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Finite Time Protocols for Multi-Agent Control of Distributed Generation and
Responsive Loads

Evangelos Polymeneas and Mouhacine Benosman

Abstract— Distributed Resources in the Smart Grid, such as Dis-
tributed Generation (DG) and Responsive Loads (RL) are capable of
providing a wide range of ancilliary services, if properly coordinated.
However, because of their large numbers and distributed nature, using
a fully centralized communication structure to achieve coordination
can be prohibitive, due to scale and cost. Decentralized approaches
based on multi-agent systems theory have been proposed and are
focused on linear consensus algorithms that asymptotically converge
to a cooperative solution. In this paper, an alternative approach, which
converges in a finite number of steps is formulated. The protocol is
based on linear iterative updates and known observability results from
graph structured linear systems. Here, the protocol is also modified to
address a generalized cooperation problem in the context of DG/RL
coordination. Furthermore, the protocol is modified to reduce the
number of operations per step, ensuring that it is applicable to a large
scale grid, which is usually the case in practice. The applicability of the
approach is verified through simulations, for the case of grid voltage
support through Distributed Generation.

I. INTRODUCTION

Moving towards the Smart Grid, it has been recognized [1] that
distributed resources have the potential to provide a wide range
of valuable grid ancilliary services, such as voltage support in the
distribution system and/or active power reserves [2]. The future
grid is expected to be characterized by increased participation
of distributed agents in the control procedure. In this context,
it becomes increasingly important to develop viable procedures
to monitor and control the numerous devices that are projected
to be involved in the control flow. Multi-Agent Systems (MAS),
consensus-based control theory has been extensively studied for
the control of distributed systems, e.g. [3], and seems suitable
for application in the Smart Grid. Such approaches have already
been investigated: For instance, [4] discusses a class of consensus
based linear iterative algorithms to be used for Distributed Energy
Resources (DER) coordination and [5] presents an extension of
that work for asynchronous communication between the DER’s.
[6] presents a hierarchical approach for controlling DER’s using
MAS theory, en route to achieving the Virtual Power Plant (VPP)
concept. According to this paradigm, clusters of DER’s will be able
to collectively provide the same control functions or services actual
power plants provide today. The feasibility of using distributed
inverters for consensus-based reactive power support was first
proposed in [7], while a voltage control scheme is analyzed in
[8]. The above methods rely on consensus algorithms based on
linear updates with neighbors. Such algorithms have been proven
to asymptotically achieve consensus between all nodes in a system
with graph-structured communications, with assumptions on the
connectivity of the graph. This paper focuses on enhancing the
convergence speed of the consensus using a different type of con-
sensus protocols, based on the work in [9], that can solve the DER
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coordination problems in finite time. After the DER coordination
problem is defined, this paper focuses on modifying the protocol in
[9] to address this problem. After these modifications, the resulting
protocol requires a number of iterations per step at each agent that
increase linearly with respect to the number of the agent’s neighbors
in the communications graph, which is a desirable property.
As an example application of the finite-time algorithm, reactive
power control from a set of distributed inverters is considered in
this work. The premise is as follows: the power electronics inverters
that interface DER’s to the grid have the capability to provide
reactive power support. Given that noticeable problems arise in the
voltage profile of distribution grids due to the interconnection of
DER’s [10], controlling the reactive power supplied by the utility-
connected inverters to maintain an improved voltage profile has
been suggested. Centralized voltage control has been proposed [11],
but it requires considerable communication overhead and all the
calculations are performed centrally. Fully decentralized voltage
control using a voltage-reactive power droop function have also
been studied [12]. These approaches are sensitive to the topology
of the distribution grid and its operating point. Consensus based
voltage-control was first proposed in [13], where a two-level voltage
control scheme is presented: all inverters participate in local control
and request additional support when they reach their reactive power
limits using a multi-agent consensus protocol. The outlined protocol
converges asymptotically, and the convergence rate might increase
considerably for large networks. In this work, the derived finite-time
DER coordination protocol is applied to the problem of reactive
power allocation among inverters. It is demonstrated in section V
that the proposed protocol offers improved convergence rate , thus
allowing faster voltage control in the distribution grid.
The rest of the paper is organized as follows. Section II formally
introduces the generalized problem of decentralized DER coordi-
nation and highlights the main result of this paper. Section III
discusses key results regarding finite-time coordination between
agents based on linear weighted updates and observability of graph-
structured systems, and introduces an improved protocol for finite-
time calculation of the sum of the initial values of the nodes in
a connected graph. Section IV utilizes these concepts in order to
provide a complete decentralized protocol for DER coordination.
Section V presents numerical results from the application of the
protocol to an actual DER coordination problem, and compare it
with an asymptotically converging consensus protocol. Section VI
offers conclusions and remarks regarding the direction for future
research.

II. PROBLEM DEFINITION - HIGHLIGHT OF MAIN RESULT

Assume a group of N distributed energy resources (DER’s)
and/or responsive loads (RL’s). Let each DER/RL be represented
by a node and let each node be uniquely represented by an integer.
Without loss of generality, let the index set be V = {1, 2, ..., N}. It
is assumed that each of the distributed resources is able to receive
messages with a set of neighbors N�

j

✓ V . Define the in-degree
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D�
j

of node j as the number of nodes (including node itself)
from which node j receives messages: D�

j

=
�

�N�
j

�

�. Thus, the
availability of communications channels can be represented by a
graph G = (V, E), where E ={(j, i) 2 V ⇥ V : i 2 N�

j

}. The
main standing assumptions for the sequel are that: i) Every node
can receive messages from itself, i.e: (i, i) 2 E , 8i 2 V ii) The
graph G is connected, i.e. there exists a (directed) path between
every pair of nodes in V and iii) The graph is time-invariant, i.e.
both the vertex set V and the edge set E remain constant with
respect to time.

Let the state of node j be denoted by x
j

, which will represent
a quantity of interest, such as the node’s injected active or reactive
power. Each node is able to control its state instantaneously (i.e.
the node’s dynamics are disregarded in the time scale of interest),
within a minimum and maximum boundary, x

j

and x
j

respectively.
Let us assume that a coordinating controller is responsible for
setting the reference signal for the DER’s/RL’s to collectively
follow and periodically determines a reference value X

r

, but due to
constraints on available communications it only has the capability to
convey that command to a nonempty subset of the nodes I

0

✓ V .
In this work, we are interested in deriving a distributed iterative
protocol between neighboring nodes that will converge to a feasible
solution in a finite number of iterations (message exchanges). If
x 2 RN is the collective state vector of all nodes, the set F of
feasible solutions is a polyhedron defined by each node’s individual
capacity constraints and the requirement that the individual states
must sum up to the reference:

F =

(

x 2 RN :
N

X

j=1

x
j

= X
r

, x
j

 x
j

 x
j

)

(1)

The objective of this paper is to formulate a discrete-time proto-
col that will consist of linear operations at each node and will allow
each node to calculate its state element x

j

2 R such that the overall
state vector x 2 RN is feasible, assuming that F is nonempty. Let
each node store m information states z

j,l

[k], l 2 {1, 2, ..., m} at
step k and let z

l

[k] 2 RN denote node the state vector for the
entire network with respect to the l-th state. Each node initializes its
information states based on local information. Nodes in I

0

initially
have information regarding the reference X

r

, while all other nodes
do not. All nodes have information regarding their maximum and
minimum boundaries, x

j

and x
j

respectively. Let y
j,l

[k] 2 RD

�
j

denote the observation vector of node j with respect to state l at
step k and ẑ

j,l

[k] 2 R be an auxiliary estimate of node j at step
k. In this work distributed protocol will be derived that allows the
nodes to converge to a feasible solution via the following steps:

1) Each node initializes its information vector based on local
information, as well as its estimate:

z
j,l

[0] =

(

f
j,l

(x
j

, x
j

) , if j /2 I
0

f
j,l

(x
j

, x
j

, X
r

) , if j 2 I
0

(2a)

ẑ
j,l

[0] =0 (2b)

Where the f
j,l

are certain initialization functions, which will
be appropriately chosen in the sequel.

2) In each step k, each node j performs three linear operations:

z
j,l

[k + 1] =p
jj

z
j,l

[k] +
X

p
ji

z
i,l

[k] (3a)

y
j,l

[k] =C
j

z
l

[k] (3b)

ẑ
j,l

[k + 1] =ẑ
j

[k] + aT

j

[k]y
j,l

[k] (3c)

These operations are parametrized by P 2 M
N

1, C
j

2
M

D

�
j ,N

and a
j

[k] 2 RD

�
j which will be appropriately

defined in the sequel. Note that (3a) is a linear weighted
update of node j’s information states based on its neighbors’
states, (3b) is a linear observation of the neighbors’ state
values and (3c) is an update of node j’s auxiliary states,
according to the observations at step k. Each node’s auxiliary
states are eventually used to calculate a feasible state vector,
when enough information has been accumulated.

3) After s
max

steps, where s
max

is known (computed) by all
nodes, all nodes calculate their new state element:

x̂
j

=g
j

(ẑ
j,1

[s
max

], ẑ
j,2

[s
max

], . . . , ẑ
j,m

[s
max

]) (4)

After this calculation is performed, it is guaranteed that:

x̂ = (x̂
1

[s
max

] x̂
2

[s
max

] . . . x̂
N

[s
max

])T 2 F . (5)

The functions g
j

: Rm ! R, as well as the required number
of steps s

max

will be defined in the sequel. Note that this
procedure converges in a finite-time, namely s

max

steps, to a
feasible state vector in F .

Designing the protocol requires defining the number m of needed
information states per node, the initialization functions f

j,l

for these
states, the matrices P , C

j

, the vectors aT

j

[k] and the functions
g

j

, as well as a procedure to calculate s
max

in all nodes. It will
be discussed in later sections that an initialization phase for the
protocol will be required to calculate these quantities and that for
a time-invariant graph G this initialization phase will need to be
executed only once.

III. FINITE - TIME ALGORITHMS FOR COOPERATION OF DER’S

AND RL’S

In this section we derive the method outlined in section II to solve
the coordination problem in a finite time. The proposed method is
based on a protocol derived in [9], regarding the calculation of the
initial state of a network of nodes using weighted linear updates
of the form (3a). The main results from [9] regarding this protocol
are summarized in section III-A.

A. Finite Time Algorithm for Initial State Calculation

Consider a directed graph G = (V, E) of N nodes, that is
connected, time-invariant and all nodes have self-loops, i.e. 8i 2 V :
(i, i) 2 E . Suppose that each node’s infrormation state is z

j

2 R,
while z 2 RN is the state vector of the entire netowrk. Suppose
that for each node z

j

is initialized at z
j

[0] and subsequently, at
each step k all nodes perform weighted linear updates with their
neighbors

z
j

[k + 1] =p
jj

z
j

[k] +
X

j2N�j

p
ji

z
i

[k] (6)

where p
ij

denotes the element in the i-th row and j-th column of
the square matrix of update weights P 2 M

N

. Furthermore, at each
step k, each node observes its neighbors’ state and that of itself,
forming an observation vector y 2 RD

�
j :

y
j

[k] =C
j

z[k] (7)

where C
j

2 M
D

�
j ,N

is an observation matrix.
Both P and C

j

, 8j 2 V are randomly chosen structured
matrices. Element p

ij

of P is zero iff (i, j) /2 E and nonzero

1In this paper, the set of N ⇥N square matrices is denoted by M
N

and
the set of M ⇥N matrices is denoted by M

M,N
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otherwise. C
j

has a single nonzero element in each of its D�
j

rows, at a column corresponding to one of the in-neighbors of
node j. The nonzero elements of P and C

j

are chosen randomly
according to a continuous distribution, as suggested in [9]. Let
Y

j,k

= (y
j

[0] y
j

[1] . . . y
j

[k])T denote the consolidated vector of
observations up to step k for node j. If the k-step observability
matrix is defined as:

O
j,k

=
⇥

C
j

, C
j

P, . . . , C
j

P k

⇤

T

(8)

then the following linear expression holds:

Y
j,k

=O
j,k

z[0] (9)

The expression (9) implies that, given the consolidated observa-
tions of node j up to step k, the initial state vector z

0

lies in an
affine subspace A that can be written as:

A =z̄
0

+ Null(O
j,k

) (10)

where z̄
0

2 RN is one solution of (9). In the case that O
j,k

is
full column rank, that subspace reduces to a single point in RN

and node j can uniquely determine the initial state of the entire
network. The following result from [9] addresses the issue of the
rank of the observability matrix:

Theorem 1: ([9]) Let G be a time-invariant connected graph
with self-loops in all nodes, and suppose the nodes perform linear
iterations as in (6-7). Then, for almost any choice of update matrix
P 2 M

N

and observation matrices C
j

2 M
D

�
j ,N

(both matrices
are structured - subject to the restrictions imposed by the graph
G) , the observability matrix of each node eventually becomes full
column-rank, given enough iterations are performed. Furthermore,
an upper bound for the number of steps required exists, i.e:

8j 2 V , 9s
j

 N �D�
j

;rank(O
j,sj ) = N (11)

Theorem 1 implies that all nodes will be able to calculate a unique
solution to (9) after s

max

= max
j2V

�

N �D�
j

�

steps of linear

iterations of the form (6-7), thus determining the initial state vector
of the entire network.

With Theorem 1 at hand, one can determine a distributed protocol
for initial state calculation at each node. The protocol, given in
[9] consists of a distributed initialization phase, performed only
once and an initial state calculation phase, performed continuously.
In the initialization phase the nodes randomly choose their weight
matrices (e.g. according to a uniform distribution) and engage in
a distributed protocol allowing each node to obtain and store s

j

,
O

j,sj , s
max

. The matrix O
j,sj is obtained columnwise as follows:

The N nodes perform N separate linear update iterations, with
each node executing (6)-(7) for N �2 steps each. In each of the N
iterations, the nodes are initialized differently. In the i-th iteration
the initial state vector is chosen as:

z
(i)

j

[0] =

(

1 , if i = j

0 , otherwise
(12)

Hence, the consolidated observation vector for node j is, after N�2
steps:

Y
(i)

j,N�2

=
h

y
(i)

j

[0], . . . , y(i)

j

[N � 2]
i

T

= O
j,N�2ei

(13)

As suggested by (13), in the i-th iteration, the observations of node
j are exactly the i-th column of O

j,N�2

. The choice for N�2 steps
is made because Theorem 1 states that at most N �D�

j

steps are
needed for full observability, and thus a valid upper bound for the
number of steps is N�2, because every node’s in-degree is greater

than 1 in a connected graph. After the N protocols are completed,
each node will have obtained the full observability matrix as:

O
j,N�2

=
h

Y
(1)

j,N�2

Y
(2)

j,N�2

· · · Y
(N)

j,N�2

i

(14)

After obtaining O
j,N�2

, each node can obtain s
j

by checking the
rank of its principal submatrices O

j,k

, k  N � 2, as:

s
j

=max{k 2 Z : rank(O
j,k

) = N} (15)

Once all nodes have calculated s
j

they can converge to the number
of steps needed to guarantee full observability for the entire network
by performing the following iteration for N � 1 steps, 8j 2 V:

ŝ
max,j

[0] = s
j

ŝ
max,j

[k + 1] = max
i2N�j

(ŝ
max,i

[k]) (16)

This iteration guarantees that all nodes will converge to s
max

.
Once the initialization protocol outlined by (12)-(16) has been

completed, all nodes have obtained s
j

, O
j,sj , s

max

and are ready
to engage in the initial state calculation phase.

In the initial state calculation phase, each node performs linear
iterations with neighbors and observes their states as in (6)-(7).
After s

j

steps, node j calculates the initial value of all nodes by
obtaining the unique solution of (9). The linear updates terminate
after s

max

steps, at which point all nodes have uniquely determined
the initial value z[0]. In the interest of space, the detailed protocol
for each phase is not reproduced here, but the interested reader is
referred to [9]. An revised version of both the initialization phase
and the second stage, designed to address the specific problem of
section II is developed in later sections.

B. Result 1: Improved Protocol for Initial State Calculation

The protocol mentioned above can be used to solve the DER/RL
coordination problem of section II. However, certain modifications
are made to the protocols in [9] to distribute the calculations
evenly across steps. To motivate these modifications, consider the
following: as outlined in section III-A, after s

j

steps, node j must
solve the linear system:

O
j,sj z[0] =Y

j,sj (17)

The linear system in (17) is guaranteed to have a unique solution,
as per Theorem 1, since O

j,sj is guaranteed to have rank N .
However, solution of the linear system (17) is known to cost
O(N2m

j

) operations with simple gaussian elimination. Since this
matrix is pre-calculated and stored locally at each node and remains
constant for all subsequent operations of the network it is possible to
factorize O

j,sj in the initialize stage for each node, thus reducing the
number of operations performed in node j at step s

j

to O(N2) by
back substitution. Even after this modification, however, the number
of required computations in the final step depends on the size of the
network N , and thus it will scale badly if the protocol is applied
to networks with a large number of nodes. This section, as well as
the next, is dedicated to deriving a protocol that will solve the DER
coordination problem and will require less computations per step.

Let s
j

D�
j

= m
j

be the number of rows of O
j,sj . From Theorem

1O
j,sj is rank N , m

j

� N . Thus, the Singular Value Decompostion
(SVD) of O

j,sj can be written as [14]:

O
j,sj =V ⌃W T (18)

where V 2 M
mj ,mj and W 2 M

N,N

are orthogonal and ⌃ =


⌃
N

0

�

, where ⌃
N

= diag
n

(�
1

�
2

. . . �
N

)>
o

.
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Let V = [V
L

V
R

] where V
L

2 M
mj ,N

and V
R

2 M
mj ,mj�N

.
Thus, the solution of (17) can be written as:

z[0] =W⌃�1

N

V T

L

Y
j,sj (19)

If we define the pseudo-inverse of O
j,sj as O+

j,sj
= W⌃�1

N

V T

L

,
then (19) is written as:

z[0] =O+

j,sj
Y

j,sj (20)

We can write O+

j,sj
as:

O+

j,sj
=
h

O+

j(0)

O+

j(1)

· · · O+

j(sj)

i

(21)

where O+

j(k)

2 M
N,D

j�
, k 2 {0, 1, ..., s

j

} . Using this partition
of O+

j,sj
and (20)

z[0] =

sj
X

k=0

O+

j(k)

y
j

[k] (22)

As suggested by (22), once node j obtains the observation vector
y

j

[k] in step k it can calculate the k-th term of the sum in the right-
hand side of (22). Thus, the initial state vector can be obtained by
storing an intermediate estimate ẑ

0

[k] in each step, and updating it
as:

ẑ
0,j

[k] =ẑ
0

[k � 1] + O+

j(k)

y
j

[k] (23a)

ẑ
0,j

[�1] =0 (23b)

Note that (22) guarantees that ẑ
0,j

[s
j

] = z[0]. This means that,
since the pseudo-inverse in (21) has been pre-calculated (18) and
partitioned (21) in the initialization phase, node j will need to
perform O(N ·D�

j

) operations at each step of the execution phase,
instead of O(N2) in a single (final) step, to obtain the initial state
vector for all nodes. Hence, the calculation of the initial state is
now fully distributed to s

j

steps.

C. Result 2: Finite Time Consensus on Sum of Initial Values

In certain cases, calculation of the entire initial state vector
of the network in each node is more than what is needed. For
most applications, a consensus on the average of the initial values
of the nodes is required and has been extensively studied in the
literature [3]. The observability-based protocol of section III-B
suggests a modification of the algorithm that would allow each
node to calculate the sum of the initial node values.

Let 1 =
⇥

1 1 · · · 1
⇤

T

be an N -dimentional vector.
Suppose that each node is required to calculate:

1T z[0] =
N

X

j=1

z
j

[0] (24)

Of course, each node could perform this calculation by using
the protocol of section III-B to calculate the entire state z[0] and
subsequently use (24) to obtain the required sum. However, that
would require unnecessary calculations per node in each step,
namely O(N ·D�

j

), which can be reduced. Indeed, by multiplying
each side of (22) by 1T , we obtain:

1T z
0

=

sj
X

k=0

1T O+

j(k)

y
j

[k] (25)

By defining the D�
j

-dimentional vector:

a
j

[k] =
⇣

1T O+

j(k)

⌘

T

(26)

then (25) can be rewritten as:
N

X

j=1

z[0] =
sj
P

k=0

aT

j

[k]y
j

[k] (27)

Thus, each node can obtain the exact sum of the initial node
states in at most s

j

steps, by performing the following operations
in each step 0  k  s

j

:

z
j

[k + 1] =p
jj

z
j

[k] +
X

j2N�j

p
ji

z
i

[k] (28a)

y
j

[k] =C
j

z[k] (28b)

ẑ
j

[k] =ẑ
j

[k � 1] + aT

j

[k]y
j

[k] (28c)

All three operations (28a)-(28c) cost O(D�
j

) computations. Hence,
if all that is needed is the sum of the node initial values, the
finite time algorithm requires, per step and per node, a number of
computations that is linear with respect to the number of neighbors
of the node, and does not depend on the size of the network, which
is the desired feature we set out to achieve. The added advantage
of this approach is that an upper bound (namely N � 2) on the
number of steps needed for exact convergence is known, while
the convergence time of asymptotic average consensus algorithms
depends on the needed accuracy and the second largest eigenvalue
of the graph Laplacian [3]. The disadvantage of this protocol,
however, is the need for an initialization phase and the need to
store the vectors a

j

[k] , k  s
j

locally at each node j.

IV. DISTRIBUTED FINITE-TIME DER/RL COORDINATION

The protocol of section III-C outlines a methodology to solve
the DER/RL problem of section II. The main result of this paper
regarding the solution of the DER coordination problem in finite
time is summarized in the following Theorem.

Theorem 2: Suppose the network G = (V, E) is time-invariant
and connected, and that the reference value X

r

is known to a
subset of the nodes I

0

✓ V . Also, each node’s maximum/minimum
capacities x

j

� 0 and x
j

 0 are available to that node. Assume
that the feasible set F defined in (1) is non-empty. If all nodes
initialize two information states and estimates as:

z
j,1

[0] = x
j

� x
j

(29a)

z
j,2

[0] =

(

Xr
|I0|

� x
j

, if j 2 I
0

�x
j

, else
(29b)

ẑ
j,l

[�1] =0 , 8l 2 {1, 2} (29c)

and subsequently perform the following operations in each step,
8l 2 {1, 2}:

z
j,l

[k + 1] =p
jj

z
j,l

[k] +
X

i2N�j

p
ji

z
i,l

[k] (30)

y
j,l

[k] =C
j

z
l

[k] (31)

ẑ
j,l

[k] =

(

ẑ
j,l

[k � 1] + aT

j

[k]y
j,l

[k]

ẑ
j,l

[k � 1]

if k  s
j

otherwise

(32)

if we define:

x̂
j

[k] = x
j

+ ẑ
j,2

[k]
x

j

� x
j

ẑ
j,1

[k]
(33a)

x̂[k] =
⇥

x̂
1

[k] . . . x̂
N

[k]
⇤

T

(33b)

Then, for almost any random choice of P and C
j

and with aT

j

chosen as in (26) the following holds:
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8j 2 V , 9s
j

 N �D�
j

such that ẑ
j,l

[s
j

] =
N

X

i=1

z
j,l

[0] (34)

Furthermore, if we define:

D
max

= max
j2V

{D�
j

} (35)

then:

9s
max

= max
j2V

{s
j

}  N �D
max

: x̂[s
max

] 2 F (36)

where F is defined in (1).
Proof: From theorem 1, since G is connected and time

invariant:

8j 2 V , 9s
j

 D�
j

: rank(O
j,sj ) = N

Hence 8l 2 {1, 2}, the linear system:

O
j,sj z

l

[0] =
⇥

y
j,l

[0], . . . , y
j,l

[s
j

]
⇤

T

has a unique solution, which can be obtained by:

z
l

[0] =

sj
X

k=0

O+

j(k)

y
j,l

[k] (37)

where O+

j(k)

are defined in (21). By multiplying both sides of (37)
with 1T , we obtain:

N

X

j=1

z
j,l

[0] =

sj
X

k=0

1TO+

j(k)

y
j,l

[k] =

sj
X

k=0

aT

j

[k]y[k] = ẑ
j,l

[s
j

] (38)

This concludes the proof of the first claim.
Combining (38) and the state initialization (29a)-(29b) we obtain

8j 2 V:

ẑ
j,1

[s
j

] =
N

X

i=1

z
i,1

[0] =
N

X

i=1

x
i

� x
i

(39)

ẑ
j,2

[s
j

] =
N

X

i=1

z
i,2

[0] =
X

i2I0

X
r

|I
0

| +
N

X

i=1

x
i

= X
r

+
N

X

i=1

x
i

(40)

Hence using (33a), each node j 2 V converges to the following
solution in s

j

steps:

x̂
j

[s
j

] = x
j

+

 

X
r

�
N

X

i=1

x
i

!

x
j

� x
j

N

P

i=1

x
i

� x
i

(41)

By the definition of s
max

and (32), we have 8j 2 V:

x̂
j

[s
max

] =x̂
j

[s
j

] (42)

All that is left is to prove is that x̂[s
max

] 2 F . Suppose that

x̂[s
max

] /2 F . It is obvious that
N

P

j=1

x̂
j

[s
max

] = X
r

. Hence, at

least one of the inequality constraints defining F in (1) is violated:

9j
0

2 V : x̂
j0 [smax

] > x
j0 or x̂

j0 [smax

] < x
j0

Which in turn implies, by (41),(42) for j = j
0

:

X
r

>

N

X

i=1

x
i

or X
r

<

N

X

i=1

x
i

(43)

It is easy to verify that, if either of the conditions in (43) holds, F is
empty. However, F is nonempty by assumption. Thus x̂[s

max

] 2 F
by contradiction.

Theorem 2 proves that the outlined method can solve the DER
coordination problem in a finite number of steps (s

max

) given that a
feasible solution exists. As such, it outlines a procedure to solve the
DER coordination problem in a distributed fashion, given that each
node j has locally stored its update weights, the matrix C

j

, as well
as the vectors a

j

[k] and the values s
j

and s
max

. For this purpose,
the proposed method includes an initialization phase, executed only
once, during which all these quantities are locally computed at each
node. In the protocol for the initialization phase, each node j 2 V
chooses its weights for the linear updates and its observation matrix
C

j

, calculates in a distributed manner its observability matrix O
j,sj

as well as the number of steps s
j

needed to guarantee a full rank
observability matrix. Subsequently all nodes agree on what is the
maximum of s

j

, denoted by s
max

. After s
max

steps, each node
proceeds to calculate the partitioned pseudo-inverse as in section III-
B, and the vectors a

j

[k] defined in section III-C. In the distributed
coordination phase, each node performs the operations outlined in
Theorem 2. After having performed s

max

steps, each node re-
initializes its states as in (29a)-(29b), and repeats the protocol.
This allows tracking of a reference X

r

that varies with time and/or
changing available capacities of the nodes. As per Theorem 2, this
protocol is guaranteed to provide a feasible solution in at most
N �D

max

steps where D
max

is defined in (35).

V. SIMULATION RESULTS

In this section an example application is presented: coordination
of reactive power amongst PLL-synchronized inverters. Suppose a
set V of utility interfaced PV systems, fed by DC/AC inverters
are connected to a certain bus in the system. The inverters are
synchronized to grid voltage via Phase Lock Loops (PLL’s). Each
inverter’s active power P

j

is controlled by its Maximum Power
Point Tracker (MPPT) and is considered an exogenous variable.
Thus, the inverters can be considered as having controllable reactive
power contribution Q

j

, within certain boundaries. There are two
factors that constrain an inverter’s capacity for reactive power sup-
port: i. the inverter’s rated power constraint Q

j,1

=
⇥

S2

(r),j

� P 2

j

⇤

1
2

and ii. utility-imposed constraints on the inverter’s power factor

Q
j,2

= P
j

/� ·
h

1� ��̄�2
i

1
2

. Hence, in the context of our DER/RL
coordination protocol, the actual reactive power bound is the tighest
of the two bounds. Suppose a coordinating controller generates a
request for reactive power Q⇤(t) support of the grid from the group
of inverters, but can only communicate with a subset I

0

✓ V . In the
context of the coordination problem of section II, this constitutes
to specifying a reactive power reference Q

(ref)

j

for each inverter
j 2 V that is within its capacity limits. A case of a network of 27
inverters was examined to demonstrate the approach. A coordinating
controller monitors the difference between the bus voltage and
the reference and generates a reference reactive power Q⇤ for
the network of inverters to track. Only the first inverter receives
Q⇤ from the coordinator (I

0

= {1}). All inverters have been
initialized using the initialization protocol introduced in Section
III. Fig. 1 shows, for various nodes, the step-by-step evolution
of the proposed distributed coordination algorithm for a reactive
power request of Q⇤ = 10 pu by the coordinating controller, i.e.
x̂

j

[k] is plotted. For comparison purposes, the result is plotted
against the asymptotically converging consensus based algorithm
of [4], that converges to the same value per node. Note that all
nodes converge to an allocation of Q⇤ that is proportional to their
maximum capacity. Also, it is worth noting that the proposed
algorithm converges in a finite number of steps, that is indeed
bounded above by N�2 = 25 steps, as expected. It can be observed
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Fig. 1. Step-by-step execution of the inverter reactive power coordination
algorithm: (a) Node 5 (b) Node 17 (c) Node 1

that the proposed protocol does not converge to the steady state
solution as smoothly as the asymptotically converging consensus
protocol. This however should not be an issue in practice, because
the inverters will update their reactive power contribution only
after the protocol converges - and each of them knows an upper
bound s

max

of the number of steps needed for that to happen.
In other words, the transient behavior of the protocol in Fig. 1
is disregarded by the inverters, and each inverter only uses the
final value after s

max

= 25 steps. The capability of the proposed
protocol to allocate the reactive power command Q⇤ among the
inverters is shown in Fig. 2. This figure illustrates the step-by-step
evolution of the sum of the intermediate estimates of the feasible
solution x̂

j

[k], saturated by the upper and lower capacity limits

of each inverter: Q̂[k] =
N

P

j=1

n

max
h

Q
j

, min
�

Q
j

, x̂
j

[k]
�

io

. The

quantity Q̂[k] is compared to the same quantity when the asymptotic
consensus algorithm in [4] is used. This quantity represents the
allocation of the reactive power command among inverters as the
protocol is executed, while considering their capacity constraints.
As such it constitutes a good indicator of protocol performance.
Q̂[k] converges to the requested reference Q⇤ = 10 for both
protocols. As expected, it converges to the reference in a finite
25 steps for the proposed finite-time protocol.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a finite-time decentralized protocol, suitable for
the coordination of controllable resources in the smart grid, was
introduced. The protocol is based on linear updates with neighbors,
and the concept of observability in linear structured systems and
connected directed graphs. It is guaranteed to converge in finite
time, namely in no more than N �D

max

steps. The protocol was
eventually formulated in such a way that the operations per step
and per node are linear with respect to the number of the node’s
in-neighbors. Following this protocol, each node converges to an

0 20 40 60 80 100 120

5

10

step k

Q̂
[k

]

 

 

Finite Time
Asymptotic

Fig. 2. Step-by-step evolution of the quantity Q̂[k] : finite time versus
asymptotic protocol

allocation of a reference value that is proportional to its capacity.
An example network of inverters, participating in voltage support
of a single bus was studied. The performance of the algorithm,
in terms of steps needed for convergence, was compared to the
asymptotic consensus case and was shown to be faster.
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