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State-of-Charge Estimation for Batteries: A Multi-model Approach

Huazhen Fang, Xin Zhao, Yebin Wang, Zafer Sahinoglu, Toshihiro Wada, Satoshi Hara
and Raymond A. de Callafon

Abstract— Monitoring the state-of-charge (SoC) for batteries
is challenging, especially when a battery has time-varying
parameters. We propose to improve SoC estimation using an
adaptive strategy and multiple models in this study, developing a
unique algorithm called MM-AdaSoC. Specifically, two submod-
els in state-space form are generated from a modified Nernst
battery model. Both are shown to be locally observable under
mild conditions. The iterated extended Kalman filter (IEKF) is
then applied to each submodel in parallel, estimating simulta-
neously the SoC variable and certain unknown parameters. The
SoC estimates obtained from the two separately implemented
IEKFs are fused to yield the final overall SoC estimates, which
tend to have higher accuracy than those obtained from a single-
model. Its effectiveness is demonstrated via experiments.

I. INTRODUCTION

State-of-charge estimation is a fundamental component
of battery management systems to ensure the operational
safety and performance of batteries [2]. It has remained an
active research field during the past years, and the reader
may refer to [3] for a survey. A notable trend in this area
is the increasing emphasis on model-based SoC estimation
methods. The dynamic models, derived from either equiv-
alent circuits or electrochemical principles, facilitate the
assimilation of the battery data and lead to real-time SoC
estimation with bounded errors. Application of the Kalman
filtering (KF) techniques has been remarkable in this respect.
The classical linear KF and its extensions to nonlinear
systems, including the extended KF (EKF), unscented KF
(UKF), iterated extended KF (IEKF), have been used to
deal with SoC estimation based on electrochemical and
equivalent circuit models, see [4–14]. A variety of other
state observers originating from control approaches have
also played a role in constructing SoC estimators, including
the sliding mode observer [15], adaptive model reference
observer [16], Lyapunov-based observer [17] and PDE-based
observer [18; 19].

A good battery dynamic model is a prerequisite for model-
based SoC estimation. Unfortunately, accurate estimation of
parameters is far from trivial due to time-varying operational
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conditions and variability in battery manufacturing. There-
fore, adaptive approaches are desirable, merging both model
parameter estimation and SoC estimation in one step. An
adaptive SoC estimator gives not only the SoC estimates
but also the estimates of the model parameters in real time
after assimilating the current-voltage data on the basis of a
model. The parameter estimates will then be used to update
the model to aid the next-step estimation. An adaptive EKF-
based SoC estimator is designed in [9], which interacts with a
parameter estimator. In [11], state augmentation is conducted
to incorporate the SoC variable and model parameters, and
then the UKF is applied to estimate the augmented state.
However, the convergence, and as a result, the accuracy, are
noted to be difficult to guarantee. In [13], an adaptive SoC
estimator is developed using the IEKF, guided by an analysis
of the observability/identifiability. A nonlinear geometric
adaptive observer is studied in [20] for SoC estimation.
Novel adaptive PDE observers for SoC estimation have also
been reported in [21]. It should be noted that all these
existing approaches are based on a single battery model,
and we instead propose to exploit multiple models for better
estimation performance.

Aiming to achieve adaptive, high-fidelity and easy-to-
implement SoC estimation, we seamlessly link the notion of
‘multiple models’ and adaptive SoC estimation in this paper.
A multitude of models, compared to a single one, can give
better description of complicated uncertain dynamics [22–
24], thus particularly suitable to deal with the tasks relevant
to batteries. The design of the adaptive SoC estimator par-
tially builds on our previous work [13; 14], where we propose
an adaptive approach for SoC estimation via IEKF-based
simultaneous state and parameter estimation. While credible
estimation is observed, the accuracy is still limited by the
mismatch between the model and the true system. This fact
motivates the development of the MM-AdaSoC algorithm in
this paper.

The rest of the paper is organized as follows. Sec-
tion II presents a basic review of the multi-model estimation
theory. Section III describes the model construction and
gives observability analysis. Section IV incorporates adap-
tive SoC estimation and multi-model estimation to establish
the MM-AdaSoC algorithm, the effectiveness of which is
validated in Section V by experimental results. Finally,
Section VI gathers our conclusions.

II. BASICS OF MULTI-MODEL ESTIMATION

The structure of a typical multi-model estimator is shown
in Fig. 1. In this section, we give a review of the multi-model



Fig. 1: The structure of a multi-model estimator.

estimation, with an emphasis on the estimate fusion strategy.

Its first part is composed of a bank of parallel filters
based on different models. Each filter assimilates the data
to produce its own estimate. All the estimates will then be
fused to give the best estimate. Various options exist for the
elemental filter, such as the KF for a linear model or the
EKF for a nonlinear one. What is of particular interest here
is the design of the fusion strategy.

Let us consider a general system. Its unknown state at
time instant k is denoted by xk ∈ Rnx and its measurement
by zk ∈ Rnz . Different models are available to describe the
system, leading to a model set M = {M1,M2, · · · ,MN}.
Suppose that Mi is given by

Mi :

{
xk+1 = f i(xk) + wi

k,

zk = hi(xk) + vi
k,

(1)

where f i and hi are C1 functions to represent the state tran-
sition and measurement, respectively, and {wi

k} and {vi
k}

are uncorrelated, zero-mean, white Gaussian noise sequences
with covariances Qi

k ≥ 0 and Ri
k > 0, respectively. While

assuming that the true system coincides with one model at
each time instant, we do not know which model matches the
system at any time. Thus a probabilistic description is used.
Let sk denote the system running status at k. It may take
any Mi for i = 1, 2, · · · , N to address the uncertainty of
model matching. The probability of the event sk = Mi is
denoted as p(sk = Mi), or simply, p(sik). In other words,
p(sik) indicates the a priori probability that the true model
is Mi at time k. Obviously,

∑N
i=1 p(s

i
k) = 1.

From a statistical perspective, xk and zk are continuous
random variables and sk a discrete one. Without causing
confusion, we use the symbol p to denote the probability
density function (pdf), probability mass function (pmf) or
mixed pdf-pmf in the sequel for convenience. We define
the information set as Zk = {z1, z2, · · · , zk} and intend to
estimate xk from Zk, hence considering p(xk|Zk). By the
Bayes’ theorem, we have

p(xk|Zk) =

N∑
i=1

p(xk, s
i
k|Zk)

=

N∑
i=1

p(xk|sik,Zk)p(sik|Zk). (2)

When p(xk|Zk) becomes available, we can carry out
minimum-mean-square-error (MMSE) estimation or Maxi-

mum a Posteriori (MAP) estimation of xk:

MMSE: x̂k|k = E(xk|Zk) =

∫
xk|kp(xk|Zk)dxk,

MAP: x̂k|k = arg max
xk

p(xk|Zk).

Independent of the method (MMSE or MAP) used, it follows
from (2) that

x̂k|k =

N∑
i=1

x̂i
k|kp(s

i
k|Zk), (3)

where x̂i
k|k is the estimate of xk based on the modelMi. An

observation from this analysis is that p(sik|Zk) turns out to be
a probabilistic weight coefficient. The associated estimation
error covariance is

Pk|k = E
[
(x̂k − xk)(x̂k − xk)>

∣∣Zk

]
=

N∑
k=1

[
Pi

k|k + (x̂k − x̂i
k)(x̂k − x̂i

k)>
]
p(sik|Zk). (4)

Let us take a closer look at p(sik|Zk):

p(sik|Zk) =
p(sik,Zk)

p(Zk)
=
p(zk|sik,Zk−1)p(sik|Zk−1)

p(zk|Zk−1)

=
p(zk|sik,Zk−1)p(sik|Zk−1)∑N
j=1 p(zk|s

j
k,Zk−1)p(sjk|Zk−1)

. (5)

Furthermore, we have

p(zk|sik,Zk−1) =

∫
p(zk,xk|sik,Zk−1)dxk

=

∫
p(zk|xk, s

i
k)p(xk|sik,Zk−1)dxk.

Under the mildly simplified assumption that
p(zk|xk, s

i
k) = N

(
hi(xk),Ri

k

)
and p(xk|sik,Zk−1) =

N
(
x̂i
k|k−1,P

i
k|k−1

)
, p(zk|sik,Zk−1) can be approximated

as

p(zk|sik,Zk−1) ≈ (2π)−
nx
2

∣∣Si
k

∣∣− 1
2 exp

[
−1

2
(z̃ik)>|Si

k|−1z̃ik

]
,

where z̃ik = zk −hi(x̂i
k|k−1), Si

k = Hi
kP

i
k|k−1(Hi

k)> +Ri
k

and Hi
k = ∂hi

∂x

(
x̂i
k|k−1

)
. Furthermore,

p(sik|Zk−1) =
p(Zk−1|sik)p(sik)

p(Zk−1)
= p(sik),

since p(Zk−1|sik) = 1 and p(Zk−1) = 1 because Zk−1

is an event with probability 1 at time k. If we define
µi
k = p(sik|Zk) and wi

k = p(zk|sik,Zk−1) and suppose
πi
k = p(sik), (5) becomes

µi
k =

wi
kπ

i
k∑N

j=1 w
j
kπ

j
k

. (6)

Hence, by (3)-(4), the fusion strategy is given by

x̂k|k =

N∑
i=1

x̂i
k|kµ

i
k, (7)



Pk|k =

N∑
i=1

[
Pi

k|k + (x̂k − x̂i
k)(x̂k − x̂i

k)>
]
µi
k. (8)

The final conclusion drawn from this analysis is as follows:
the fused estimate (covariance) is a linear weighted combi-
nation of the estimates from the elemental filters. It can be
noted that
• The estimation is based on a series of elemental filters

and the fusion. The process is similar to a ‘ weight-
based reconciliation’, which balances the role that dif-
ferent models potentially play in the estimation task.

• The residuals of the elemental filter based on the ‘cor-
rect’ model that best matches the true system should
be remarkably smaller than those of the others [22].
As a result, its the probabilistic weight will tend to
increase and downplay the others. The fused estimate
will approach the estimate based on the correct model.

III. BATTERY MODELS AND OBSERVABILITY ANALYSIS

We investigate the battery modeling in this section. We
first develop two submodels from a slightly modified Nernst
model and then analyze each one’s observability.

A. Construction of Multiple Battery Models
A battery model consists of a set of equations that re-

late the input uk (charging/discharging current), the state
variables (e.g., SoC) and the output yk (terminal voltage)
sampled at discrete-time instants indicated by the subscript
k. Various models have been proposed and used, depending
on the specific purposes. For SoC estimation, we consider
the Nernst model here [5]:

yk = K1 +K2 ln(SoCk) +K3 ln(1− SoCk)−Ruk, (9)

where yk is the terminal voltage, uk is the applied current
(u > 0 for discharging and u < 0 for charging), R is the
internal resistance, and Ki for i = 1, 2, 3 are constants. To
make (9) more capable of grasping the dynamics of certain
batteries, we propose the following modification:

yk = K1 +K2 ln(τ1 + SoCk)

+K3 ln(τ2 + 1− SoCk)−Ruk, (10)

where two additional constants τ1 and τ2 are added. In above,
K1 +K2 ln(τ1 + SoCk) +K3 ln(τ2 + 1− SoCk) in (10) can
be regarded as the open-circuit voltage (OCV) term. The
dynamic change of the SoC is described by the integration
of the current over time. In the discrete time, it is given by

SoCk = SoC0 −
k−1∑
i=0

η ·∆T
C0

ui,

where η is the Coulombic efficiency, C0 the nominal capacity
in ampere-hour (Ah), and ∆T is the sampling period. An
equivalent difference equation is

SoCk+1 = SoCk −K0uk, (11)

where K0 = η ·∆T/C0. We then obtain a state-space model
for batteries by putting together (10)-(11). The model state
is SoCk and the parameters are Ki for i = 0, · · · , 3 and R.

For adaptive SoC estimation, we will perform simultane-
ous estimation of the SoC and the parameters. To obtain a
locally observable model, one or several parameters usually
need to be fixed in order to estimate the others and the SoC.
While a few options may exist regarding which parameters
are assumed fixed or unknown, we separate the parameters
into two sets, fix one set and augment the state vector to
incorporate the SoC and the other set. Accordingly, two
submodels will be constructed.

Letting K0 and K1 be fixed, the first one can be obtained:

M1 :

{
x1
k+1 = f1(x1

k, uk),

yk = h1(x1
k, uk),

(12)

where

x1
k =

[
SoCk K2 K3 R

]>
,

f1(x1
k, uk) = x1

k −
[
K0 0 0 0

]>
uk,

h1(x1
k, uk) = K1 + x1

k,2 ln(τ1 + x1
k,1)

+ x1
k,3 ln(τ2 + 1− x1

k,1)− x1
k,4uk.

Analogously, by fixing Ki for i = 1, 2, 3, we have

M2 :

{
x2
k+1 = f2(x2

k, uk),

yk = h2(x2
k, uk),

(13)

where

x2
k =

[
SoCk K0 R

]>
,

f2(x2
k, uk) =

[
x2
k,1 − x2

k,2uk 0 0
]>
,

h2(x2
k, uk) = K1 +K2 ln(τ1 + x2

k,1)

+K3 ln(τ2 + 1− x2
k,1)− x2

k,3uk.

Remark 1: In an implicit manner, M1 places more con-
fidence on the state equation (11), assuming that K0 is
accurate, while the belief in the measurement equation (10) is
emphasized in M2 similarly. Nevertheless, it is noteworthy
that the confidence level on each submodel during the
estimation process is dynamically determined by the fusion
strategy outlined earlier in Section II.

Remark 2: An extended series can be constructed on
the basis of each submodel if we let the parameters take
different values that are believed to be close or equal to the
truth. For instance, the Coulombic efficiency may be 100%,
90% or even 80% depending on the operating conditions.
Then M1 will give birth to three more submodels if K0

assumes ∆T/C0, 0.9∆T/C0 and 0.8∆T/C0, respectively.
This allows considerable flexibility for us to describe the
battery dynamics and brings improvements to the single-
model case.

B. Observability Analysis

Here, we will analyze the observability properties of M1

and M2 before proceeding to SoC estimation. Consider a
general single-input-single-output system

S :

{
xk+1 = f(xk, uk),

yk = h(xk, uk),
(14)



where x ∈ X of dimension n, y ∈ Y and u ∈ U. We assume
that 1) X and Y connected, second countable, Hausdorff,
differentiable manifolds of class Cq with q ∈ N, 2) U is an
open interval of R, and 3) f : X×U→ X and h : X→ Y are
of class Cq . For convenience, f(x, u) is denoted as fu(x),
and h(f(x, u0), u1) = hu1 ◦ fu0(x). Following [25; 26], the
local observability for S is defined as follows:

Definition 1: (Distinguishability) Two states x and x∗ are
said to be indistinguishable, written as x � x∗, if for each
l 6= 0 and for each input sequence, {u0, · · · , ul} ∈ Ul, we
have

hul ◦ ful−1 ◦ · · · ◦ fu0(x) = hul ◦ ful−1 · · · ◦ fu0(x∗).

Otherwise, they are distinguishable.

Definition 2: (Local observability) The system S is lo-
cally observable if for any state xo ∈ X, there exists a
neighborhood D of xo such that, x � x∗ implies x = x∗

for each x,x∗ ∈ D.

To address the observability condition, the following sets
of functions are defined:

Ω0 = {h(·)},
Ωl = {huj ◦ fuj−1 ◦ · · · ◦ fu0(·) :

ui ∈ U∀i = 1, · · · , j and 1 ≤ j ≤ l},
Ω = ∪j≥0Ωl.

An observability criterion is presented in the following
theorem, please see [25] for the proof.

Theorem 1: If dim dΩ(x) = n ∀x ∈ X, then the system
S is locally observable.

The results and proof of Theorem 1 can be found in [25].
Theorem 1 gives a sufficient condition to determine the local
observability by relating it to the full dimensionality of the
codistribution dΩ. Now the local observability of M1 and
M2 can be analyzed using Theorem 1. Let us take M1 for
an example since the analysis for both follows similar lines.

Note that f1 and h1 are of class C∞. Suppose that the
initial state is x1

0 forM1 and that there are L measurements
{y1, · · · , yL}. By (12), x1

k is given by

x1
k = x1

0 −
[
K0 0 0 0

]> k−1∑
i=0

ui.

Hence, we have

h̄1
k(x1

0) = h1uk ◦ f1uk−1 ◦ · · · ◦ f1u0(x1
0)

= K1 + x1
0,2 ln

(
τ1 + x1

0,1 −K0

k−1∑
i=0

ui

)

+ x1
0,3 ln

(
τ2 + 1− x1

0,1 +K0

k−1∑
i=0

ui

)
− x1

0,4uk,

where h̄1
k ∈ Ω. Define a matrix J with dimensions L× 4:

J =
[

dh̄1
1

dx1
0
· · · dh̄1

k

dx1
0
· · · dh̄1

L

dx1
0

]>
.

The elements in the k-th row of J are

Jk,1 =
∂h̄1

k

∂x1
0,1

=
x1

0,2

τ1 + x1
0,1 −K0

∑k−1
i=0 ui

− x1
0,3

τ2 + 1− x1
0,1 +K0

∑k−1
i=0 ui

,

Jk,2 =
∂h̄1

k

∂x1
0,2

= ln

(
τ1 + x1

0,1 −K0

k−1∑
i=0

ui

)
,

Jk,3 =
∂h̄1

k

∂x1
0,3

= ln

(
τ2 + 1− x1

0,1 +K0

k−1∑
i=0

ui

)
,

Jk,4 =
∂h̄1

k

∂x1
0,4

= −uk.

By observation, we have the following conclusions:

• The submodel M1 is locally observable if a suitable
input sequence {uk} is applied. By ‘suitable’, we mean
that uk varies sufficiently in magnitude over time, or
in other words, {uk} contains a rich mix of frequency
contents. In this case, J will have full column rank, and
as a result, dim dΩ has a dimension of 4, satisfying the
condition in Theorem 1. It should be emphasized such
a condition imposed on the input is a mild constraint
that can be easily satisfied when a battery is in use.

• We can analogously determine that M2 is also locally
observable if a suitable {uk} is used to excite the
system.

IV. MULTI-MODEL ADAPTIVE SOC ESTIMATION

In this section, an IEKF-based elemental filter will be
applied to M1 and M2, respectively, for adaptive SoC
estimation. The overall estimate will be obtained by fusing
all the estimates for the elemental filters, leading to the
MM-AdaSoC algorithm.

Adaptive SoC estimation can be attained via state esti-
mation, because the state vector of each consists of both
the SoC variable and the parameters. Following [13], we
use the IEKF. As an improved version of the EKF, it is
capable of giving more accurate state estimates even for
highly nonlinear systems by iteratively refining the estimate
around the current point at each time instant.

Consider applying the IEKF to the system in (14). At k−
1, prediction can be made about the next time instant. The
formulas are as follows:

x̂k|k−1 = f(x̂k−1|k−1, uk−1), (15)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 + Q, (16)

where x̂ is the estimate of x, P is the error covariance,
Q ≥ 0 is an adjustable matrix to account for the process
noise, and F is given by

Fk−1 =
∂f

∂x

(
x̂k−1|k−1, uk−1

)
.

When the measurement yk arrives, x̂k|k−1 can be updated
by the new information yk brings. The procedure is based



on iteration. Let ` denote the iteration number and x̂
(`)
k|k =

x̂k|k−1 for ` = 0. The update formulas are

K
(`)
k = Pk|k−1H

(`−1)
k

[
H

(`−1)
k Pk|k−1H

(`−1)
k

>
+R

]−1

,

(17)

ŷ
(`)
k = h

(
x̂

(`−1)
k|k , uk

)
, (18)

x̂
(`)
k|k = x̂k|k−1 + K

(`)
k

[
yk − ŷ(`)

k

−H(`−1)
k

(
x̂k|k−1 − x̂

(`−1)
k|k

)]
, (19)

where R > 0 accounts for the measurement noise and

H
(`)
k =

∂h

∂x

(
x̂

(`)
k|k, uk

)
.

The iteration process stops when ` achieves the pre-specified
maximum iteration number `max or when the error between
two consecutive iterations is less than the pre-selected tol-
erance level. Then x̂k|k = x̂

(`max)
k|k , and the associated error

covariance is given by

Pk|k =
[
I−K

(`max)
k H

(`max)
k

]
Pk|k−1.

Following the above description, the IEKF can be applied
as an elemental filter to M1 and M2. The resultant state
estimates are x̂1

k|k and x̂2
k|k, respectively. Accordingly, the

SoC estimates are denoted as ŜoC
1

k = x̂1
k|k,1 and ŜoC

2

k =

x̂2
k|k,1, respectively. A weighted combination of them forms

the overall estimate ŜoCk. In the light of the fusion strategy
in (7)-(8), we have

ŜoCk =

2∑
i=1

ŜoC
i

kµi, (20)

where the weight coefficient µi for i = 1, 2 can be deter-
mined using (6). Putting together the results, we obtain the
MM-AdaSoC algorithm, which is summarized in Table I.

V. EXPERIMENTAL RESULTS

In this section, we present one example using experiment
data to evaluate the MM-AdaSoC algorithm.

For the experimental evaluation of the MM-AdaSoC algo-
rithm, data was collected from a Li+ battery in the Advanced
Technology R&D Center, Mitsubishi Electric Corporation1.
The current input was a PRBS signal stretched by 10 times
over the time axis with a magnitude of 5A. Despite many
other options, we chose the PRBS because it has white-
noise-like properties and is admissible for observability. The
profile of the input current and the output voltage is shown
in Fig. 2. The battery has a nominal capacity of 4.93Ah. The
sampling period was 1s. During the experiment, the ambient
temperature in the chamber was maintained at 25.8◦C.

We consider the model in (10)-(11). The Coulombic
efficiency constant K0 = 5.6342×10−5 when uk > 0 (100%
for discharging) and K0 = 4.7891 × 10−5 when uk < 0

1Technical specifications about the battery system are not available
currently due to intellectual property protection status.

1: initialize the implementation: k = 0, x̂i
0|0 = xi

0, Pi
0|0 = δiI, where

δi � 0, for i = 1, 2
2: repeat
3: k ← k + 1

IEKF based adaptive SoC estimation:

4: for i = 1 to 2 do
5: import the submodel Mi

Mi-based prediction (time-update):

6: project the state ahead to obtain x̂i
k|k−1

x̂i
k|k−1 = f i(x̂i

k−1|k−1, uk−1)

7: project the error covariance ahead to obtain Pi
k|k−1

Fi
k−1 =

∂f i

∂xi

(
x̂i
k−1|k−1, uk

)
Pi

k|k−1 = Fi
k−1P

i
k−1|k−1F

i >
k−1 +Qi

Mi-based update (measurement-update):

8: initialize the iteration procedure: ` = 0, x̂
i(0)
k|k = x̂i

k|k−1
9: while ` < `max do

10: `← `+ 1
11: compute the Kalman gain matrix

H
i(`)
k =

∂hi

∂xi

(
x̂
i(`)
k|k , uk

)
K

i(`)
k = Pi

k|k−1H
i(`−1)
k

[
H

i(`−1)
k Pi

k|k−1H
i(`−1)
k

>

+Ri
]−1

12: update the state estimate

x̂
i(`)
k|k = x̂i

k|k−1 +K
(`)
k

[
yk − hi

(
x̂
i(`−1)
k|k , uk

)
−H(`−1)

k

(
x̂i
k|k−1 − x̂

i(`−1)
k|k

)]
13: end while
14: assign x̂i

k|k = x̂
i(`max)
k|k

15: update the error covariance

Pk|k =
[
I−K

(`max)
k H

(`max)
k

]
Pk|k−1

16: export Mi-based SoC estimate ŜoC
i

k = x̂i
k|k,1

17: end for

Estimation fusion

18: determine the probability πi
k that the battery runs on Mi for

i = 1, 2 with
∑2

i=1 π
i
k = 1

19: for i = 1 to 2 do
20: compute the initial weights

Hi
k =

∂hi

∂xi

(
x̂i
k|k−1, uk

)
Si
k = Hi

kP
i
k|k−1(H

i
k)
> +Ri

ŷik|k−1 = hi(x̂i
k|k−1, uk)

ỹik|k−1 = yk − ŷik|k−1

wi
k = (2π)−

n
2 (Si

k)
− 1

2 exp

[
−
(ỹik)

2

2Si
k

]
21: end for
22: compute the normalized weights

µik =
wi

kπ
i
k∑N

j=1 w
j
kπ

j
k

for i = 1, 2

23: fuse the SoC estimates from M1 and M2

ŜoCk =
2∑

i=1

ŜoC
i

kµi

24: until SoC estimation task ends

TABLE I: The MM-AdaSoC algorithm: Adaptive SoC estimation using
multiple models.
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Fig. 2: The input-output (current-voltage) profile.
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Fig. 2: (a) SoC estimates versus time; (b) SoC estimates during the initial
450s; (c) fusion weights for M1 and M2 versus time; (d) fusion weights
during the initial 450s; (e) comparison between the true and the one-step-
forward predicted voltage.

(85% for charging). From the SoC-OCV data collected from
this type of batteries, it can be determined that K1 = 1.294,
K2 = 0.0984, K3 = 3.972, τ1 = τ2 = 0.3.

As aforementioned, the actual values of the parameters
Ki for i = 0, · · · , 3 can change as a result of the operating
conditions. Hence, rather than depending fully on their nomi-
nal values, we perform multi-model adaptive SoC estimation
by applying the MM-AdaSoC algorithm. The construction of
two submodels from (10)-(11) is described in Section III-A.

The SoC estimation results are shown in Fig. 2. The
full view over the available experimental data is given in
Fig. 3(a). The initial SoC of the battery is known to be
approximately 50%. It is seen that there is a difference
of approximately 5% between the M1-based and M2-
based estimates. Based on our experience, M1 tends to
yield conservative estimates in this case and M2 does the
opposite. The MM-AdaSoC algorithm, through the fusion
strategy, makes adjustment to give neutralized overall es-
timates. Although the true SoC data are not available, we
still judge that the estimates are close to the truth, based on
our a priori knowledge about the battery behavior. Fig. 3(b)
illustrates what happens during the initial 450s. It is seen
from Figs. 3(a)-3(b) that the overall estimates are closer to
those based onM2. This is verified in Figs. 3(c)-2(d), where
the weight µ1 for M1 fluctuates slightly around 0.63 and
µ2 around 0.37. Thus, with a larger weight, M2 is given



more confidence than M1 by the MM-AdaSoC algorithm
during the implementation. It is understood that the fusion
depends on the performance of one-step-forward prediction
of the terminal voltage. Fig. 2(e) compares the measured
data with the prediction based onM1 andM2, respectively.
The prediction is satisfactory for both submodels, but M2

is observed to lead to the better predicted voltage.
From the above results, we believe that the MM-AdaSoC

algorithm is quite effective, supported by the findings that
the obtained SoC estimates exhibit considerable accuracy and
that the voltage prediction approximates the truth well.

VI. CONCLUSIONS

Development of adaptive approaches for SoC estimation is
of practical significance, because battery dynamics are often
hard to fully determine and are time-varying. Adaptive SoC
estimation proposed in this paper uses a multi-model strategy,
motivated by the proven success of multi-model estimation
in addressing problems involving structural and parameter
changes.

The main contribution of this paper is the development
and validation of the MM-AdaSoC algorithm. It is built
to estimate a battery’s SoC in real time through carrying
out simultaneous state and parameter estimation on a set
of (sub)models. We first construct two submodels from a
general state-space battery model by fixing different pa-
rameters, with both shown to be locally observable with
admissible inputs. The well-known IEKF is then applied to
each submodel to produce the SoC and parameter estimates.
The final overall estimates are generated by fusing the
submodel-based estimates, and it is shown that the fusion is a
linear weighted combination of the estimates. An experiment
is presented to demonstrate and validate the effectiveness of
the algorithm.
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