online RLS, UDRLS, and FUDRLS 
algorithms: (a) Rs, (b) Rc, (c) Cd, and (d) a pulse current cycle applied to the 

battery. 



and computational speed.   

TABLE II: SIMULATION TIME AND RMSE RESULTS FOR PARAMETER 

IDENTIFICATION ALGORITHM 

 RLS UDRLS FUDRLS 

Simulation time 

(seconds) 

0.1315 0.1358 0.1062 

Rs (ohm) 0.0039 0.0039 0.0039 

Rc (ohm) 0.0142 0.0142 0.0085 

Cd (F) 2,668 2,668 445 

B. Experimental Study 

The parameter identification  algorithms as mentioned in 

the simulation study can be used for online SOC estimation. 

The parameter identification algorithm has been used to 

update electrical parameters of the full state-space model on 

which a conventional EKF is designed to perform the SOC 

estimation [22] using the measured data of the polymer 

lithium-ion battery. In the EKF design, the system’s process 

noise covariance matrix, and measurement noise covariance 

matrix are defined as 0.16 and 0.25, respectively. The 

parameters of the OCV-SOC function of the polymer 

lithium-ion battery are obtained under the ambient 

temperature. The SOC and the capacity are initially set with 

a wrong initial SOC of 0.5 and the maximum capacity of 5 

Ah for the state-space model in (1), respectively; the true 

initial SOC and maximum capacity of the battery are 0.8 

and 4.732 Ah, respectively. In order to set initial SOCs for 

the test battery cells, the battery was first fully charged and 

rest for one hour. Then the cells are discharged using a 

small current (e.g., 0.2 A) to the desired initial SOC values. 

The parameter identification algorithms and EKF are 

executed in (e.g., Ts = 1 second) to keep track of the fast 

time varying electrical parameters and SOC. The battery 

was operated by a dynamic high pulse current cycle (iB = 

10C) shown in Fig. 3(a). Fig. 3(b)-(d) show the electrical 

parameters of the battery estimated by using the online 

parameter identification algorithms as well as Table III 

illustrates comparison of the performance in terms of 

accuracy as root mean square error (RMSE) and 

computational cost as a computational time. The results 

indicate that the accuracy is quite similar so that the values 

of VF in FUDRLS are closed to EF (λ = 0.98) as shown in 

Fig. 3(e). However, FUDRLS is the fastest among them.  

Next, An EKF is implemented with constant electrical 

parameters to compare the EKF with the proposed FUDRLS 

which offers the real-time parameters. We set constant 

electrical parameters as Rs = 0.003 ohm, Rc = 0.0004 ohm, 

and Cd = 60000 F by trial-and-error in an effort to reduce the 

estimation error. Fig. 4 compares the estimated SOCs with 
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Fig. 3. Estimated electrical parameters and SOC on the experimental data: 

(a) a pulse current cycle applied to the battery, (b) Rs, (c) Rc, (d) Cd, (e) 

forgetting factors (λ). 
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Coulomb counting SOC by assuming that the Coulomb 

counting indicates the true measured SOC value. It has been 

shown that the estimated SOCs match the measured value 

although the initial SOC is set wrong in the both methods. 

However, the result shows that the proposed algorithm 

works better than the EKF with constant parameters in terms 

of convergence speed and accuracy by updating internal 

parameters of the state-space model. The maximum SOC 

difference is about 3% after 1000 seconds while about 6% 

of the EKF with constant parameters. Therefore, these 

results clearly show that the proposed algorithm offers 

relatively accurate real-time electrical parameters with a low 

computational cost for SOC estimation algorithms. 

TABLE III: COMPUTATIONAL TIME AND RMSE RESULTS FOR PARAMETER 

IDENTIFICATION ALGORITHM 

 RLS UDRLS FUDRLS 

Computational 

time (seconds) 

0.1166 0.1256 0.0972 

Vcell (V) 0.00312 0.00312 0.00311 

SOC  0.03682 0.03682 0.03678 

V. CONCLUSION 

This paper has presented an improved RLS-based 

parameter identification algorithm for a real-time battery 

model. The proposed FUDRLS with a variable forgetting 

factor method has been implemented in MATLAB and 

validated by simulation and experimental results for a 

polymer lithium-ion battery. The proposed method can be 

applied to any types of SOC estimation algorithms. 

Moreover, estimated electrical parameters (e.g., Rs) can be 

used as an indicator of SOH (e.g., power fade) by 

comparing electrical parameters of a new battery. Due to 

low complexity and high accuracy, the proposed method can 

be suitable for real-time embedded battery management 

systems in various applications, such as EVs and PHEVs.   
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Fig. 4. Comparison of Coulomb counting and estimated SOCs of the 

battery cell. 
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